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Abstract: We study the asset-pricing implications of learning in an environment 
where the true model of the world is a multivariate one, but where agents update only 
over the class of simple univariate models.  Thus if a particular simple model does a poor 
job of forecasting over a period of time, it is discarded in favor of an alternative simple 
model.  The theory yields a number of distinctive predictions for stock returns, generating 
forecastable variation in the magnitude of the value/glamour return differential, in 
volatility, and in the skewness of returns.  We validate several of these predictions 
empirically. 
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I.  Introduction 

In attempting to make even the most basic kinds of forecasts, we can find ourselves 

inundated with a staggering amount of potentially relevant raw data.  To take a specific 

example, suppose you are interested in forecasting how General Motors stock will perform 

over the next year.  The first place you might turn is to GM’s annual report, which is instantly 

available online.  GM’s 2004 10-K filing is more than 100 pages long, and is filled with 

dozens of tables, as well as a myriad of other facts, footnotes and esoterica.  And this is just 

the beginning.  With a few more clicks, it is easy to find countless news stories about GM, 

assorted analyst reports, and so forth. 

How is one to proceed in the face of all this information?  Both common sense, as well 

as a large literature in psychology, suggest that people simplify the forecasting problem by 

focusing their attention on a small subset of the available data. One powerful way to simplify 

is with the aid of a theoretical model.  A parsimonious model will focus the user’s attention on 

those pieces of information which are deemed to be particularly relevant for the forecast at 

hand, and will have her disregard the rest.  

Of course, it need not be normatively inappropriate for people to use simple models, 

even exceedingly simple ones.  There are several reasons why simplifying can be an optimal 

strategy.  First, there are cognitive costs to encoding and processing the added information 

required by a more complex model.  Second, if the parameters of the model need to be 

estimated, the parsimony inherent in a simple model improves statistical power: for a given 

amount of data, one can more precisely estimate the coefficient in a univariate regression than 

the coefficients in a regression with many right-hand-side variables.  So simplicity clearly has 

its normative virtues.  However, a central theme in much of the psychology literature is that 
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people do something other than just simplifying in an optimal way.  Loosely speaking, it 

seems that rather than having the meta-understanding that the real world is in fact complex, 

and that simplification is only a strategy to deal with this complexity, people tend to behave as 

if their simple models provide an accurate depiction of reality.1  

Theoretical work in behavioral economics and finance has begun to explore some of 

the consequences of such normatively-inappropriate simplification. For example, in many 

recent papers about stock-market trading, investors pay attention to their own signals, and 

disregard the signals of others, even when these other signals can be inferred from prices.  The 

labels for this type of behavior vary across the papers—sometimes it is called 

“overconfidence” (in the sense of investors overestimating the relative precision of their own 

signals); sometimes it is called “bounded rationality” (in the sense that it is cognitively 

difficult to extract others’ signals from prices); and sometimes it is called “limited attention”.  

But labels aside, the reduced forms often look quite similar.2  The common thread is that, in 

all cases, agents make forecasts based on a subset of the information available to them, yet 

behave as if these forecasts were based on complete information. 

While this general approach is helpful in understanding a number of phenomena, it 

also has an important limitation, since it typically takes as exogenous and unchanging the 

subset of available information that an agent restricts herself to.  For example, it may be 

reasonable to posit that investors with limited attention have a general tendency to focus too 

                                                           
1 For textbook discussions, see, e.g., Nisbett and Ross (1980) and Fiske and Taylor (1991).  We review this and 
related work in more detail below. 
 
2 A partial list includes: i) Miller (1977), Harrison and Kreps (1978), Varian (1989), Kandel and Pearson (1995), 
Morris (1996), Odean (1998), Kyle and Wang (1997), Hong and Stein (2003), and Scheinkman and Xiong 
(2003), all of whom couch their models in terms of either differences of opinion or overconfidence; ii) Hong and 
Stein (1999), who appeal to bounded rationality; and iii) Hirshleifer and Teoh (2003), Sims (2003), Peng and 
Xiong (2004) and Della Vigna and Pollet (2004) who invoke limited attention. 
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heavily on a firm’s reported earnings, while ignoring other numbers and footnotes.3  At the 

same time, it seems hard to believe that even relatively naïve investors would not lose some of 

their faith in this sort of valuation model following the highly-publicized accounting scandals 

at, e.g., Enron, WorldCom, Tyco.  If so, new questions arise:  How rapidly will investors 

move in the direction of a new model—one that that pays less attention to reported earnings, 

and more attention to numbers that may help flag accounting manipulation or other forms of 

misbehavior?  And what will be the implications of this learning for stock returns? 

Our goal in this paper is to begin to address these kinds of questions.  As in previous 

work, we start with the assumption that agents use simple models, i.e., models that consider 

only a subset of available information.  But unlike this other work, we then go on to explicitly 

analyze the process of learning and model change.  In particular, we assume that agents keep 

track of the forecast errors associated with their simple models.  If a given model performs 

poorly over a period of time, it may be discarded in favor of an alternative model—albeit an 

equally oversimplified one—that would have done better over the same period. 

To be more precise, our set-up can be described as follows.  Imagine a stock that at 

each date t pays a dividend of Dt = At + Bt + εt, where At and  Bt can be thought of as two 

distinct sources of public information, and where εt is random noise.  The idea that an agent 

uses an oversimplified model of the world can be captured by assuming that her forecasts are 

based on either the premise that: i) Dt = At + εt (we call this having an “A model”); or ii) Dt = 

Bt + εt  (we call this having a “B model”).   Suppose the agent initially starts out with the A 

model, and thus focuses only on information about At in generating her forecasts of  Dt.  Over 

time, the agent keeps track of the forecast errors that she incurs with the A model, and 

                                                           
3 See, e.g., Hirshleifer and Teoh (2003) for a discussion of this idea. 
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compares them to the errors she would have made had she used the B model instead.  

Eventually, if the A model performs poorly enough relative to the B model, we assume that 

the agent switches over to the B model; we term such a switch a “paradigm shift”.4 

This type of learning is Bayesian in spirit, and we use much of the standard Bayesian 

apparatus to formalize the learning process.  However, there is a critical sense in which our 

agents are not conventional fully rational Bayesians: we allow them to update only over the 

class of simple univariate models.  That is, their priors assign zero probability to the correct 

multivariate model of the world, so no matter how much data they see, they can never learn 

the true model.5   

This assumption yields a range of empirical implications, which we develop in a 

stock-market setting.  Even before introducing learning effects, the premise that agents use 

oversimplified models—and hence do not pay attention to all available information—allows 

us to capture well-known “underreaction” phenomena such as momentum (Jegadeesh and 

Titman (1993)), and post-earnings-announcement drift (Bernard and Thomas (1989, 1990)). 

Nevertheless, the primary contribution of the paper lies in delineating the additional effects 

that arise from our learning mechanism.  We highlight five of these.  First, learning generates 

a value/glamour differential, or book-to-market effect (Fama and French (1992), Lakonishok, 

Shleifer and Vishny (1994)).  Second, and more distinctively, there is substantial variation in 

                                                           
4 Our rendition of the learning process is inspired in part by Thomas Kuhn’s (1962) classic, The Structure of 
Scientific Revolutions. Kuhn argues that scientific observation and reasoning is shaped by simplified models, 
which he refers to as paradigms.  During the course of what Kuhn calls “normal science”, a single generally-
accepted paradigm is used to organize data collection and make predictions. Occasionally, however, a crisis 
emerges in a particular field, when it becomes clear that there are significant anomalies that cannot be 
rationalized within the context of the existing paradigm.  According to Kuhn, such crises are ultimately resolved 
by revolutions, or changes of paradigm, in which an old model is discarded in favor of a new one that appears to 
provide a better fit to the data. 
 
5 The idea that agents attempt to learn, but assign zero probability to the true model of the world, is also in 
Barberis, Shleifer and Vishny (1998).  We discuss the connection between our work and this paper below. 
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the conditional expected returns to value and glamour stocks.  For example, a high-priced 

glamour stock that has recently experienced a string of negative earnings surprises—a 

situation one might label “glamour with a negative catalyst”—has an increased probability of 

a paradigm shift that will tend to be accompanied by a large negative return. Thus the 

conditional expected return on the stock is more strongly negative than would be anticipated 

on the basis of its high price alone.   Symmetrically, a low-priced value stock has an expected 

return that is more positive when it has also experienced a recent series of positive earnings 

surprises—i.e., when it can be characterized as “value with a positive catalyst”. 

The same reasoning also yields our third and fourth implications—that, even with 

symmetric and homoskedastic fundamentals, both the volatility and skewness of returns are 

stochastic, with movements that can be partially forecasted based on observables.  In the 

above example of a glamour stock that has experienced a series of negative earnings shocks, 

the increased likelihood of a paradigm shift corresponds to elevated conditional volatility as 

well as to negative conditional skewness. 

And finally, these episodes will be associated with a kind of revisionism: when there 

are paradigm shifts, investors will tend to look back at old, previously-available public 

information, and to draw very different inferences from it than they had before.  In other 

words, when asked to explain a dramatic movement in a company’s stock price, observers 

may point to data that has long been in plain view in the company’s annual reports, but that 

was overlooked under the previous paradigm. 

In developing our results, we consider two alternative descriptions of the market-wide 

learning process.  First, we examine a setting where there is a single representative agent who 

does the same thing that researchers in economics and many other scientific fields typically do 
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when they need to make model-based forecasts: she engages in model selection—i.e., picking 

a single favorite model—as opposed to Bayesian model averaging.  The model-selection case 

is particularly helpful in drawing out the intuition for our results, so we go through it in some 

detail.  But this approach naturally raises the question of how well our conclusions stand up 

when there is heterogeneity across investors, each of whom may have a different favorite 

model at any point in time.  Therefore, we also consider the case of model averaging, which 

can be motivated by thinking of a continuum of investors, each of whom has a different 

threshold for switching from one model to another.  And interestingly, the qualitative 

predictions that emerge are very similar to those in the model-selection case.  This suggests 

that the key to these results is not the distinction between model selection vs. model 

averaging, but rather the fact that, in either case, we restrict the updating process to the space 

of simple univariate models.  

The rest of the paper is organized as follows.  Section II reviews some of the literature 

in psychology that is most relevant for our purposes.  In Section III, we lay out our theory, and 

use heuristic arguments to outline its qualitative implications for stock returns.  In Section IV, 

we run a series of simulations in order to make more quantitatively precise predictions, which 

we then go on to examine empirically.  In Section V, we briefly discuss the recent history of 

Amazon.com, in an effort to illustrate the phenomenon of revisionism.  Section VI looks at 

the connection between our work and several related papers, and Section VII concludes.  

