ON THE MEYER'S THEOREM AND THE DECOMPOSITION
OF QUADRATIC FORMS

By Cnao Ko (s 13)

Meyer (') proved in 1883 the

Theorem M. FEvery indetinite guadratic form in more than four
rarighles, with determivant nwaot zero and integcr coefficients. ahways
represents zero with the vaviables not oll zero.

The proof is hased upon the deeper arithmetical theory of indefinite
ternary quadratic forms.  Up to the present, the corresponding problem (*)
for cubic forms is not vet solved. It is desirable to find some new
prools for Mever's Theorem which may enable to generalize to cubic
forms. On using a method of one of my papers,(®) I succeed to find a
new proof of the Theorem which I shall give in §1, but unfortunately,
it seems also very difficult to extend to cubie forms. Although the proof
requires some known results, none of them assume Meyer's Theorem.

By using Meyver’s Theorem and my resull about the even definite
quadratic forms, (*) Dr. Zilinzkas (") recently proved the

(V) Cf. Bachmann, Dic drithmetik der quadvatischen Forvmen, part 1. (1898)
pp. 266-267. On pp. 551-553. referesce s made to Minkowski’s proof depending
on the theory of the general quadratic form. An account is given in Dickson’s
Studies, pp. 68-70. Also see L. J. Movdell, ‘On the condition for integer solutions
of the equation ax®4 byl ex? —dt2=0", J. R. Angew. Math,, 164 (1931) 10-49.

2y L. J. Mordell, A vemark on indeterminate equations in several variables,
J. Londoy Math, Soc., 12, (1937) 127-129.

(3) C. Ko, On the representation of a quadratic form as a sum of squares
of linear forms, Quart. J. of Math. (Oxford), 8, (1937) 81-98.

(t) C. Ko, On the positive definite quadratic forms with determinant unity,
Acta Arithmetica, 3, (1938) 79-85.

(*) G. Zilinskas, On the class number of indefinite quadratic forms in n
variables with determinant +1, J. London Math. Soc., 13, (1938) 225-240.
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Theorem Z. Every properly primitive indefinite quadratic form
in n variables with determinant =1 is equivalent to one of the set

n—t n
Fe(zy, -+, @)= = 2§ — = a3,
1

where t 18 the index of the form.

Similar to the proof of Meyer’s Theorem in §1, by using Theorem
Z. 1 shall prove in §2, the following

-

Theorem 1.(%) Every quadratic form

n
fn = ] Z i Ti Xi (@i = aii),
1,j=1
the a's being integers, can be expressed as an algebraic sum of n+3
squares of linear forms with integer coefficients.

§1. The proof of Theorem M requires the following lemmas.

Lemma 1. If f. (n<8) i3 a quadratic form with determinant
+1, then a unitary transformation with integer coeffictents carries fa

n
into a form f'a = T @' x %5 with |e'n| <2.
,)=1

We need only illustrate the proof by proving the lemma for the
case fs having the canonical form

3 7
fa= 3 VI— X Vi

i=1 i=4

n ’
where V; = ¥ m;z; and n;; being real.
j=1

Let

7
gn = P V%

i=1
(8) For definite quadratic forms, see C. Ko, (3), L. J. Mordell, The repre-
gentation of a definite quadratic form as a sum of two others, Annals of Math.,
38, (1937) 751-767, C. Ko, On the decomposition of quadratic forms in six variables,
Acta Arithmetica, 3, (1938) 64-78, and for indefinite quadratic forms in two vari-
ables, see C. Ko, On a Waring’s problem with squares of linear forms, Proc. London

Math. Soc., Series 2, 42, (1937), 171-185.
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be the definite form associated to 7., then obviously it has the deter-
minant unity. Since it is known that the minimum of a positive definite
quadratic form with determinant unity in less than eight variables is
less thun or equal to © "} (7) there exists & unitary transf{ormation with
integer coefficients whic:y carries ¢, into

1] % I
gn = -~ ‘ 5
1=1
- 4 ’ : ' 7‘ 2 - r . .
where V; = = =x,z; and = m; = 7/61. The same transformation
j=1 =1 \/
. . N (:, ,12 7‘ ,/2 ”, ’ .
carries f, inth fu= T V|, — X 1, = X q¢,;z:2; with
=1 (=1 =1
' ," I 7 12 - ! L. y p
ay = X - :1% = X in:JGL <2
1= 1= =1

Lemma 2. The indefinite quadratic forms in 8, 5. 7 caviables
with determinants 1 and eanonical forms, vespectively,

2 2 2 2 2 2 2
fo=Vi—1,— 1y fo=Vi+ V=1, Vi=V¢, == 7T
are null-forms, (e cach of them vepresents zero with the voriables ot
all zero.

