

A modal-Hamiltonian interpretation of quantum mechanics

Lombardi, Olimpia and Castagnino, Mario (2008) A modal-Hamiltonian interpretation of quantum mechanics.

Full text available as: <u>PDF</u> - Requires a viewer, such as <u>Adobe Acrobat Reader</u> or other PDF viewer.

Abstract

The aim of this paper is to introduce a new member of the family of the modal interpretations of quantum mechanics. In this modal-Hamiltonian interpretation, the Hamiltonian of the quantum system plays a decisive role in the property-ascription rule that selects the definite-valued observables whose possible values become actual. We show that this interpretation is effective for solving the measurement problem, both in its ideal and its non-ideal versions, and we argue for the physical relevance of the property-ascription rule by applying it to well-known physical situations. Moreover, we explain how this interpretation supplies a description of the elemental categories of the ontology referred to by the theory, where quantum systems turn out to be bundles of possible properties

Keywords:	quantum mechanics; modal interpretation; Hamiltonian; quantum measurement decoherence; classical limit; quantum ontology.
Subjects:	Specific Sciences: Physics: Quantum Mechanics
ID Code:	3875
Deposited By:	Lombardi, Olimpia
Deposited On:	06 Febuary 2008
Additional Information:	Forthcoming in Studies in History and Philosophy of Modern Physics.

Send feedback to: philsci-archive@library.pitt.edu