 

II.  Some Evidence From Psychology 

The idea that people use overly simplified models of the world is a fundamental one in 

the field of social cognition.  According to the “cognitive miser” view, which has its roots in 



 7

the work of Simon (1982), Bruner (1957), and Kahneman and Tversky (1973), humans are 

seen as having to confront an infinitely complex and ever-changing environment, endowed 

with a limited amount of processing capacity.  In order to conserve on scarce cognitive 

resources, they use theories, or schema, to organize the data and make predictions.   

Schank and Abelson (1977), Abelson (1978), and Taylor and Crocker (1980) review 

and classify these knowledge structures, and highlight some of their strengths and 

weaknesses.  These authors argue that theory-driven/schematic reasoning helps people to do 

better at a number of tasks, including: the interpretation of new information; storage of 

information in memory and subsequent retrieval; the filling-in of gaps due to missing 

information; and overall speed of processing.  At the same time, there are also several 

disadvantages, such as: incorrect inferences (due, e.g. to stereotyping); oversimplification; a 

tendency to discount disconfirming evidence; and incorrect memory retrieval. 6 

Fiske and Taylor (1991, p. 13) summarize the cognitive miser view as follows: 

 “The idea is that people are limited in their capacity to process information, so they take 
shortcuts whenever they can…People adopt strategies that simplify complex problems; the strategies 
may not be normatively correct or produce normatively correct answers, but they emphasize 
efficiency.” 
  

Indeed, much of the psychology literature takes it more or less for granted that people 

will not use all available information in making their forecasts, and instead focuses on the 

specific biases that shape which kinds of information are most likely to be attended to.  To 

                                                           
6 Kuhn (1962) discusses an experiment by Bruner and Postman (1949) in which individual subjects are shown to 
be extremely dependent on a priori models when encoding the most simple kinds of data.  In particular, while 
subjects can reliably identify standard playing cards (such as a black six of spades) after these cards have been 
displayed for just an instant, they have great difficulty in identifying anomalous cards (such as a red six of 
spades) even when they are given an order of magnitude more time to do so.  However, once they are aware of 
the existence of the anomalous cards—i.e., once their model of the world is changed—subjects can identify them 
as easily as the standard cards. 
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take just one example, according to the well-known availability heuristic (Tversky and 

Kahneman (1973)), people tend to overweight information that is easily available in their 

memories—i.e., information that is especially salient or vivid.   

Our theory relies on the general notion that agents disregard some relevant information 

when making forecasts.  But importantly, it does not invoke an exogenous bias against any 

one type of information.  Thus in our setting, At and Bt can be thought of as two sources of 

public information that are a priori equally salient.  It is only once an agent endogenously opts 

to use the A model that At can be said to become more “available”. 

Another prominent theme in the work on theories and schemas is that of theory 

maintenance.  Simply put, people tend to resist changing their models, even in the face of 

evidence that, from a normative point of view, would appear to be strongly contradictory of 

these models.  Rabin and Schrag (1999) provide an overview of much of this work, including 

the classic contribution of Lord, Ross and Lepper (1979).  Nevertheless, even if people are 

stubborn about changing models, one probably does not want to take the extreme position that 

they never learn from the data.  As Nisbett and Ross (1980, p. 189) write: 

“Children do eventually renounce their faith in Santa Claus; once popular political leaders do 
fall into disfavor…Even scientists sometimes change their views….No one, certainly not the authors, 
would argue that new evidence or attacks on old evidence can never produce change.  Our contention 
has simply been that generally there will be less change than would be demanded by logical or 
normative standards or that changes will occur more slowly than would result from an unbiased view 
of the accumulated evidence.” 

 

Our efforts below can be seen as very much in the spirit of this quote. That is, while 

we allow for the possibility that it might take a relatively large amount of data to get an agent 

to change models, our whole premise is that, eventually, enough disconfirming evidence will 

lead to the abandonment of a given model, and to the adoption of a new one.  
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Although the idea of theory maintenance is well-developed, the psychology literature 

seems to have produced less of a consensus as to when and how theories ultimately change. 

Lacking such an empirical foundation, our approach here is intended to be as axiomatically 

neutral as possible.  We measure the accumulated evidence against a particular model like a 

Bayesian would, as the updated probability (given the data and a set of priors) that the model 

is wrong.  However, we do not impose any further biases in terms of which sorts of data get 

weighted more or less heavily in the course of the Bayesian-like updating. 

 

III.  Theory 

A.  Basic Ingredients 

 1.   Linear Specification for Dividends 

We consider the market for a single stock.  There is an infinite horizon, and at each 

date t, the stock pays a dividend of Dt = Ft + εt ≡  At + Bt + εt, where At and  Bt can be thought 

of as two distinct sources of public information, and where εt is random noise.  Each of the 

sources of information follows an AR1 process, so that At = ρAt-1 + at, and Bt = ρBt-1 + bt, 

with ρ < 1.  The random variables at, bt, and εt are all independently normally distributed, 

with variances of va, vb, and vε, respectively.  For the sake of symmetry and simplicity, we 

restrict ourselves to the case where va= vb in what follows.  

Immediately after the dividend is paid at time t, investors see the realizations of  at+1 

and bt+1, which they can use to estimate the next dividend, Dt+1.  Assuming a constant 

discount rate of r, this dividend forecast can then be mapped directly into an ex-dividend 

present value of the stock at time t.  For a fully rational investor who understands the true 

structure of the dividend process, and who uses both sources of information, the ex-dividend 



 10

value of the stock at time t, which we denote by VR
t, is given by: VR

t = k(At+1 + Bt+1), where k 

= 1/(1+r–ρ) is a dividend-capitalization multiple.  

By contrast, we assume that investors use overly simplified univariate models to 

forecast future dividends, and hence to value the stock.  In particular, at any point in time, any 

individual investor believes that one of the following possibilities obtains: i) the dividend 

process is Dt = At + εt (we call this the “A model”); or ii) the dividend process is Dt = Bt + εt  

(we call this the “B model”).   Thus an investor who uses the A model at time t has an ex-

dividend valuation of the stock, VA
t, which satisfies VA

t = kAt+1, and an investor using the B 

model at time t has a valuation VB
t, where  VB

t = kBt+1.7 

2.  Log-Linear Specification for Dividends   

The above linear specification for dividends has a number of attractive features.  First 

and foremost, it lets us write down some very simple closed-form expressions that highlight 

the central economic mechanisms at work in our theory.  At the same time, the linear 

specification is less than ideal from an empirical-realism perspective—e.g., it allows for the 

possibility of negative dividends and prices, and forces us to work with dollar returns rather 

than percentage returns.  So while we use the linear specification to help build intuition in the 

remainder of this section, when we turn to calibrating the model for testing purposes in 

Section IV, we also consider a log-linear variant, in which log(Dt) = At + Bt + εt, but in which 

the stochastic processes for At, Bt and εt are the same as described above.  The appendix gives 

the details of how prices and returns are computed in the log-linear case. 

                                                           
7 Note that another possible univariate model is to forecast future dividends based solely on observed values of 
past dividends.  That is, one can imagine a “D model” where VD

t = kDt.  As a normative matter, the D model may 
be more accurate than either the A or the B model.  (This happens when vε is small relative to the variances of  At 
and  Bt.) But given their mistaken beliefs about the structure of the dividend process, agents will always consider 
the D model to be dominated by both the A and the B models. 
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B.  Benchmark Case: No Learning 

In order to have a benchmark against which to compare our subsequent results, we 

begin with a simple no-learning case in the context of the linear specification for dividends.   

Assume that there is a single investor who always uses the A model, so that the stock price at 

time t, Pt, is given by Pt = VA
t = kAt+1.  The (simple) excess return from t-1 to t, which we 

denote by Rt, is defined by Rt = Dt +  Pt – (1+r)Pt-1.8  It is straightforward to show that we can 

rewrite Rt as Rt = zA
t + kat+1, where zA

t is the forecast error associated with trying to predict 

the time-t dividend using model A, i.e., where zA
t = Bt + εt.  That is, under the A model, the 

excess return at time t has two components: i) the forecast error zA
t; and ii) the incremental A-

news about future dividends, kat+1. 

With these variables in hand, some basic properties of stock returns can be 

immediately established.  Consider first the autocovariance of returns at times t and t-1.  We 

have that: cov(Rt, Rt-1) = cov(zA
t, zA

t-1 )+ kcov(zA
t, at).  With a little manipulation, this yields: 

 

cov(Rt, Rt-1) =  ρvb/(1 – ρ2)               (1) 

 

This expression reflects the positive short-run momentum in returns that arises from a 

“repeating-the-same-mistake” effect.  Since the investor uses the same wrong model to make 

forecasts for times t-1 and t—in both cases ignoring the persistent B information—her 

forecast errors, zA
t-1 and zA

t, are positively correlated, which tends to induce positive 

autocovariance in returns.   

                                                           
8 Again, when using the linear dividend specification, it is easier to work with arithmetic returns, as opposed to 
percentage returns.  Given that the price level is stationary in our setting, this is a relatively innocuous choice. 
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Another item of interest is the covariance between the price level and future returns, 

i.e., cov(Rt, Pt-1).  Since all dividends are paid out immediately as realized (there are no 

retained earnings), and since the scale of the dividend process never changes over time, it 

makes sense to think of the stock as a claim on an asset with a constant underlying book 

value.  Thus one can interpret the price of the stock—which is stationary in our model—as an 

analog to the market-to-book ratio, and cov(Rt, Pt-1) as a measure of how strongly this ratio 

forecasts returns.   With no learning, it is easy to show that cov(Rt, Pt-1) =  0.   

Thus absent any learning considerations, the linear specification for dividends delivers 

a momentum-like pattern in stock returns, but nothing else.  In particular, there is no value-

glamour effect, and returns are symmetrically and homoskedastically distributed.9    

 C.  Learning: Further Ingredients  

 To introduce learning, we must specify several further assumptions.  The first of these is 

that at any point in time t, an agent believes that the dividend process is governed by either the 

A model or the B model—i.e., she believes that either Dt = At + εt, or that Dt = Bt + εt.  The 

crucial point is that the agent always wrongly thinks the true process is a univariate one, and 

attaches zero probability to the correct, bivariate model of the world. 