Let us prove the lemma for f: for an illustration.

Suppose 1. does not represent zero except all the variables being
zero. By lemma 1, one of the forms -:fy represents 1 and so

2
#+ fs ~ 2y + folZe, z8).

2 o 2
where f, has the canonical form V,—1, or — V, —
lemma 1, one of the forms =f. represents 1, we have, respectively,

]
9

Again, by

2 2 M 2
Hfor~v Tg— %3 Or 2, + Xy
i

(7) Blichfeldt, The minimum values of positive quadratic forms in six, seven
and eight variables, M«th. Z., 39, (1934), 1-15.
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Hence

H~ x% — %3 — 3,
which represents zero for zy=z., 23=0.

Lemma 3. An indefinite quadratic form f; in seven wvariables

. . . 3 7 2
with determinant 1 and canonical form I Vf — X Vi is equivalent to
i=1 i=t

one of the following forms: . e
2217 + 01 %7 + 223 %4 + 00 2] + 225 25 + 03w — 22,
where gt=001r1 (i=1, 2, 8).
By lemma 2, f; is a null-form,
farv g =212+ 0123 + f5(%3, -+, 27),
. 2 i_2 2 2 2 .

where f; has the canonical form V, 4+ V,— V,— V,— V, Again, by
lemma 2, fs is a null-form,

fs ~ gs = 233 T4 + Q2 47 + [3 (25, Te, T1),

where f; has the canonical form V: - V: - V: which, by lemma 2, is

also a null-form. Hence
fs ~ @s = 22525 + 03 Tz — T3

and the lemma is established.

Lemma 4. Let f; be a quadratic form in five variables with
determinant D; and let an odd prime p be a divisor of ds, the g. c. d.
of all the j-rowed minors in D;. Then the transformations of the types

1) zi=9y: (£=123,490 pT=71s
(1’) ‘ £ = Y (i - 11 23 s)v P2 =Y (i =4, 5)
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carry a form f'; ~ p® f; awhere o = 0 or 1, into a form with integral
coefficients and determinant D;/p* or D,;’p.

With ¢ > 2, we have f;' ~ I and (?)

]
"

s =¥ e Bl + 0¥ B34 - +p% as & (mod p?)

N=0=0g=:+=¢5 (@.n=1 for 'i=1.---.5):

The lemma is evident if one of the o’s is > 1. Suppose then all the

@’s are not greater than one. )

If three of the p’s are 1, say o0x = 04 = 0. = 1. Then the unitary
transtormation

(2) E1 = M, E'_’ = N Es =M + 23 7s. E«i =+ 21N, Er, = M5
carries fy into f; of the type

L= a g + p®? o + Pas n: + pas 0+ 2p (as 23 N5 + o4 24 M M)

+ plaazi + a2 + as) n; (mod pY).

Since (az, p) = (uy, p) = 1,
as23+z;+os=0 (mod p)

is solvable in =y, 2, (") and so the lemma is proved. since the coefficients
of wi n, (=1, 2, 8, 4) are = 0 (mod p) and that of W2 = 0 (mod p*).

Since p | d,, the only remaining case is that only two of the o’s
are 1, say

01=10,=03=0,

i
-

K=}
'y
I

05
Then

(3) pfs = P B} + Pay &} + pas & + pou E] + p2as &2 (mod p1*Y).

(*) Bachmann (1), p. 434.
(?) Cf. Landau, Vorlesungen iiber Zahlentheorie, Satz 155.
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After the transformation

Ei=mw 6=1,23) pBi=mn, pE =1,
(3) becomes

fo = pumi+ poand+ pasni +asmi  agmi (modpth).

with determinant p*Ds/p* = pD;.
As above, the transformations

W=, N=tet 20 M=f+2h mu=0 1=

[ 4
and T

L=w (@=2,3,45), ph=wy,
carry f, into fy with determinant pD./p* = D;/p.
Lemma 5. If 2 | D;, then the transformations of the types
4) 2=y ({£=1,2384), 2x5=1y;;
4) zi=y @=128), 2z=9y (@=4,5)

carry a form fg ~ 2° f,, where ¢ =0 or 1, into a form with integer
coefficients and determinant D;/4 or 4D;.

