SOME NEW GEOMETRICAL SIGNIFICANCES OF THE PROJECTIVE CURVATURES AND THE CURVATURE FORM OF A SPACE CURVE

BY TE-CHIH FON(1) (方徳植)

Su has recently established (2) the projective theory of space curves by—a—purely—geometrical—method—and has shown among other things that the projective invariants of a curve can simply be expressed by certain double ratios. In my former paper (3) I have interpreted the curvature form by the Von Staudt's double ratios of the tangent of the space curve C at a point infinitely near an ordinary point P with respect to fundamental tetrahedron of Sannia at P.

The object of this paper is to give some simpler geometrical significances of the projective curvatures and the curvature form of a space curve C.

Let the coordinates of the vertices P, P_1 , P_2 , P_3 of the normal tetrahedron of Su be (x), (x_1) , (x_2) , (x_3) respectively, then the projective Frenet-Serret Formulae take on the form (4)

(1)
$$\begin{cases} x' = x_1, \\ x'_1 = -3Ix + x_2, \\ x'_2 = -\frac{16}{5}x - 4Ix_1 + x_3, \\ x'_3 = -Jx - \frac{4}{5}x_1 - 3Ix_2, \end{cases}$$

- (1) Research Fellow of the China Foundation for the Promotion of Education and Culture.
- (2) B. Su, Note on the projective differential geometry of space curves, Journal Chinese Math. Soc., 2 (1937), 98-137.
- (3) Te-Chih Fon, Note on the projective differential geometry of space curves, Annali di Mat. (1939, 97-106.
 - (1) Cfr. Su, loc. lit. 130.

where the dash represents the derivative with respect to the projective arc σ ; I and J denote respectively the first and second projective curvatures of Sannia.

It is well known that any seven-point quadric of a space curve C at a point P always passes through the eighth fixed point S, namely, the point of Sannia.

If we express the projective homogeneous coordinates of any point M(Y) in space by the form

(2)
$$Y = y_1 x + y_2 x_1 + y_3 x_2 + y_4 x_3,$$

where y_1 , y_2 , y_3 , y_4 denote the local coordinates of M with respect to the normal tetrahedron $\{PP_1P_2P_3\}$ of C at P with the unit point $(x+x_1+x_2+x_3)$, then the coordinates of S are

(3)
$$\begin{cases} y_1 = 1 - 9 x_0^3, \\ y_2 = 3 x_0, \\ y_3 = \frac{9}{2} x_0^2, \\ y_4 = \frac{9}{2} x_0^2, \end{cases}$$

xo being defined by

$$x_0 = \frac{4}{5J}.$$

Whence the coordinates of the point of intersection \overline{S} of the plane $[P_2P_3, S]$ and the tangent PP_1 are

(5)
$$y_1 = 1 - 9 x_0^3$$
, $y_2 = 3 x_0$, $y_3 = 0$, $y_4 = 0$;

and the principal point of Sannia \bar{R} is

(6)
$$y_1 = 5J$$
, $y_2 = -4$, $y_3 = 0$, $y_4 = 0$.

From (5) and (6) it follows that the double ratio of the four points P, P_1 , \overline{R} , \overline{S} is equal to

(7)
$$D \equiv (PP_1, RS) = -\frac{1}{3} + \frac{3 \cdot 2^6}{5^3 J^3},$$

 \mathbf{or}

(I)
$$J^3 = \frac{3^2 \cdot 2^6}{5^3 (1 + 3D)}.$$

Thus we arrive at the following

Theorem I. Let \overline{S} be the point where the tangent PP_1 intersects the plane determined by the edge P_2P_3 of the normal tetrahedron and the Sannia point S. If \overline{R} be the principal point of Sannia and D the double ratio of the four points P, P_1 , \overline{R} , \overline{S} , they the second projective curvature J is given by the equation (1).

In the next place we shall express the first projective curvature I by another simple double ratio of four elements of a primitive geometric form.

The equation of the osculating conic C_2 of C at P is given by

(8)
$$y_2^2 - \frac{8}{3} y_1 y_2 = 0,$$

and from (1) we obtain that the equation of the tangent t_1 to the curve (P_1) at P_1 is

$$(9) y_1 + 3Iy_2 = 0.$$

Let Q_{ε} denote the points of intersection of t_1 and C_2 , then their coordinates are

(10)
$$y_1 = -3I$$
, $y_2 = \varepsilon \sqrt{-8I}$, $y_3 = 1$, $y_4 = 0$,

where $\varepsilon = \pm 1$. On the other hand the tangent of the curve (P_3) at P_3 meets the osculating plane of the curve at the point P_3 with the coordinates

(11)
$$y_1 = J$$
, $y_2 = \frac{4}{5}$, $y_3 = 3I$, $y_4 = 0$.

Therefore the double ratio of the four lines PP_1 , PP_2 , PP_3 ,* PQ_{ϵ} is equal to

$$P(P_1 P_2, P_3^* Q_8) = \frac{15}{4} \epsilon I \sqrt{-8I}$$

or

(II)
$$I^{3} = -\frac{2}{3^{2} \cdot 5^{2}} \left\{ P(P_{1} P_{2}, P_{3}^{*} Q_{\epsilon}) \right\}^{2}$$

Thus we are led to

Theorem II. Let Q_{ε} ($\varepsilon=1$ or -1) denote one of the points where the tangent t_1 of the curve (P_1) at P_1 intersects the osculating conic C_2 of C at P, and let P_3^* be the point where the tangent of the curve (P_3) at P_3 meets the osculating plane; then the cube of the first projective curvature I of C is, except a numerical factor $-\frac{2}{3^2 \cdot 5^2}$, equal to the square of the double ratio of the four lines PP_1 , PP_2 , PP_3 , PQ_{ε} .

Finally, we shall give a simple geometric significance of the curvature form

The consecutive point P' $(x(\sigma + d\sigma))$ of P of the curve C may be regarded as a point on the osculating plane provided that the infinitesimals of order ≥ 3 be neglected. Thus

$$x(\sigma + d\sigma) = (1 - \frac{3}{2} I d\sigma^2) x + d\sigma x_1 + \frac{d\sigma^2}{2} x_2$$

and consequently the local coordinates of P' are given by

$$y_1 = 1 - \frac{3}{2} I d\sigma^2$$
, $y_2 = d\sigma$, $y_3 = \frac{d\sigma^2}{2}$, $y_4 = 0$.

Any point on the line PP' is of the coordinates

(12)
$$y_1 = 1 - \frac{3}{2} I d\sigma^2 - \varrho, \quad y_2 = d\sigma, \quad y_3 = \frac{d\sigma^2}{2}, \quad y_4 = 0$$

 ϱ being a parameter. If Q, Q' denote the points of intersection of PP' with P_1P_2 and the tagent t_1 of (P_1) respectively, then the corresponding parameters of Q, Q' are $1-\frac{2}{3}Id\sigma^2$ and 1 respectively. Hence the double ratio of P, P', Q', Q is

$$\Delta \equiv (P P', Q' Q) = 1 - \frac{3}{2} I d\sigma^2.$$

Therefore we have the following theorem:

Theorem III. Let P' be a point on C so near the point P that on the osculating plane but not on the tangent of C at P. If the line PP' intersects the line P_1P_2 and the tangent t_1 of (P_1) at Q and Q' respectively, and if Δ denote the double ratio of the four points P, P', Q', Q, then

(III)
$$I d\sigma^2 = \frac{2}{3} (1 - \Delta).$$

National University of Chekiang-

(Received 8 March, 1939).