For the purposes of a general analytical treatment, we allow for the possibility that the 

agent might believe that the underlying dividend process switches over time—between being 

driven by the A model vs. the B model—according to a Markov chain.  Let πA be the 

                                                           
9 The no-learning case can be enriched by allowing for heterogeneity among investors.  Suppose a fraction f of 
the population use Model A, and (1 – f) use model B.  We can demonstrate that this set-up still generates 
momentum in stock returns.  More interestingly, momentum is strongest when there is maximal heterogeneity 
among investors, i.e. when f = ½.  Since such heterogeneity also generates trading volume, we have the 
prediction that momentum will be greater when there is more trading volume, which fits nicely with the 
empirical findings of Lee and Swaminathan (2000).  Although this extension of the no-learning case strikes us as 
promising, we do not pursue it in detail here, as our main goal is to draw out the implications of our particular 
learning mechanism. 
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conditional probability that the agent attaches to dividends being generated by the A model in 

the next period given that they are being generated by the A model in the current period, and 

define πB symmetrically.  Finally, to keep things simple, set πA = πB = π. 

In our simulations, we focus on the limiting scenario of π  = 1, in which the agent 

(correctly) thinks that nature is unchanging—i.e., that there is only a single model that applies 

for all time.  This strikes us as the simplest and most naturally-motivated account of beliefs.  

The only technical issue it raises is that with π  = 1, the extent of learning is non-stationary, 

and depends on the length of the sample period: after a long stretch of time, there is a high 

probability that the agent will be almost convinced by one of the two models, thereby making 

further paradigm shifts extremely unlikely.  

Alternatively, if one is interested in making the learning process stationary, and 

thereby giving our results a more steady-state flavor, one can assume that ½ < π  < 1, which 

means that the agent thinks that both states are persistent but not perfectly absorbing.   As a 

practical matter, it turns out that when we simulate stock prices and learning over empirically- 

plausible horizons (e.g. 25 years), we get very similar results either way, so the fundamental 

predictions of the model do not in any way turn on whether we assume π  = 1 or π  < 1. 

With the assumptions in place, a first step is to describe how Bayesian updating works, 

given the structure and the set of priors that we have specified.  It is important to stress that in 

our setting, one does not want to interpret such Bayesian updating as corresponding to the 

behavior of a fully rational agent, since we have restricted the priors in such a way that no 

weight can ever be attached to the correct model of the world.  Let pt be the probability weight 

on the A model going into period t.  To calculate the posterior going into period t+1, recall 

that for each model, we can construct an associated forecast error, with zA
t = Bt + εt being the 
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error from the A model, and zB
t = At + εt being the error from the B model.  Intuitively, the 

updating process should tilt more in the direction of model A after period t if zA
t is smaller 

than zB
t in absolute value, and vice-versa. 

More precisely, conditional on the A model, as well as on the realization of At, Dt has 

a normal density with mean At and variance vε, which we denote by fA(Dt |At,), and which 

satisfies:  
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where ( ).φ  is the standard normal density and σε is the square root of vε.  Similarly, 

conditional on the B model, as well as on the realization of Bt, Dt has a normal density with 

mean Bt and variance vε, which we denote by fB(Dt |Bt), and which satisfies: 
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Next, we define the variable xt+1
  as follows:  

 

xt+1
 = pt Lz/( pt Lz + (1–pt)),        (4)  

 

where Lz is the likelihood ratio given by: 

 

Lz = fA(Dt |At)/ fB(Dt |Bt)= exp(– [(zA
t)2 – (zB

t)2]/2vε).      (5) 
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 Note that the likelihood ratio is always non-negative, and increases the smaller is zA
t 

relative to zB
t in absolute value.  With these definitions in place, standard arguments can be 

used to show that the Bayesian posterior going into period t+1 is given by (see, e.g., Barberis, 

Shleifer and Vishny (1998), Hong and Rady (2002)):  

 

pt+1 =  p* + (πA + πB – 1)( xt+1
 – p*)       (6) 

 

where p* = (1–πB)/(2 – πA – πB) is the fraction of the time that the dividend process is expected 

to spend in the A-model state over the long run.  Given our assumption that πA = πB, it follows 

that p* = ½, and (6) reduces to:  

 

pt+1 =  ½  + (2π – 1)( xt+1 – ½)        (7) 

  

Observe that in the limiting case where π = 1, we have that pt+1 =  xt+1.  This is the 

point mentioned earlier—that Bayesian beliefs in this case are non-stationary, and eventually 

drift towards a value of either zero or one.  In contrast, if π < 1, Bayesian beliefs are 

stationary, with a long-run mean weight of ½ being attached to the A model.  In either case, 

however, it is clear that the updating process leans more towards the A model after period t if 

zA
t is smaller than zB

t in absolute value, and vice-versa. 

An essential piece of intuition for understanding the results that follow comes from 

asking how the speed of learning varies over time. Heuristically, the speed of learning 

measures the rate at which pt adjusts towards either one (perfect certainty in the A model) or 
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zero (certainty in the B model).  It has been established (see O’Hara (1995)) that the speed of 

learning is proportional to relative entropy.  In our setting, the relative entropy tΨ  is given by: 
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 Straightforward calculation based on (8) yields: 
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 Equation (9) says that there is more rapid learning in period t when At and Bt are 

further apart.  This makes intuitive sense.  In the limit, if At = Bt, the two models generate 

exactly the same forecasts, so there is no scope for distinguishing them in the data.  In 

contrast, when the two models generate widely divergent forecasts, the next realization of 

dividends has the potential to discriminate strongly in favor of one or the other. 

 This observation gets to the heart of why there can be predictable variation in various 

moments of stock returns in our framework.  Consider as an example volatility.  If an 

econometrician can infer when At and Bt are relatively far apart, then, according to (9), he will 

be able to estimate when the potential for learning is high, and by extension, when stock-

return volatility is likely to be above its unconditional average.   

D. Model Selection  

As noted above, one way to proceed is to think of the market as a whole in terms of a 

single representative investor, and to assume that this representative investor practices model 



 17

selection.  In other words, at time t, the representative investor has a preferred null model 

which she uses exclusively.  Moreover, as long as the accumulated evidence against the null 

model is not too strong, it is carried over to time t+1.   

To be more precise, we define the indicator variable IA
t to be equal to one if the 

investor’s null model at time t is the A model, and to be equal to zero if it is the B model.  We 

then assume the following dynamics for IA
t: 

 

If IA
t = 1, then IA

t+1  = 1, unless pt+1 < h      (10) 

 

If IA
t = 0, then IA

t+1  = 0, unless pt+1 > (1 – h)        (11) 

 

Here h is a critical value that is less than one-half.  Thus the investor maintains a given null 

model for the purposes of making forecasts until the updated (Bayesian) probability of it 

being correct falls below the critical value.  So, for example, if her original null is the A 

model, and h = 0.05, she continues to make forecasts exclusively with it until it is rejected at 

the five-percent confidence level.  Once this happens, the B model assumes the status of the 

null model, and it is then used exclusively until it too is rejected at the five-percent confidence 

level.  Clearly, the smaller is h, the stronger is the degree of resistance to model change; the 

psychological literature on theory maintenance discussed above can therefore be thought of as 

suggesting a value of h relatively close to zero.   

 This formulation raises an important issue of interpretation.  On the one hand, we have 

tried to motivate the assumption that the investor uses a univariate forecasting model at any 

point in time by appealing to limited cognitive resources—the notion being that it is too 
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difficult to simultaneously process both the A and B sources of information for the purposes 

of making a forecast.  Yet at the same time, the investor does use both the A and B sources of 

information when deciding whether to abandon her null model—the Bayesian updating 

process for pt which underlies her model-selection criterion depends on both zA
t and  zB

t.  In 

other words, the investor is capable of doing quite sophisticated multivariate operations when 

evaluating which model is better, but is unable to make dividend forecasts based on more than 

a single variable at a time, which all sounds somewhat schizophrenic. 

One resolution to this apparent paradox relies on the observation that, in spite of the 

way we have formalized things, it is not necessary for our results to have the representative 

investor actively review her choice of models as frequently as once every period.  Indeed, it is 

more plausible to think of the two basic tasks that the investor undertakes—forecasting and 

model selection—as happening on different time scales, and therefore involving different 

tradeoffs of cognitive costs and benefits. For an active stock-market participant, dividend 

forecasts have to be updated continuously, as new information comes in.  Thus the model that 

generates these forecasts needs to be simple and not too cognitively burdensome, or it will be 

impractical to use it in real time.10   

In contrast, it may well be that the investor steps back from the ongoing task of 

forecasting and does systematic model evaluation only once in a long while; as a result, it 

might be feasible for this process to be more data-intensive.11  Indeed, it is not difficult to 

                                                           
10 This is why we are reluctant to assume that any individual agent acts as a model averager.  If a model averager 
assigns a probability pt to the A model at time t, her forecast of the next dividend would be ptAt+1 + (1 – pt)Bt+1.  
However, such a forecast is no longer a cognitively simple one to make in real time, as it requires the agent to 
make use of both sources of information simultaneously.  And if we are going to endow the agent with this much 
high-frequency processing power, it is less clear how one motivates the assumption that she does not consider 
more complicated models in her set of priors.   
 
11 Moreover, much of this low-frequency model evaluation may happen at the level of an entire investment 
community, rather than at the level of any single investor.  For example, each investor may need to work alone 
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incorporate this sort of timing feature explicitly into our analysis, e.g., by allowing the 

investor to engage in model evaluation only once every m periods, with m relatively large. 

Our limited efforts at experimentation suggest that this approach yields results that are 

qualitatively similar to those we report below.   

 E.  Model Averaging 

 As will become clear, the representative-investor/model-selection approach described 

above provides a useful way to communicate the main intuition behind our results.  But it is 

important to underscore that these results do not hinge on the discreteness associated with the 

model-selection mechanism.  To illustrate this point, we also consider the “smoother” case 

where the market price is based on model averaging, i.e., where Pt = ptkAt+1 + (1 – pt)kBt+1.  

One way to motivate such model averaging is by appealing to a particular form of 

heterogeneity across investors.  

