

Reality, measurement and locality in Quantum Field Theory

Tommasini, Daniele (2002) Reality, measurement and locality in Quantum Field Theory.

Full text available as:

PDF - Requires a viewer, such as Adobe Acrobat Reader or other PDF viewer.

Abstract

It is currently believed that the local causality of Quantum Field Theory (QFT) is destroyed by the measurement process. This belief is also based on the Einstein-Podolsky-Rosen (EPR) paradox and on the so-called Bell's theorem, that are thought to prove the existence of a mysterious, instantaneous action between distant measurements. However, I have shown recently that the EPR argument is removed, in an interpretation-independent way, by taking into account the fact that the Standard Model of Particle Physics prevents the production of entangled states with a definite number of particles. This result is used here to argue in favor of a statistical interpretation of QFT and to show that it allows for a full reconciliation with locality and causality. Within such an interpretation, as Ballentine and Jarret pointed out long ago, Bell's theorem does not demonstrate any nonlocality.

Keywords: Quantum Field Theory; Standard Model; Correlations; Locality; Causality; Measurement

Problem; Einstein-Podolsky-Rosen paradox; Bell's Theorem

Specific Sciences: Physics: Fields and Particles

Subjects: Specific Sciences: Physics: Quantum Field Theory

Specific Sciences: Physics: Quantum Mechanics

ID Code: 651

Deposited By:

Tommasini, Daniele

Deposited

On: 22 May 2002

Send feedback to: philsci-archive@library.pitt.edu