With ¢t > 2, we have f; ~ f;, fs being one of the following three
types: (')

Y f = 2% ot +2% g B2 + - + 2% o B,
62 7y =29 mE +2%a, 82+ 2% g 81+ 2% (204 B} + 205 B4 Bs + 2BED,
63 fy =2% at: + 2% (20, B + Zas Ba + 28, 2D

+2% (204 E] + 205 54 &5 + 26, 55) (mod 29),

where thé a's are odd.

(1) Bachmann (1), p. 444.
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Suppose first f; is of the type (5.1.). The lemma is evident when

one of the o's is greater than 1. Suppose theno; =1 (¢=1,..-, 5). If

¥

two of the o's are 1, suay o4 = gs=1. Then the unitary transformation

- — — B, =
=M Se=1. Bi=mn Ei=mi4ns Es =)

Jre

. S,
carries 1, 1nto

1.=2

o ] + 2% q. N+ 2% o4 M+ 204 Mg + 2.2000 M5 + 20 + ag) n;

(mod 2%,

and so the lemma is proved since asdas =0 (mod 2).
Since 2.D.. the remaining case is that only one of the o's is 1,
sayv 0.=1. Then

6) 2/, = 201 & + 202 E] + 205 B} + 204 E) + 22, E]  (mod 27Y),
After the transformation (4), (6) becomes
Ts = 2a1 E} + 205 B2 + 20 2 + 2a4 £} + 205 |4 (mod 2%

with the determinant 2°1)./22=23D.. Then the transformations
Bi=m Br=m+m E=n, Bi=m+mn E=mn;

and

27“ = Y1, N2 = Ya. 21'[3 Ys, M = Ys, MNs = U5

carry 1, into fy with determinant 23D, 2* = D;/2,

Suppose next f;' is of the type (5.2). The lemma is evident if
either one of the ¢ (¢=1, 2, 3) is greater than 1, or 05,>0. Suppose
then ;=1 (¢=1, 2, 3) and 0,=0. If two of theg; (i=1, 2, 3) are
1, say 01 = 0,=1. As above, by a unitary transformation

Bi=n Ba=ms+m, Es=ms Bi=mn, E=mn,

we can make all the coefficients of the terms mvolvmg =0 (mod 4),
and so the lemma is proved.
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Since 2|D;, the remaining case is that only one of the ¢; (i=1,
2, 3) is 1, say ¢;=1. Then

) 2fy = 2°mt] + 202 £ + 2a0 B + 2% B2 + 2%a5 B4 Ey + 2206 E
{mod 2tH),

After the transformation

2hi=m, Ba=mn, Bs=ns Ei=mw, 2E; =1,

(7) becomes -

fs = a1 m? + 23 + 2as 2 + 22aun? + 205 M4 M5 + n:  (mod 2.
with determinant 25D;/2=2D;. Then as above, the transformations
711=C1’ 712=§2+§3» Ns = G, "}4=Cb 7|5=t6:
and
Cl U, Q = Y 2c3 = Ys, c‘ = Y §5 = Ys»
carry f;" into f; with determinant 2D.,22=D;/2.
Similarly, we can prove the third case'without any difficulty.

Lemma 6. If d, =1, the transformations of the type (1) carries
f5~pf5 with a suitable odd prime p into a form with determinant pD;
and d,= 1, where d, is the g.c.d. of all the 4i-rowed minors of pD..

Smc'e d,=1, the g.c.d. of the 3-rowed minors of the determinant
of pf; is dz=p3 Write
(8 =Y a2+ p%a, B4+ +p% ol (modp))

Since @5 = p4=0s==1, as in the proof of the first part of lemma 4. the
transformations (1) and (1’) (if necessary, combined with (2)) carry
(8) into f5 with d, =p and determinant p*D;/p2=p%D;.