To see this, suppose that there are a continuum of investors distributed uniformly 

across the interval [0, 1], each of whom individually practices model selection.  All investors 

share the same underlying Bayesian update pt of the probability of the A model being correct 

at time t, with pt evolving as before.  But now, each investor has her own fixed threshold for 

determining when to use the A model as opposed to the B model: the investor located at point 

i on the interval uses the A model if and only if pt > i.12   This implies that the fraction of 

investors in the population using the A model at time t is given by pt.  And to the extent that 

                                                                                                                                                                                      
with a given simple model to generate her own high-frequency forecasts, but may once in a while change models 
based on what she reads in the press, hears from fellow investors, etc.  Again, the point to be made is that no 
single investor is literally going to be engaging in cognitively costly model evaluation on a continuous basis.  
 
12 One can interpret investors with low thresholds as those who have an innate preference for the A model. 
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the market price is just the weighted average of individual investors’ estimates of fundamental 

value, this in turn implies that Pt = ptkAt+1 + (1 – pt)kBt+1.13   

 F.  Implications for Stock Returns: Some Intuition 

 In Section IV below, we use a series of simulations to provide a full-blown 

quantitative analysis that covers both the linear and log-linear specifications for dividends, as 

well as the cases of model selection and model averaging.  But before doing so, we attempt to 

provide a heuristic sense for the mechanism driving our results.  This is most transparently 

done in the context of the linear specification with model selection, so we focus exclusively 

on this one combination for the remainder of this section.  

Assuming that we are in a model-selection world, suppose for the moment that the 

representative investor is using the A model at time t-1, so that Pt-1 = kAt. There are two 

possibilities at time t.  The first is that there will be no paradigm shift, so that the investor 

continues to use the A model.  In this case, Pt = kAt+1, and the return at time t, which we 

denote by RN
t, is given by: 

 

RN
t = zA

t + kat+1 = Bt + εt+ kat+1        (12) 

 

Alternatively, if there is a paradigm shift at time t, the investor switches over to using the B 

model, in which case the price is Pt = kBt+1, and the return, denoted by RS
t, is: 

                                                           
13 This motivation is admittedly loose.  In a dynamic model, it is not generally true that price simply equals the 
weighted average estimate of fundamental value—short-term-trading considerations arise, as, e.g., investors try 
to forecast the forecasts of others.  Nevertheless, since we just want to demonstrate that our results are not wholly 
dependent on model selection, the model-averaging case is a natural point of comparison.  An alternative way to 
motivate model averaging is in terms of a single representative investor who is a classical Bayesian (given the set 
of priors described above) and who therefore puts weight pt on the A model at time t.  Another advantage of this 
interpretation is that it avoids the “schizophrenia” problem alluded to above, since the representative investor 
now uses both sources of information in making her forecasts at any point in time.  The disadvantage is that it is 
no longer the case that every  individual actor makes forecasts that are simple in nature, i.e., univariate. 
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RS
t = zA

t + kbt+1 + ρk(Bt – At) = Bt + εt+ kbt+1+ ρk(Bt – At)    (13) 

 

Observe that RS
t = RN

t + k(bt+1 – at+1) + ρk(Bt – At).  Simply put, the return in the paradigm-

shift case differs from that in the no-shift case as a result of current and lagged A-information 

being discarded from the price, and replaced with B-information. 

Let us begin by revisiting the magnitude of the value/glamour effect, as proxied for by  

cov(Rt, Pt-1).  (Recall that we had cov(Rt, Pt-1) = 0 in the no-learning case.)  In the appendix, 

we demonstrate that cov(Rt, Pt-1) can be decomposed as follows: 

 

cov(Rt, Pt-1) = cov(RS
t, Pt-1/shift)*prob(shift) + 

 cov(RN
t , Pt-1/no shift)*prob(no shift)        (14) 

 

 Substituting in the definitions of RN
t and RS

t from (12) and (13), and simplifying, we 

can rewrite (14) as: 

 

cov(Rt, Pt-1) = k{cov(εt, At) + cov(At, Bt)} +  

ρk2{cov(At, Bt/shift) – var(At/shift)}*prob(shift)      (15) 

 

Note that both the cov(εt, At) term, as well as the first cov(At, Bt) term in (15), are 

unconditional covariances.  We have been assuming all along that these unconditional 

covariances are zero.  Thus (15) can be further reduced to: 
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 cov(Rt, Pt-1) = ρk2{cov(At, Bt/shift) – var(At/shift)}*prob(shift)           (16) 

  

 Equation (16) clarifies the way in which a value/glamour effect arises when there is 

learning.  A preliminary observation is that cov(Rt, Pt-1) can only be non-zero to the extent that 

the probability of a paradigm shift, prob(shift), is non-zero: as we have already seen, there is 

no value/glamour effect absent learning.   When prob(shift) > 0, there are two distinct 

mechanisms at work.  First, there is a negative contribution from the –var(At/shift) term.  This 

term reflects the fact that A-information is abruptly removed from the price at the time of a 

paradigm shift.  This tends to induce a negative covariance between the price level and future 

returns, since, e.g., a positive value of At at time t-1 will lead to a high price at this time, and 

then to a large negative return when this information is discarded from the price at time t. 

Second, and more subtly, there is the cov(At, Bt/shift) term.  Of course, the 

unconditional covariance between At and Bt is zero.  However, the covariance conditional on a 

paradigm shift is not.  To see why, think about the circumstances in which a shift from the A 

model to the B model is most likely to occur.  Such a shift will tend to happen when the 

underlying Bayesian posterior pt moves sharply—i.e., when there is a lot of Bayesian 

learning.  According to equation (9), the relative entropy tΨ , and hence the speed of learning, 

is greatest when At and Bt are far apart.  Said differently, if At = Bt, there is no scope for 

Bayesian learning, and hence no possibility of a paradigm shift.  

 This line of reasoning suggests that cov(At, Bt/shift) < 0, which in turn makes the 

overall value of cov(Rt, Pt-1) in (16) even more negative, thereby strengthening the 
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value/glamour differential.14  When a paradigm shift occurs, not only is A-information 

discarded from the price, it is also replaced with B-information.  And conditional on a shift 

occurring, these two pieces of information tend to be pointing in opposite directions. So if a 

positive value of At at t-1 has led to a high price at this time, there will tend to be an extra 

negative impact on returns in the event of a paradigm shift at t—above and beyond that 

associated with just the discarding of At—when Bt enters into the price for the first time.  

Importantly, in our setting, learning generates more than just a simple time-invariant 

value/glamour effect.  It also creates predictable variation in the expected returns to value and 

glamour stocks.  To see why, recall that return predictability based on price levels is entirely 

concentrated in those periods when paradigm shifts occur.  Thus if an econometrician can 

track variation over time in the probability of a paradigm shift, he will also be able to forecast 

when such predictability is likely to be the greatest. 

Again, the key piece of insight comes from the expression for relative entropy tΨ  in 

(9), which tells us that there is more potential for learning when the A model and the B model 

make divergent forecasts.  What does this mean in terms of observables?   To be specific, 

think of a situation in which At is very positive, so the stock is a high-priced glamour stock.  

Going forward, there will be more scope for learning if, in addition, Bt is negative.  This will 

tend to show up as negative values of the forecast error zA
t,  since zA

t  = Bt + εt.  In other 

words, if a high-priced stock is experiencing negative forecast errors, this is a clue that the 

two models are at odds with one another. 

                                                           
14 We have been able to prove analytically that cov(At, Bt/shift) < 0 for the limiting case where the persistence 
parameter ρ approaches zero.  (The proof is available on request).  In addition, we have exhaustively simulated 
the model over the entire parameter space to verify that this condition holds everywhere else. 
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Thus a sharper prediction of our theory is that a high-priced glamour stock will be 

particularly vulnerable to a paradigm shift—and hence to a sharp decline in prices—after a 

series of negative z-surprises about fundamentals. One might term such an especially bearish 

situation “glamour with a negative catalyst.”  The conversely bullish scenario, “value with a 

positive catalyst”, involves a low-priced value stock series of positive z-surprises.15 The 

closest empirical analog to such z-surprises would probably be either: i) a measure of realized 

earnings in a given quarter relative to the median analyst’s forecast for earnings; or ii) the 

stock-price response to an earnings announcement.  In our empirical work, we use the latter of 

these two variables as a proxy for z-surprises. 

When we say that a glamour stock has more negative expected returns conditional on a 

recent string of disappointing earnings surprises, we need to stress a crucial distinction.  This 

phenomenon is not simply a result of adding together the unconditional value/glamour and 

momentum effects.  Rather, in the context of a regression model to forecast future returns, our 

theory predicts that not only should there be book-to-market and momentum variables, but 

also interaction terms that represent the product of book-to-market with proxies for the 

direction of recent earnings surprises.  In other words, we would expect an interaction term for 

glamour and bad news to attract a negative coefficient, and an interaction term for value and 

good news to attract a  positive coefficient.  We highlight this prediction in both our 

simulations and our empirical work below.   

The same basic mechanisms produce forecastable movements in stock-return volatility 

and skewness.  As a comparison of equations (12) and (13) makes clear, volatility is 

                                                           
15 The idea that value and/or glamour effects are more pronounced in the presence of such catalysts has some 
currency among practitioners.  For example, the Bernstein Quantitative Handbook of February 2004 presents a 
variety of quantitative screens that “we believe lead to outperformance”.  One of these screens, labeled “Value 
With a Catalyst”, is chosen to select “undervalued stocks reporting a positive earnings surprise.”  (pages 22-23.) 
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inherently stochastic in our setting, because returns have more variance at times of paradigm 

shifts than at other times.  Moreover, these movements in volatility can be partially forecasted 

by an econometrician, using exactly the same logic as above.  For example, a high-priced 

glamour stock is more apt to experience a paradigm shift—which will manifest itself not only 

as a negative return, but also as an unusually large absolute price movement—after a sequence 

of negative fundamental surprises.  Again, this is because such negative surprises are an 

indicator that the A and B models are in disagreement, which, according to the relative-

entropy formula in (9), raises the potential for learning.  

Analogous arguments apply for conditional skewness.  First, glamour stocks will tend 

to have more negatively skewed returns than value stocks.  This is because the very largest 

movements in glamour stocks—i.e., those associated with paradigm shifts—will on average 

be negative, and conversely for value stocks.  This feature of our theory is reminiscent of 

classic accounts of bubbles: the potential for the sudden popping of a bubble in a high-priced 

glamour stock similarly generates negative conditional skewness. But whereas the popping of 

the bubble is exogenous in, e.g., Blanchard and Watson (1982), our theory endogenizes it.16  

Relatedly, we have the sharper prediction—as compared to standard bubble stories—that 

these general skewness effects will be more pronounced if one further conditions on recent 

news.  So, for example, the negative skewness in a glamour stock will be strongest after it has 

experienced a recent string of bad news.  And the positive skewness in a value stock will be 

greatest after a string of good news.   

