

Explaining New Phenomena in Terms of Previous Phenomena

Bod, Rens (2004) Explaining New Phenomena in Terms of Previous Phenomena.

Full text available as:

PDF - Requires a viewer, such as Adobe Acrobat Reader or other PDF viewer.

Abstract

It has become increasingly clear that natural phenomena cannot be formally deduced from laws but that almost every phenomenon has its own particular way of being linked to higher-level generalizations, usually via approximations, normalizations and corrections. This article deals with the following problem: if there are no general principles to link laws to phenomena, and if each phenomenon has its own way of being explained, how can we -- or how can a theory -- explain any new phenomenon? I will argue that while particular explanations only apply to the specific phenomena they describe, parts of such explanations can be productively reused in explaining new phenomena. This leads to a view on theory, which I call maximalism, according to which new phenomena are understood in terms of previous phenomena. On the maximalist view, a theory is not a system of axioms or a class of models, but a dynamically updated corpus of explanations. New phenomena are explained by combining fragments of explanations of previous phenomena. I will give an instantiation of this view, based on a corpus of phenomena from classical and fluid mechanics, and show that the maximalist approach is not only used but also needed in scientific practice.

Keywords: particularism, exemplar-based explanation, model-based reasoning, analogy-based

explanation, maximalism

General Issues: Structure of Theories
General Issues: Models and Idealization

Subjects: General Issues: Laws of Nature

General Issues: Explanation
Specific Sciences: Physics

ID Code: 1602

Deposited

By: Bod, Rens

Deposited

On: 06 Febuary 2004

Send feedback to: philsci-archive@library.pitt.edu