With ¢>1, we have f,' ~ f; and

R =p% e B+ +2% 0 B (mod pY.
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Since d;’:p, at least 3 of the p's must be =1, as before, the transforma-
tions (1) and (1) (if necessary, combined with (2)) carry (8) into
f; with determinant p*D. p*=pD:.

Now, if d;= p, we have pl),=0 (mod p?). Hence the lemma is
oved if we choose the prime p such that D;3E0 (mod p).

Denote the minor determinant of the matrix {ay) (i j=1,---, 1)
of the quadratic form f(x,,--~, x4) formed by the elements at the in-

. .. . .. . (k)
tersections of rows &, i, - - -, i and columns jy, jo, -+, Je by Aijeein; ja,eeein;
the g.c.d. of all the minors of order k by d: the c.c.d. of all the integers

{ «
A A 29W i
L TR TR

SRTRE TREREIE TN TN}

by on=1lor 2 (k=1,2,---,n). Let dy=0, do =1, dnia =0,
and define the numbers

on = dry1 dua] d; (k=0,---,n).

Then we have the known theorem: (')

Lemma 7. Let
Sq(l,:)Q,-.o,k; 1,2' -..,k= o[.dl‘Bk (k:l'...’n)
so that B, = 1. Define B, = 1. Then there ccists @ form fn ~ fa with

(By» 2B By 0102+ 0pd)=1 (k=1,---,n—1).

Lemma 8. If di=1 and d,= D, is odd, then a unitary substitution
carries fy into a form

5
’ 1 [}
fo = ]2‘._ a;; Ti Z; (@; = a;;),

(11) Bachmann (1), p. 453.
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Where A =+ o r v vee 18 relatively prime to D;.

Since d;=1, we have
01=%023=03=1, 04 = dg = Dy,
and so by lemma 7 with k=4, there exists a form f5 ~ f; with

(3(14.)2,3,4; 1,2,3,4 ;’;utr-Dn)——— 1: or- (A;"DB) =, ’

since D is odd and HAY) ;40234 = A if we replace 2; by i fori=1,2,

3, 4 and x5 by 2; in f;,'. Hence the lemma is established.

n
Lemma 9. Let f; = X aii 2 z; salisfy the conditions:
1,j=1
) .. 2 2 2 2 2
(i) Whose canonical form i8 either (@) V; + Vo, + Vy —~V, — V4,
2 2 2 2 2
orOV, =V, = Vs —V,— Vs,
(i1) whose determinant D;=+ 8m — 1 and is odd.
(iii) (A, D;) =1, then there exist inltegers ayg, Oz, a77 sSuch that

fr="Ffs+ 2212 + @ T} + 2067 T 1 + a7 25
is a form with determinant unity and whose canonical form is
9) Vit Vadk Va=Vi=Vom Vo= V.
For this means

an iz **° a0 1
Qa1 Qo2 *»* A 0 O

G5 Osp *** Ggs O O
' o o L WY 0 a“ a°7
1 0 -0 apon}: \
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whence
(10) a"(‘-,—] D5 +1 = Ago (0177 D5 - A)

Since (A, Ds)=1, there exist for variable integers a;; ir“nitely many
primes p or 2p of the form [D.a;;—A|]. We show that (i , is solvable
by selecting «;; so that {D.a.:—A'= p or 2p, where p ix an odd prime
>0, and (—D- p)=1, the symbol being that of quadratic reciduacity.
Suppose first D, =1 (mod 4). Take |¢;;D.— A'= p. Then

_ _}f( . ooy _i
(—Dsp) = (=1)*"=D (p| D) = (=D FP= D (£ 4] Dy

Since we can choose «;; such that p=1 or 3 (mod 4), we can always
make (—D.. p)=1.

Suppose next D = 3 (mod 8). If (xA/D;)=1, take 'a;;D;—Al=
p, and we have (—D./p)=(xA D;)=1. If (=A/D:)=—-1, we take
;:D;—Al = 2p, then (2/D;)=-1 and so

(—Ds|p)= — (plDy (2] Ds) = — (2p|Ds) = — (xA[D) = 1.

Hence we can always make (—D. p)=1, and (10) is =olvable in age
e, Q7.