Although we have focused our discussion on the model-selection case, the intuition for 

the model-averaging case is very similar.  With model selection, the notion of effective 

                                                                                                                                                                                      
 
16 Abreu and Brunnermeier (2003) can also be thought of as a theory that endogenizes the collapse of bubbles. 
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learning at the market level is dichotomous: either there is a paradigm shift in a given period, 

or there is not.  But this discreteness is not what is driving the results.  Rather, what matters 

for the various asset-pricing patterns is that an econometrician can forecast when there is 

likely to be a lot of learning—i.e., he can tell when the A and B models are pointing in 

opposite directions.   With model averaging, the amount of market-wide learning that takes 

place is a continuous variable, but the econometrician can still partially forecast it, for the 

same reason as before.  In particular, when a glamour stock is observed to have a series of 

negative earnings surprises, this suggests that there is a divergence between the A and B 

models, which according to equation (9) tells us that the relative entropy, and hence the speed 

of learning, is likely to be high.  The implications for conditional variation in value and 

glamour return premia, in volatility and in skewness all follow from this ability to anticipate 

variation over time in the intensity of learning. 

 

IV.  Simulations and Empirical Tests 

In order to flesh out the implications of the theory more fully, and to assess their 

quantitative importance, we now turn to a series of simulations.  The simulations cover both 

the linear and log-linear dividend specifications, as well as the model-selection and model-

averaging cases.  However, before turning to the details, we should stress an important general 

caveat.  When we generate a panel of stock returns, we do so by applying our learning model 

to each individual stock in the panel independently.  In other words, we assume that all 

learning happens at the stock level and is uncorrelated across stocks.  This may well not be the 

most attractive assumption—e.g., it may make more sense to posit that investors apply a 

common paradigm to all stocks in the same industry.    
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We have not explored the implications of such correlated learning for stock returns, 

but depending on exactly how it is modeled, it would appear to have the potential to introduce 

a variety of further complexities.  To take just one example, correlated learning will tend to 

make all stocks in an industry co-move together strongly.  This raises the possibility that some 

of what we are currently interpreting as a value-glamour effect might be “explained away” by 

differences in factor loadings of one sort or another. 

This caveat must be borne in mind when comparing our simulation results to the data.  

To the extent that our current formulation of the learning process omits some potentially 

important elements, the empirical analysis should not be thought of as an attempt to test the 

broader theory in a quantitatively precise fashion.  Rather, the goal is to see if a first-

generation version of the theory can deliver effects of an economically-interesting magnitude, 

and to highlight the dimensions on which the current version appears to fall short. 

A.  Calibration 

In each of our simulations, we create a panel of 2,500 independent stocks, which we 

then track for 100 periods.  When we calibrate the parameters, we treat each period as 

corresponding to one calendar quarter, so that with 100 periods, we have a 25-year panel.  

(This matches up closely with the length of our empirical sample period, which runs from 

1971-2004.)  Each of these 2,500-stock-by-100-quarter exercises is then repeated 100 times.  

As will become clear,  this appears to be more than sufficient to generate precise estimates of 

the moments of interest. 

 The simulations require that we specify the following parameters:  the variances va , vb 

and vε ; the persistence parameter ρ; the discount rate r; the Markov-transition parameter π; 
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and the model-rejection critical value h.  Note, however, that h only plays a role in the case of 

model selection—we do not need to specify a value of h for the model-averaging case. 

We begin by setting π = 1 and h = 0.05.  The former assumption corresponds to the 

scenario where agents believe that there is a single simple model that is correct for all time—

i.e., agents do not believe that there is regime shifting with respect to the underlying model of 

the world.17   The latter assumption implies that the status-quo model is discarded when the 

updated probability of it being correct falls below five percent.  We set the discount rate r = 

0.015, which corresponds to an annualized value of 6.0 percent.  We also simplify things by 

assuming that all the variances are the same, i.e., that va = vb= vε = v.  Our task then boils 

down to coming up with empirically realistic values of v, and of the persistence parameter ρ.   

We pick these two parameters so as to roughly match observed levels of earnings 

persistence and stock-return volatility.  Given the assumption that va = vb= vε = v, the 

autocorrelation properties of dividends in our model are entirely pinned down by the 

persistence parameter ρ.  (See the appendix for details.)  We set ρ = 0.97, which implies a 

first-order autocorrelation of log dividends (in the log-linear specification) of 0.94.  This lines 

up closely with the value of the first-order autocorrelation coefficient of 0.96 that we estimate 

using quarterly data on the log of real S&P operating earnings over the period 1988-2004.18 

Once all the other parameters have been chosen, there is a one-to-one mapping 

between v and stock-return volatility, although this mapping depends on the nature of the 

                                                           
17 However, as a robustness check, we have redone all of the simulations below with a steady-state version of the 
model in which π  is reset to 0.95.  Given our 25-year simulation horizon, the results are very similar—both 
qualitatively and quantitatively—to those with π = 1. 
 
18 We use data on operating earnings, rather than dividends, for calibration purposes.  This is because unlike in 
our theoretical setting, real-world dividends are not exogenous, but rather are heavily smoothed by managers.  
Thus observed earnings arguably provide a better match for the theoretical construct of “dividends”. 
 



 29

learning process (i.e., model selection vs. model averaging) and is not something that we can 

express in closed form.  After some experimentation, we set v to 0.00001 in the linear 

specification and to 0.045 in the log specification.  As we will see momentarily, these values 

lead to annualized stock-return volatilities in the neighborhood of 30 percent. 

B.  Simulation Results: Linear Dividend Specification 

Table 1 displays our simulation results for the linear dividend specification.  There are 

three panels: Panel A for the no-learning benchmark case, Panel B for the case of model 

selection, and Panel C for the case of model averaging.  Within each panel, we display two 

sets of three regressions each; these are simply Fama-MacBeth (1973) regressions that have 

been run on the simulated data samples.  Again, recall that the samples are 2,500-stock by 

100-quarter panels.  The numbers reported in the tables are the mean coefficients across the 

100 trials of each panel regression, along with the t-statistics associated with these means. 

In the first regression of each set, we forecast (annualized) returns in quarter t based on 

four variables: i) a value/glamour proxy, namely the price level at the end of quarter t-1; ii) a 

recent-news proxy, namely the sum of the z-surprises over quarters t-4 through t-1;  iii) a 

VALUE*GOODNEWS interaction term; and iv) a GLAMOUR*BADNEWS interaction term.  

The price level and news variables are continuous, and are standardized so as to have zero 

mean and unit standard deviation, in order to ease the interpretation of the coefficients.  The 

interaction terms are dummy variables.  In the so-called “2x2 sort”, VALUE*GOODNEWS 

takes on the value one if and only if the price level is below the median value and the news 

proxy is above the median value for that quarter.  Similarly, GLAMOUR*BADNEWS takes 

on the value one if and only if the price level is above the median value and the news proxy is 

below the median value for that quarter.  
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The second and third regressions are identical to the first, except that instead of 

forecasting returns over the next quarter, we forecast the (annualized) volatility and skewness 

of returns over the next four quarters, from t through t+3.  Note that we need to do the 

forecasting over more than one quarter simply because we cannot compute volatility and 

skewness using just a single quarterly return. 

The second set of three regressions in each panel is similar, except that we use a “3x3” 

sort.  This means that the VALUE*GOODNEWS dummy only takes on the value one if the 

price level is in the lowest one-third of values, and the news proxy is in the highest one-third 

of values for that quarter, and analogously for the GLAMOUR*BADNEWS dummy.  In other 

words, with the 3x3 sort, we assign a smaller and more extreme set of stocks to both the 

VALUE*GOODNEWS and GLAMOUR*BADNEWS portfolios each quarter. 

The results in Panel A for the no-learning benchmark case confirm what we were 

already able to establish analytically.  When predicting returns, the only variable that enters 

significantly is the news  proxy, which attracts a coefficient of 0.0579, meaning that a one-

standard-deviation increase in the value of past z-surprises increases expected returns by 5.79 

percent in annualized terms.  There is no value/glamour effect, nor any interaction of value or 

glamour with the news proxy.  When predicting volatility and skewness, none of the variables 

has a meaningful effect—i.e., volatility and skewness are simply constants. 

Things get more interesting when we move to Panels B and C, which cover the cases 

of  model selection and model averaging.  The basic thrust of the results is similar across these 

two panels, as well as across the 2x2 and 3x3 sorts, so we focus our discussion on the model-

selection case with a 2x2 sort.  Consider first the regression that forecasts returns.  The 

coefficient on the news proxy is similar to before, at 0.0760  But now, there is also an 
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unconditional value/glamour effect, as seen in the coefficient on the price variable of  -0.0407.  

This implies that, all else equal, a one-standard deviation increase in price reduces expected 

returns by 4.07 percent on an annualized basis. 

Moreover, the VALUE*GOODNEWS and GLAMOUR*BADNEWS terms attract 

significant coefficients of 0.0760 and -0.0757 respectively.  In other words, controlling for the 

price level and past news, a stock that is in the VALUE*GOODNEWS quadrant has an 

additional expected return of 7.60 percent on an annualized basis, while a stock that is in the 

GLAMOUR*BADNEWS quadrant has an expected return that is reduced by 7.57 percent.  

Again, these interaction effects are the key differentiating prediction of our theory. 

Turning to the regression that forecasts volatility, we find that the only two significant 

predictor variables are the VALUE*GOODNEWS dummy and the GLAMOUR*BADNEWS 

dummy, each of which attracts a positive coefficient of 0.0598.  Thus when a stock is in either 

of these quadrants, annualized volatility is increased by 5.98 percentage points.  As we have 

seen above, this is because the potential for learning is elevated in these situations. 

With respect to skewness, VALUE*GOODNEWS forecasts positive skewness, and 

GLAMOUR*BADNEWS forecasts negative skewness, as anticipated in our intuitive 

discussion.  In addition, the price level has a negative impact on future skewness—this is the 

“bubble-popping” effect mentioned above—while the news proxy has a positive impact. 

In addition to the results shown in Table 1, we have also examined in the linear setting 

an alternative “rational-learning” benchmark.  In this variant, investors update just as in the 

model-averaging case of Panel C, but the objective reality is that dividends are either 

generated by the simple A model or by the simple B model.  In other words, investors’ 
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perception of the environment now coincides with objective reality—the world really is a 

simple one—and so they can be thought of as standard rational Bayesians.    

Volatility is stochastic in this setting, since the intensity of learning varies over time.  

However, none of the distinctive predictions that were seen in Panels B and C emerge with 

fully rational learning.  Instead, we get an outcome that exactly mirrors Panel A: neither 

returns, nor volatility, nor skewness are at all forecastable based on the value/glamour proxy, 

the news proxy, or any of their interactions.  We thus conclude that rational learning per se is 

not sufficient to generate the effects that we emphasize—even those for volatility—and that 

these effects are attributable to our particular rendition of the learning process.  

C.  Simulation Results: Log-Linear Dividend Specification 

Table 2 presents the simulation results for the log-linear dividend specification.  The 

format is identical to Table 1, with the following exceptions.  First, we omit the panel 

corresponding to the no-learning benchmark, and show only the model-selection and model-

averaging cases.19  Second, all returns are in percentage terms, rather than in dollars.  And 

third, when we compute skewness, this now refers to the skewness of log returns.20  

The qualitative results run closely parallel to those in Table 1, and the economic 

magnitudes are generally similar.  As before, consider the model-selection case with a 2x2 

sort as a concrete example.  Now when forecasting returns, the VALUE*GOODNEWS and 

GLAMOUR*BADNEWS terms attract coefficients of 0.0712 and -0.0877, respectively.  

                                                           
19 It turns out that the no-learning benchmark is not quite as clean in the log-linear case, due to second-order 
Jensen’s inequality effects that arise.  In particular, many of the regression coefficients that were almost exactly 
zero in the linear no-learning case are now statistically different from zero, albeit still small in economic terms. 
 
20 This is  natural, since absent learning log returns should be symmetrically distributed in this log-linear setting. 
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When forecasting volatility, the corresponding coefficients are 0.0517 and 0.0528.  Again, 

these would seem to be economically interesting magnitudes. 

Finally, we should underscore that for the parameter values used in Table 2, the 

model-selection case generates an unconditional annualized volatility of 27.8 percent, while 

the model-averaging case generates a volatility of 28.2 percent, both realistic values for 

individual stocks.  Thus it appears that we can obtain economically-interesting predictions—

i.e., regression coefficients in our simulated data that are of a non-trivial magnitude—without 

having to crank up the underlying variances in our model to implausible levels. 

D.   Empirical Results 

Tables 1 and 2 embody the quantitative predictions of our theory.  In Table 3, we 

investigate these predictions empirically.  Our empirical analysis is motivated in part by the 

observation that, in spite of the enormous literature on value/glamour effects, momentum, and 

post-earnings-announcement drift, there is very little work that focuses on the interaction 

effects that are at the heart of our theory.  The two exceptions of which we are aware are 

Asness (1997), and Swaminathan and Lee (2000), both of which we discuss further below.   In 

any event, it would seem that there is room for much more work in this area, and our efforts 

here should be thought of as just a brief first cut.  

    We use CRSP stock-return data and earnings-announcement dates from 

COMPUSTAT over the sample period 1971-2004 to create a direct empirical analog to Table 

2.21  Our methodology is as follows.  First, in place of the “price” variable in the simulations, 

we use the log of the market-to-book ratio.  As in the simulations, this variable is normalized 

                                                           
21 Our sample includes all firms for which we have data on returns and market capitalization from CRSP, and 
data on earnings dates and book value from COMPUSTAT.  We also require that book value be positive.  The 
earnings dates are only available from COMPUSTAT beginning in the 1970s, which explains our sample period. 
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to have zero mean and unit standard deviation in any given cross-section, so as to make the 

magnitudes of the empirical and simulated coefficients directly comparable.   

Second, in place of the “news” variable, we use the sum of the earnings-announcement 

returns from the prior four quarters, with each return based on the three-day interval (-1 to 1) 

around the announcement.  Again, this variable is normalized to have zero mean and unit 

standard deviation in any cross-section.  As stressed above, announcement returns are the 

closest analog to the z-surprises that we use in the simulations, since absent a paradigm shift, 

the stock return at the moment of a dividend realization is exactly equal to the z-surprise.  

 With these two proxies in hand, we can define the VALUE*GOODNEWS and 

GLAMOUR*BADNEWS dummies exactly as before, for either the 2x2 or 3x3 sort.  Finally, 

we run Fama-MacBeth (1973) regressions to forecast returns, volatility and skewness based 

on the four predictors, just as in the simulations.22 

The results for returns line up remarkably well with our theoretical predictions.  As 

would be expected based on previous research, the coefficient on log(M/B) is negative, and 

the coefficient on the news variable is positive.  More strikingly from the perspective of our 

theory, the coefficient on VALUE*GOODNEWS is significantly positive, while that on 

GLAMOUR*BADNEWS is significantly negative.  This is true in both the 2x2 and 3x3 

sorts.23   The economic magnitudes are also in the same ballpark as—albeit somewhat smaller 

                                                           
22 One difference between the empirical setting and the simulations is that in the former, we can take advantage 
of daily data to more precisely estimate volatility and skewness.  This is what we do in Table 3—volatility and 
skewness are estimated based on one quarter’s worth of daily returns.  However we get similar results if instead 
we estimate volatility and skewness based on four quarter’s worth of quarterly returns, as in the simulations. 
 
23 Swaminathan and Lee (2000) present closely related evidence, using double sorts rather than Fama-MacBeth 
regressions.  Using data from 1974-1995, they do a five-by-five sort of stocks along two dimensions: book-to-
market and earnings surprises. In the most negative earnings-surprise quintile, glamour stocks (i.e., those in the 
lowest quintile of book-to-market) underperform moderately-priced stocks (those in the middle quintile of book-
to-market) by 4.71 percent per year.  In contrast, in the highest earnings-surprise quintile, the corresponding  
underperformance figure for glamour stocks is only 0.83 percent per year.  With value stocks, the picture is 
reversed: they outperform moderately-priced stocks by more when earnings surprises are in the upper quintile as 
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than—those from the log-linear simulations in Table 2.  In the 2x2 sort, the coefficient on 

VALUE*GOODNEWS is 0.0205, while that on GLAMOUR*BADNEWS is -0.0255.  In the 

3x3 sort, the corresponding numbers are 0.0454 and -0.0237.   

The results for volatility and skewness are more mixed.  In the 3x3 sort, our theoretical 

predictions for volatility emerge strongly, with coefficients on VALUE*GOODNEWS and 

GLAMOUR*BADNEWS of 0.0824 and 0.0424 respectively.  But in the 2x2 sort, the 

coefficients on these interaction terms are much smaller, and that on VALUE*GOODNEWS 

is of the wrong sign.  In the skewness regressions, the coefficient on VALUE*GOODNEWS 

is significantly positive—as predicted—in both the 2x2 and 3x3 sorts.  But the coefficient on 

GLAMOUR*BADNEWS is very close to zero in both cases.  Finally, consistent with both 

our theory and with previous empirical work by Chen, Hong and Stein (2001), skewness is 

significantly more negative for high market-to-book stocks. 

Overall, we draw the following conclusions from the work reported in this section.  

First, when calibrated with realistic parameter values, our theory delivers quantitative 

predictions that are of an economically-interesting order of magnitude.  In other words, the 

conditional variation in expected returns, volatility and skewness generated by the theory is of 

first-order importance relative to the unconditional values of these moments.  Second, the 

directional predictions of the theory for expected returns—notably the novel predictions 

regarding the effects of the interaction terms VALUE*GOODNEWS and 

GLAMOUR*BADNEWS—are uniformly supported by the data.  The theory also seems to 

have some explanatory power for movements in volatility and skewness, though not all of its 

predictions for these two moments come through as unambiguously. 

                                                                                                                                                                                      
opposed to the lower quintile, by 4.78 percent vs. 1.55 percent.  Also related are the findings of Asness (1997), 
who uses double sorts to study the interaction of book-to-market and price momentum. 
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V. Revisionism: Equity Analysts and Amazon.com 

In addition to its quantitative predictions for various moments of stock returns, our 

theory also implies the existence of a kind of revisionism: when there are paradigm shifts, 

investors will tend to look back at previously-available public information, and to draw 

different inferences from it than they had before.   In an earlier version of this paper (Hong 

and Stein (2003)), we illustrate the phenomenon of revisionism with a detailed account of 

equity analysts’ reports on Amazon.com over the period 1997-2002, focusing on the models 

that analysts use to arrive at their valuations for Amazon, and on how these models change  

over time.  Here we just provide a brief summary of the narrative, and refer the interested 

reader to the working paper for details from the individual analyst reports. 

 In the period from its IPO in May 1997 up through its stock-price peak in December of 

1999, analysts offering valuations for Amazon repeatedly stress its long-run revenue growth 

potential.  At the same time, they explicitly dismiss the fact that Amazon’s gross margins are 

much lower than those of its closest off-line retailing peers like Barnes&Noble.  In fact, 

several analysts make a point of stressing that Barnes&Noble is the wrong analogy to draw, 

and that Amazon should be viewed as a fundamentally different type of business.   

Then, after a disappointing Christmas season in 1999, when Amazon’s sales fall below 

expectations, and the stock price begins to drop precipitously, there appears to be an abrupt 

shift in perspective.  Many analysts now begin to point out the similarities between Amazon 

and the off-line retailers, and start to emphasize gross margins in making their forecasts and 

recommendations.  Indeed, a number of their post-1999 reports give a lot of play to 

unfavorable data on Amazon’s margins that had already been widely available for some time.  



 37

And strikingly, some now use this stale data to justify downgrading the stock.  This is just the 

sort of revisionism that our theory suggests. 

 

VI.  Related Work  

There is a large literature in game theory that examines the implications of learning by 

less-than-fully-rational agents.24  While we share some of the same behavioral premises as 

this work, its goals are very different than ours—for the most part, it seeks to understand the 

extent to which learning can, in an asymptotic sense, undo the effects of agents’ cognitive 

limitations.25  For example, a commonly-studied question in this literature is whether learning 

will in the long run lead to convergence to Nash equilibrium. 

Perhaps the closest recent paper to ours is Barberis, Shleifer and Vishny (1998), 

hereafter BSV.26  Like we do, BSV consider agents who attempt to learn, but who are 

restricted to updating over a class of incorrect models.  In their setting, the models are 

specifically about the persistence of the earnings process—one model is that shocks to 

earnings growth are relatively permanent, while another model is that these shocks are more 

temporary in nature.27  BSV’s conclusions about under- and overreaction to earnings news 

then follow directly from the mistakes that agents make in estimating persistence. 