For the case (a), we choose «;;<<0 and such that Dse;;—A <O,
Then a..<0, since the left-hand side of (10) is positive. Let us call

1y * -+ Ay 0

an e '
= e oo = D; and D; =1,

an = Dy, l
ay: U
1 - Uy * Ass 0

tnen
(11) fr=D1 X3+ D2 X;| Dy + -+ + D; X;| Ds + Ds X; / D5 + D: X%/ Ds,
where X’s are linear functions in z,, ---, 2, and by lemma 7, we can

assume that D;==0 for i=1, 2, 3, 4. Since D:>0, ay<0, we have Dg<0
and so the canonical form of f; is exactly (9).
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For the case (b), we choose a;;>0 and such that Da;;—A>0.
Then a¢s>0, since the left-hand side of (10) is positive. Hence from
(11), the canonical form of . id-again (9), since now D;, D, D; are
all posﬂ:ive

Now the Meyer’'s th,em'em can be easily proved.

By lemmas 4 and 5, we need only prove those forms with D: odd
and d,=1. By lemma 6, we need only to consider those forms D; odd
and #8m-—1 and d,=1. Then by lemma 8, we can also assume that (D,
A)=1. iBy lemma 9, we have a form f; which is f; by putting x,=2:=0
and the determinant of f; is 1. By lemma 3,

i~ 21y + 15 + 2YsYs + 0295 + 295 Ye + 03 Y — V5

Hence by putting xs = x; = 0, we can write

= 2(2 ex o) ( 2 cmxi)+01(2 (Y1) o

5 A 5
+ 2( _21 Csi x{)(‘zl Cei T3) + 08 _21 et TP — ( 2 e %3,
1= 1= 1=

i=1

were c;; are integers. Since the determiant of the system of four linear
equations in five variables

21 Ciixi=0 (1 = 2. 4, 6: 7)
j=

is always solvable with the 2’s not all zero, we have a set of non-trivial
integer solutions satisfying f5; = 0.

§2. The proof of theorem 1 requires the following lemmas:

Lemma 10. Let fu be a quadratic form with determinant D, and
let the odd prime p be a divisor of de—2. Then the transformation

=y 8=1,2,+--,2—1), D2 = Yu

carries a form f,~ fa into a form. with mtege-r coefficients and deter-
mzfumt D../p‘x o '

Lemma 11 Lot 2 be & divisor of da_. - Then the transformation
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Ti = Ys (i= 1’21 "')71—1)' zz'v:yﬂ

221

. ! - . . . . .
carries a form f,~ fn into a form with integer coefficients and deter-

minant Da 4.

Lemma 12, If dao=1 and dn_, is odd, then a unitary substitution

carries f, into a form

4 z‘ I ' +
o = 2 ay; ziox; {ag; = aj;)
1,7=1
13 ’
Aoy = ° Qoy
Where RN v | FEO {mod 4)

and is relatively prime to Ceseenens .

a” LY a%
A(I"I) = ] e $ 0 (m()d 4)
An2 ¢ ** Cnn
and relatively prime to
i ass - Qun
.......... ,
An3 **° Onn

then we can find two integers Gy, ws1, Unel, ae1 SUch that the form
Frst = fu + 201, nt1 %1 Tat1 + 2T2 Tui1 + Cnil, ni1 Loy

(i) has determinant Duy134*(8m-1)

and (i) (A®, Dayi) = 1, where
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- ce | cerececrrcncccas N R A(l"l) S
Qnz Gas *** Gan O : A3n **° Onn
1 0 -0 @Gusnn

= p, an old prime.

Lemma 14. If in lemma 13, D,.1=0 (mod 4), the transformation

‘12) - Ty = y" (i = 1, ... Ty n), 2xﬂ+1 ='~yﬂ+1 P
carries a form f,:,+1 ~ fapr tnto a form wilth integer coefficients, deter-
minant Dn.1/4 and d.=1, 6,=1.

The proofs of the above lemmas are entirely similar to that
already given by the author. (12)

Lemma 15. Let fny1 be a quadratic form with (A‘l’;“’, D.)=1,
where DajaE0 (mod 4), being positive, is the determinant of fasa
and A™, the cofactor of Gy in Dan, is odd. If Dapn T (imod 8),

there exist integers Gut2,mis, Gni2nis, Onis,nis SUCh that the form in n + 3
variables

Fries = far1 + 221 Tnis + Guiz, nia Toyy + 20mi2, 048 Ttz Tnis + Gnis, ni3 Toyg

is an indefinite properly primitive form with determinant unity.