                                                           
24Early contributions to the learning-in-games literature include Robinson (1951), Miyasawa (1961), and Shapley 
(1964).  For a survey of more recent work, see Fudenberg and Levine (1998).  
 
25 A similar comment can be made about the literature that asks whether learning by boundedly rational agents 
will lead to convergence to rational-expectations equilibria.  See, e.g., Cyert and DeGroot (1974), Blume, Bray 
and Easley (1982), and Bray and Savin (1986). 
 
26 Other recent papers on the effects of learning for asset prices include Timmerman (1993), Wang (1993), 
Veronesi (1999) and Lewellen and Shanken (2002).  In contrast to our setting or that of BSV, these papers 
consider a rational expectations setting and look at how learning about a hidden and time-varying growth rate for 
dividends leads to stock market predictability and excess volatility.  
 
27 In BSV, agents put zero weight on the model with the correct persistence parameter.  One might argue that this 
assumption is hard to motivate, since the correct model is no more complicated or unnatural than the incorrect 
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In our theory, the notion of a model is considerably more abstract: a model is any 

construct that implies that one sort of information is more useful for forecasting than another.  

Thus a model can be a metaphor like “Amazon is just another Barnes&Noble”, which might 

imply that it is particularly important to study Amazon’s gross margins. Or alternatively, a 

model can be “Company X seems a lot like Tyco”, which might suggest looking especially 

carefully at those footnotes in Company X’s annual report where relocation loans to 

executives are disclosed.  We view it as a strength of our approach that we are able to obtain a 

wide range of empirical implications without having to spell out such details. 

The representative-agent/model-selection version of our theory is also reminiscent of   

Mullainathan’s (2000) work on categorization.  Indeed, our notion that individual agents 

practice model selection—instead of Bayesian model averaging—is  essentially the same as 

Mullainathan’s rendition of categorization: “choosing a category which best fits the given 

data…instead of summing over all categories as the Bayesian would…”   In spite of this 

apparent similarity, however, it is important to reiterate that our main empirical predictions do 

not come from a discrete category-switching mechanism as in Mullainathan (2000), but rather 

from the fact that agents restrict their updating to the class of simple models, which in turn 

enables an econometrician to forecast variations over time in the intensity of learning. 

 

VII.  Conclusions 

This paper can be seen as an attempt to integrate learning considerations into a 

behavioral setting where agents are predisposed to using overly simplified forecasting models.  

The key assumption underlying our approach is that agents update only over the class of 

                                                                                                                                                                                      
models that agents entertain.  By contrast, in our setting, the correct multivariate model is more complicated than 
the simple univariate models that agents actually update over. 
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simple models, and place zero weight on the correct, more complicated model of the world.  

As we have demonstrated, this assumption yields a fairly rich set of empirical implications, 

many of which are supported in the data.  Moreover, these implications seem to be robust to 

aggregation.  That is, they come through either when there is a single representative agent 

who practices model selection, or when there is a market comprised of heterogeneous agents, 

in which case the market can be said to practice a form of model averaging.  
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Appendix 
 
A.  Derivation of Equation (14): 
First, observe that: 
 

( ) ( ) ( ) ( )111,cov −−− −= tttttt PEREPREPR . 
 
Similarly,  

 
( ) ( ) ( ) ( )shiftPEshiftREshiftPREshiftPR tttttt ||||,cov 111 −−− −= , and  

 ( ) ( ) ( ) ( )shiftnoPEshiftnoREshiftnoPREshiftnoPR tttttt  | | | |,cov 111 −−− −= . 
 
We can also decompose ( )1−tt PRE  as: 
 
 ( ) ( ) ( ) ( ) ( )shiftnoshiftnoPREshiftshiftPREPRE tttttt  Pr |Pr| 111 −−− += . 
 
Therefore, to establish equation (14), it suffices to prove that: 
 
 ( ) ( ) ( ) .0 || 111 === −−− shiftnoPEPEshiftPE ttt  
 
For ( )shiftPE t |1−  we can write:  
 

( ) ( ) ( ) ( ) ( ) 11111111 |Pr
Pr

1|| −−−−−−−− ∫∫ == tttttttt dPPfPshiftP
shift

dPshiftPfPshiftPE  

 
where the latter equality follows from an analog to Bayes’ rule (a detailed proof of which is 
available upon request).  Next, note that: 
 
 ( ) ( )xPshiftxPshift tt −=== −− 11 |Pr|Pr .  
  
This property holds because of the symmetry of the normal learning process in equation (5) 
around zero.   We also know that the unconditional distribution ( )1−tPf  is symmetric around 
zero.  Therefore, it follows that ( ) 0|1 =− shiftPE t , since for any function ( )xg symmetric 

around zero, ( ) 0=∫ dxxxg .  Identical logic establishes that ( ) 0 |1 =− shiftnoPE t , and hence 

that ( ) 01 =−tPE . 
 
 B.  Stock Prices in the Log-Linear Case 

We assume that dividends follow a process given by ( )tttt BAD ε++= exp ,  where  

ttt aAA += −1ρ ,  ttt bBB += −1ρ ,  ( )at vNa ,0∼ ,  ( )bt vNb ,0∼ ,  and ( )εε vNt ,0∼ .  We 
begin by calculating the stock price for an investor who understands the true model.  This is 
given in Proposition A1, which is an application of the main result in Ang and Liu (2004). 
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 Proposition A1: When  0>r  , the rational stock valuation  R
tV   for an investor who 

understands the true model is 
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 Proof:   Observe that the rational stock valuation is simply the expected present value 
of future dividends (assuming the true dividend process): 
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We expand the three terms inside the second exponential function of the rational stock 
valuation as follows: 
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Substituting this expansion inside the exponential function and taking expectations gives us: 
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Substituting this expression back into the rational valuation formula above yields: 
 

 ( ) ( )
( )

.
2
1

1
1

2
1exp 2

12
11

1

1










+

−

−
++++−=

−

++
−

∞

=
∑ ε

ρ

ρρ vvvBArsV
s

batt
s

s

R
t  

QED. 
 
 The rational stock valuation depends on an infinite sum.  Ang and Liu (2004) point out 
that when  0>r , successive terms in the summation decreases exponentially fast and  R

tV   
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can be approximated via the first  m   terms in the summation for some large m . In our 
simulations, we set 1000=m . 
 
 With this rational stock valuation in hand, we can then work out the prices for the 
cases of no-learning, model selection and model averaging.  For an investor who uses model 
A and ignores signal B , his valuation is 
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which is derived by assuming that ( )ttt AD ε+= exp , where ttt aAA += −1ρ , ( )at vNa ,0∼ , 
and ( )εε vNt ,0∼ ,  and applying Proposition A1.  Similarly, for an investor using model B, 
his valuation is 
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which is derived by assuming that ( )ttt BD ε+= exp , where ttt bBB += −1ρ , ( )bt vNb ,0∼ , 
and ( )εε vNt ,0∼ , and applying Proposition A1. 
 
 We determine the stock price at time t  for the three different cases (no-learning, 
model selection and model averaging) in the following way.  In the no-learning case, we 
assume the investor sticks to model  A   and the stock price is given by 
 
 A

tt VP = . 
 
Under the model-selection case, the stock price is determined by the current model 
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In the model-averaging case, the stock price is given by the average of the valuations under 
models A and B, weighted by the proportion of investors ( tp ) using each model 
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In each of these cases, the stock return is calculated simply as 
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where tP  is given by one of the three cases (no-learning, model selection, and model 
averaging) and tD  follows the true log-linear specification given above. 
 
 C.  Calibration 
 We now provide calculations of the first-order autocorrelation of log dividends useful 
for the calibration of our model. We set  vvvv ba === ε  and given that 

tttt BAD ε++=log , we compute the variance of this process as 
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The first order auto-covariance of this process is 
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The first order autocorrelation of the log dividends implied by the log-linear specification is 
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The parameter ρ  uniquely determines the serial correlation of log dividends.  When  

97.0=ρ , the implied first-order autocorrelation is 94.0 , roughly matching the first-order 
autocorrelation for S&P 500 quarterly log real operating earnings during the period of 1988-
2004 (which we calculate to be 96.0 ).28 

                                                           
28 We download the operating earnings data from Standard & Poor's website  
http://www2.standardandpoors.com/spf/xls/index/SP500EPSEST.XLS.  The earnings data are deflated using CPI 
before taking logs. The CPI data is from the Bureau of Labor Statistics website 
ftp://ftp.bls.gov/pub/special.requests/cpi/cpiai.txt.  The CPI series for all urban consumers (series CPI-U) is used.  
CPI-U series is monthly and we use the three-month average of CPI-U within a quarter to deflate the operating 
earnings corresponding to that quarter. 
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Table 1: Simulation Results for Linear Model 
 

We simulate the dividends for a cross-section of 2500 stocks for one hundred quarters.  The variances of the shocks are set to va=vb=vε=0.00001.  The 
autocorrelation coefficient of the processes At and Bt is set to ρ=0.97.  The quarterly interest rate is set to  r=0.015.   The Markov transition parameters πA = πB 
=1, and h=0.051.  We use the linear pricing model to generate stock prices for the three cases of No Learning, Model Selection and Model Averaging.  For each 
of these three cases, we run three sets of Fama-MacBeth (1973) regressions: to forecast stock returns, return volatility and return skewness.  The dependent 
variables include the following.  RET is the annualized return for quarter t.  VOL is the annualized volatility calculated using four quarters of returns (t to t+3).  
SKEW is the skewness coefficient calculated using four quarters of returns (t to t+3).  The independent variables include a constant term (not reported) and the 
following.  Price(t-1) is the lagged stock price, normalized to have zero mean and unit standard deviation.  News(t-4,t-1) is the cumulative z-surprise over the 
previous four quarters, normalized to have zero mean and unit standard deviation.  For the 2x2 sort, Value*GoodNews is a dummy variable that equals one if 
Price(t-1) is below the median value and News(t-4,t-1) is above the median value for that quarter, while Glamour*BadNews is a dummy variable that equals one 
if Price(t-1) is above the median value and  News(t-4,t-1) is below the median value for that quarter.  For the 3x3 sort, Value*GoodNews is a dummy variable 
that equals one if Price(t-1) is in the lowest one-third of values and News(t-4,t-1) is in the top one-third of values for that quarter, while Glamour*BadNews is a 
dummy variable that equals one if  Price(t-1) is in the top one-third of values and News(t-4,t-1) is in the bottom one-third of values for that quarter.  For each 
simulation, we recover and save the Fama-MacBeth regression coefficients (the time-series average of the cross-sectional regression coefficients).  We run 100 
simulations and then take the average of the Fama-MacBeth coefficients, which are reported in the panels below.  The standard errors are calculated simply as the 
standard deviation of these coefficients across simulations, divided by square root of 100, and the associated t-statistics are reported in parentheses. 
 
 
 
Panel A: No Learning (unconditional annualized stock return volatility of 16.9%) 
 
     2x2 Sort              3x3 Sort 

 RET VOL SKEW  RET VOL SKEW 
Value*GoodNews 0.0001 -0.0001 -0.0004 Value*GoodNews -0.0001 0.0000 0.0000 

 (0.34) (1.24) (0.75)  (0.34) (0.51) (0.06) 
Glamour*BadNews -0.0002 0.0001 0.0001 Glamour*BadNews -0.0005 0.0000 0.0008 

 (1.30) (1.07) (0.23)  (2.15) (0.26) (1.53) 
Price(t-1) 0.0001 -0.0001 -0.0002 Price(t-1) 0.0001 0.0000 -0.0002 

 (1.58) (1.69) (0.81)  (1.67) (0.48) (0.98) 
News(t-4,t-1) 0.0579 0.0000 0.0001 News(t-4,t-1) 0.0579 0.0000 0.0001 

 (612.46) (1.22) (0.44)  (613.73) (0.10) (0.64) 
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Panel B: Model Selection (unconditional annualized stock return volatility of 30.4%) 
 
     2x2 Sort              3x3 Sort 

 RET VOL SKEW  RET VOL SKEW 
Value*GoodNews 0.0760 0.0598 0.0954 Value*GoodNews 0.0095 0.0906 -0.0148 

 (158.55) (210.23) (161.75)  (12.45) (230.26) (16.27) 
Glamour*BadNews -0.0757 0.0597 -0.0961 Glamour*BadNews -0.0094 0.0906 0.0128 

 (157.49) (221.31) (162.19)  (13.78) (186.75) (14.43) 
Price(t-1) -0.0407 0.0000 -0.0087 Price(t-1) -0.0710 -0.0001 -0.0539 

 (148.35) (0.06) (34.71)  (337.21) (0.59) (229.67) 
News(t-4,t-1) 0.0760 -0.0001 0.0364 News(t-4,t-1) 0.1020 0.0000 0.0758 

 (342.38) (0.42) (155.88)  (513.02) (0.26) (303.57) 
 
 

Panel C: Model Averaging (unconditional annualized stock return volatility of 31.1%) 
 
     2x2 Sort              3x3 Sort 

 RET VOL SKEW  RET VOL SKEW 
Value*GoodNews 0.0853 0.0657 0.0610 Value*GoodNews 0.0564 0.1003 0.0208 

 (201.06) (212.50) (118.35)  (63.41) (184.66) (27.00) 
Glamour*BadNews -0.0854 0.0659 -0.0623 Glamour*BadNews -0.0564 0.1007 -0.0225 

 (157.69) (232.55) (96.26)  (73.49) (213.66) (24.73) 
Price(t-1) -0.0386 -0.0001 -0.0114 Price(t-1) -0.0600 -0.0001 -0.0321 

 (137.52) (0.41) (46.14)  (281.84) (0.91) (145.44) 
News(t-4,t-1) 0.0617 0.0000 0.0198 News(t-4,t-1) 0.0786 0.0001 0.0368 

 (275.11) (0.09) (90.33)  (345.85) (0.29) (159.53) 
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Table 2: Simulation Results for Log-Linear Model 
 
We simulate the dividends for a cross-section of 2500 stocks for one hundred quarters.  The variances of the shocks are set to va=vb=vε=0.045. The autocorrelation 
coefficient of the processes At and Bt is set to ρ=0.97.  The quarterly interest rate is set to  r=0.015.   The Markov transition parameters πA = πB =1, and h=0.051.  
We use the log-linear pricing model to generate stock prices for the three cases of No Learning, Model Selection and Model Averaging.  For each of these three 
cases, we run three sets of Fama-MacBeth (1973) regressions: to forecast stock returns, return volatility and return skewness.  The dependent variables include 
the following.  RET is the annualized return for quarter t.  VOL is the annualized volatility calculated using four quarters of returns (t to t+3).  SKEW is the 
skewness coefficient for log returns, calculated using four quarters of returns (t to t+3).  The independent variables include a constant term (not reported) and the 
following.  Price(t-1) is the lagged stock price, normalized to have zero mean and unit standard deviation.  News(t-4,t-1) is the cumulative z-surprise over the 
previous four quarters, normalized to have zero mean and unit standard deviation.  For the 2x2 sort, Value*GoodNews is a dummy variable that equals one if 
Price(t-1) is below the median value and News(t-4,t-1) is above the median value for that quarter, while Glamour*BadNews is a dummy variable that equals one 
if Price(t-1) is above the median value and  News(t-4,t-1) is below the median value for that quarter.  For the 3x3 sort, Value*GoodNews is a dummy variable 
that equals one if Price(t-1) is in the lowest one-third of values and News(t-4,t-1) is in the top one-third of values for that quarter, while Glamour*BadNews is a 
dummy variable that equals one if  Price(t-1) is in the top one-third of values and News(t-4,t-1) is in the bottom one-third of values for that quarter.  For each 
simulation, we recover and save the Fama-MacBeth regression coefficients (the time-series average of the cross-sectional regression coefficients).  We run 100 
simulations and then take the average of the Fama-MacBeth coefficients, which are reported in the panels below.  The standard errors are calculated simply as the 
standard deviation of these coefficients across simulations, divided by square root of 100, and the associated t-statistics are reported in parentheses. 
 
 
 
Panel A: Model Selection (unconditional annualized stock return volatility of 27.8%) 
 
     2x2 Sort              3x3 Sort 

 RET VOL SKEW  RET VOL SKEW 
Value*GoodNews 0.0712 0.0517 0.1014 Value*GoodNews 0.0589 0.0754 0.0309 

 (162.54) (205.70) (160.04)  (70.55) (147.85) (32.25) 
Glamour*BadNews -0.0877 0.0528 -0.1021 Glamour*BadNews -0.0376 0.0910 -0.0111 

 (205.44) (259.30) (163.47)  (61.09) (243.84) (12.03) 
Price(t-1) -0.0140 0.0156 -0.0025 Price(t-1) -0.0330 0.0114 -0.0366 

 (55.18) (128.92) (9.59)  (133.71) (112.46) (147.42) 
News(t-4,t-1) 0.0644 0.0149 0.0339 News(t-4,t-1) 0.0809 0.0170 0.0649 

 (326.37) (90.40) (140.75)  (407.61) (116.35) (248.95) 
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Panel B: Model Averaging (unconditional annualized stock return volatility of 28.2%) 
 
     2x2 Sort              3x3 Sort 

 RET VOL SKEW  RET VOL SKEW 
Value*GoodNews 0.0772 0.0535 0.0706 Value*GoodNews 0.0904 0.0821 0.0550 

 (226.68) (199.56) (126.38)  (99.65) (129.03) (72.79) 
Glamour*BadNews -0.0952 0.0596 -0.0669 Glamour*BadNews -0.0741 0.0966 -0.0325 

 (224.10) (266.76) (100.58)  (126.82) (248.52) (36.51) 
Price(t-1) -0.0121 0.0166 -0.0047 Price(t-1) -0.0251 0.0133 -0.0205 

 (48.83) (121.81) (17.54)  (104.11) (122.36) (92.54) 
News(t-4,t-1) 0.0525 0.0131 0.0168 News(t-4,t-1) 0.0625 0.0143 0.0300 

 (262.25) (72.72) (66.32)  (285.21) (92.14) (121.15) 
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Table 3: Empirical Results 
 

Using CRSP stock-return data and earnings dates from COMPUSTAT for the period 1971-2004, we run the empirical analogs to the forecasting regressions 
described in Table 2.  We run three sets of Fama-MacBeth (1973) regressions: to forecast stock returns, return volatility and return skewness.  The dependent 
variables include the following.  RET is the annualized return for quarter t.  VOL is the annualized volatility for quarter t, calculated using daily returns.  SKEW 
is the skewness coefficient for log returns for quarter t, calculated using daily returns.  The independent variables include a constant term (not reported) and the 
following.  Log(M/B) is the lag of the log market-to-book ratio, normalized to have zero mean and unit standard deviation.  News(t-4,t-1) is the sum of the 
earnings announcement date returns (the average return from day -1 to day 1) in the previous four quarters, normalized to have zero mean and unit standard 
deviation.  For the 2x2 sort, Value*GoodNews is a dummy variable that equals one if Log(M/B) is below the median value and News(t-4,t-1) is above the 
median value for that quarter, while Glamour*BadNews is a dummy variable that equals one if Log(M/B) is above the median value and  News(t-4,t-1) is below 
the median value for that quarter.  For the 3x3 sort, Value*GoodNews is a dummy variable that equals one if Log(M/B) is in the lowest one-third of values and 
News(t-4,t-1) is in the top one-third of values for that quarter, while Glamour*BadNews is a dummy variable that equals one if Log(M/B) is in the top one-third 
of values and News(t-4,t-1) is in the bottom one-third of values for that quarter.   We report Fama-MacBeth regression coefficients, along with t-statistics that are 
based on Newey-West (1987) standard errors with four lags. 
 
 
     2x2 Sort              3x3 Sort 

 RET VOL SKEW  RET VOL SKEW 
Value*GoodNews 0.0205 -0.0118 0.0462 Value*GoodNews 0.0454 0.0824 0.0769 

 (2.57) (3.36) (8.25)  (4.31) (8.98) (7.85) 
Glamour*BadNews -0.0255 -0.0067 0.0029 Glamour*BadNews -0.0237 0.0424 0.0053 

 (2.17) (1.27) (0.17)  (2.07) (8.33) (0.32) 
Log(M/B) -0.0140 -0.0405 -0.0617 Log(M/B) -0.0138 -0.0351 -0.0630 

 (1.31) (6.87) (11.80)  (1.24) (6.22) (11.96) 
News(t-4,t-1) 0.0328 -0.0140 -0.0027 News(t-4,t-1) 0.0321 -0.0203 -0.0019 

 (5.07) (4.09) (0.42)  (5.33) (5.84) (0.29) 
 