It requires to solve the Diophantine equation
(13) Gnig,wts Dasa + 1= Gatz, 012 (@nyg, nas Dnsa — A(:;H))'

Similar to the proof of lemma 9, (13) is always solvable with either
@n+2, n+2 Guis, n4s bDOth positive or both negative at our disposal, unless
Dpi1=2D’441, D'as1=1 (mod 2). In the latter case, if* we set

e -,u‘.

(13) Ko (3), Lemmas 8, 9, 10, 12 and 18,
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G st, meg D1 — A(;;+1>{ = p, being a prime, then

(—Dasafp) = (2/P) (—=Disy/D).
But

31)/8 )Jf(p- 0. KDL+ D)

@/p) = (=1 (~DL /) = (1 (/Dis1)

_ ,(_l)ﬁp—l). Koo, ¢

”(-_-tA‘,“]“) /D,:ﬂ),
and so

2-1)i8+4(p—1). %D' 1 "
(— Dps1/p) = (_1)(}) )ig+4(p—1). ¥ wi1 ™ )(iA(;‘,H)/DnH)-

Choose p=1 (mod 8), when (:tA(l",”)/I);.,l):l; and p=5 (mod 8),
when (iA(l"‘“’/D'nH)Z—l. Then always (—Dns,/2)=1 and (13) is still

solvable with either amiomie, Onismsa DOth positive or both negative at
our disposal. Hence we can always make f.., to be an indefinite form.
As in the proof of lemma 9, in case Dpi3 = 3 (mod 8),

1@nis,mis Dnti~ A‘l"l“’ |=2p, we have .+, ny 5 0dd, since A(]"l*” isodd. Inall

the other cases |tnis, n+s D,‘H——A(;‘l*”\:p. If we put tnso nes = 20'n42, nis,

the solvability of (13) is not effected, since (4/p)=1 and then a4z, nt2
must be odd, sisce the left-hand side of (13) is odd. Hence one of
Uniz, ni2, Onss, a+s Can be chosen to be odd in this lemma in order to make
fnis to be a properly primitive form.

Proof of the theorem 1.

From lemmas 10, 11 and 12, it is clear that we need only to
prove the theorem for the from
n
fa= T aiwxiw; (ais = as),
tj=1
where 'A‘l"l’ is relatively prime to

Q33 »*+ Uon

L RN .

Ung *** Qnn
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Since from Zilinskas theorem, every properly primitive indefinite
quadratic form in n+38 variables with determinant unity is equivalent
to one of the set Fy(zy, «++, Znss), then by lemmas 13 and 15, if Dan O
{mod 4) in lemma 13,

fars = fa + 281 Tnss + 202 Tui1 + 201, ni1 T1 Tuid + 20n42, i3 Tuta Tats
. 2 xR . ?
+ Gntl, wt1 Ty + Cnag, wiza Tniz + Gnis, nis Tuys

is an indefinite properly primitive form with determinant unity and so

n3
.. Iska= T & L} .
i=1
where the L’s are linear forms in x,,-+¢, Zu;s and g =+1 or —1. Put-
ting ZTni1 = Tniz = Tuts = 0, we have a representation of fa as an algebraic
sum of n+3 squares of linear forms with integer coefficients.

If, in lemma 13, D4y =0 (mod 4), then by lemma 14, we can
carry fay1 in the lemma 13, by some unitary substitutions combined
with those of the type (12), into a form fu;1 with Doy 38 0 (mod 4)
and dLi; = o,4;=1. Then by similar argument to that in lemma 12,
we can assume that f:.u satisfies all the conditions of lemma 15. Then
there .exist integers dniu, nt2, Gns2, nis, Guis, nis Such that

f’ a1 F 221 Tnis + Gni2, nia B24g + 20nta, w3 Tnia Pnts + Gnisy nid T2 4q

-r+.&

= sL (8; +1lor—1).

i=1

Putting Ze+2 = Za+3=0 and transforming f,'.H back to fe+1, We have

[}

- s, o
(14) fanr= ‘2! 8 L; -
i=

Putting .41 = 0 in (14), we have a representation of f. as an algebraic
sum of n+3 squares of linear forms with integer coeﬂicxents Hence
theorem 1 is completely proved

........

(Receivfei 28, Mgrch, 1939). -



