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Abstract
A spin model relating physical to financial variables is presented. Based on this model, an algo-

rithm evaluating negative temperatures was applied to New York Stock Exchange quotations from

May 2005 up to the present. Stylized patterns resembling known processes in phenomenological

thermodynamics were found, namely, population inversion and the magnetocaloric effect.

PACS numbers: 89.65.Gh, 05.50.+q, 05.70.-a, 05.45.Tp

1

http://arxiv.org/abs/1206.1272v1


During recent years there has been increasing interest in the application of statistical
mechanics to the study of financial markets and macroeconomic systems in general [1–3].
Thus it is that the neologism “econophysics” has become well-known at the present time.
A variety of theoretical models have been proposed, from stochastic to deterministic, trying
to explain market dynamics by interaction between agents. In particular, spin models have
been the focus of important research works [4–7]. However, a model establishing a nexus
between microscopic and macroscopic variables, between pure theory and real finance, is
lacking. The principal aim of this work is to interpret the variables of a spin model and
their mathematical transcription into financial terms for the application of the model to
price trend forecasts in stock markets.

Explicitly, we will consider a stock market as a set of agents or traders similar to spins
with a value of ±1. Since this model is established in order to describe market behavior in
the short term, we assume the total number of traders to be constant. The opinion position
adopted by the mass media is equivalent to an external field B [4, 8]. We assume an
interaction constant J between spins. Thus, the energy of a configuration {si}, i = 1, . . . , N
is specified by

E({si}) = −B
N
∑

i=1

si − J
N
∑

i=1

N
∑

j=i+1

sisj . (1)

This spin model is mathematically equivalent to a lattice gas with N nodes whose occupa-
tion variable is defined by s̃i = (si − 1)/2, i.e., s̃i = 1 if a node is occupied and s̃i = 0 if
it is unoccupied. This consideration is useful when it comes to analyze some issues, such
as price time series to be modeled by means of a one-dimensional Brownian motion of a
particle suspended in the lattice gas. Assuming such a particle is in approximate thermo-
dynamic equilibrium with the lattice gas, by combining Einstein’s equation for mean square
displacement [9] D = 〈x2〉/(2τ) with the Einstein-Smoluchowski relation [10] D = µkBT ,
we obtain

T ∝ 〈x2〉/τ, (2)

where T is the absolute temperature, 〈x2〉 is the mean square displacement, and τ is the
mean time between collisions. We then estimate this in financial terms by

τ = 1/nt, 〈x2〉t =
1

nt

nt
∑

i=1

r2i,t, (3)

ri,t = ln pi,t − ln pi−1,t,

where nt is the number of intraday returns, ri,t the ith return on the tth trading day, and
pi,t represents the corresponding prices. The term

σt =

(

1

nt

nt
∑

i=1

r2i,t

)1/2

(4)

is known as (historical) volatility in the financial literature [11]. Accordingly, we define the
absolute temperature of the spin system on the tth trading day as

Tt ∝ nt〈x2〉 =
nt
∑

i=1

(ln pi,t − ln pi−1,t)
2 = ntσ

2

t . (5)
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FIG. 1. Entropy vs. energy for a magnetic system. If ∆Ē < 0 and | T2 | − | T1 |> 0, then the

temperature sign is negative.

This definition agrees with [2], where the second moments of returns are stated to relate to
the system temperature.

Under these conditions, the entropy S and mean energy Ē per spin are bounded from
above: 0 ≤ S ≤ Smax, and Emin ≤ Ē ≤ Emax. Also the entropy S is a function of energy Ē
with an arched shape [12], as shown in Fig. 1.

Next, we define the energy increment △Ē on the tth day to be

∆Ēt ∝

∑nt

i=1
(ln pi,t − ln pi−1,t)vi,t
∑nt

i=1
vi,t

, (6)

where vi,t is the ith lot of shares on the tth day. Such a definition agrees with [1], where
money and energy are treated as equivalent concepts. It is also consistent with [6], where
logarithmic relative changes of price depend on magnetization increments, and thus on
energy per spin.

Negative temperatures are mathematically characterized as follows [13] : T−1 = (∂S/∂Ē)X ,
i.e., if a positive entropy increment corresponds to a negative energy increment, additional
thermodynamic variables X being constant, then the temperature is negative. Thus, it
follows that ∆Ē < 0 and | Tt | − | Tt−1 |> 0 implies T < 0 (as shown in Fig. 1). Further-
more, negative temperatures correspond to high values of energy per spin, such that the
system equilibrium is unstable and this tends to result in an increment in absolute values
of the temperature | T | [12]. In this context, it should be mentioned that peaks of “market
temperature” are often related to dramatic price movements [14].

At this point, let us digress to consider the Black-Scholes (BS) partial differential equation
[2, 3]:

∂V

∂t
+

1

2
σ2S2

∂2V

∂S2
+ rS

∂V

∂S
− rV = 0,

where S is a stock price, σ its volatility, V the price of a derivative, e.g., a call option [15],
and r the risk-free interest rate. As is known, this equation is a particular case of a diffusion
equation. Indeed, by the following change-of-variable transformation V = uert, x = lnS,
z = x− (r − σ2/2)t, and t′ = te − t [16], the BS equation turns into:

∂u

∂t′
=

1

2
σ2

∂2u

∂x2
.

This may be interpreted as a heat transfer (diffusion) equation [2] where the squared volatil-
ity σ2 is proportional to the diffusion ratio, in agreement with [17]. A solution of such an
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equation is the BS formula [2, 3], which is used for derivatives pricing, e.g., put and call
options, and implied volatility [18] estimation:

V = SN (d1)−Kert
′N (d2), (7)

where K is the strike price, N (d) the standard normal cumulative distribution function,
d1 = [ln(S/K) + (r + σ2/2)t′]/(σ

√
t′), and d2 = d1 − σ

√
t′.

Following the above prolegomena, we propose a temperature sign characterizing algorithm
as follows: (i) First, we calculate ∆Ēt by Eq. (6) on the tth trading day. Then, we calculate
temperatures Tt and Tt−1 by Eq. (5). (ii) Next, we estimate the temperature trend as follows:

(iia) We calculate intraday volatilities σt−1, σt corresponding to the (t − 1)th and tth
trading days by Eq. (4). Next, by entering σt−1 , S = K = pc,t−1 (pc,t−1 being the closing
price on the [t−1]th trading day) and an initial value of t′ = 40 days into the BS formula (7),
we get a fictitious price of a fictitious derivative p̂t = V . (iib) We enter V = p̂t and S = pc,t
into the BS formula (7) again, and by a numerical method, e.g., Newton-Raphson, we obtain
the implied volatility σ̂t = σ. Note that the volatility obtained from Eq. (4) is the so-called
historical volatility, whereas that obtained from the BS formula (7) is referred to as implied.

(iii) Finally, having evaluated the following conditions:

∆Ē < 0 and Tt − Tt−1 > 0, (8)

σ̂t − σt > 0, (9)

if (8)and (9) hold, then we will conclude temperature sign to be negative [19]. These
conditions may be adjusted by setting nonzero threshold values, which will depend on which
particular stock or index is to be analyzed, in order to achieve an optimal predictive result.

Although condition (8) appears to be sufficient, there is a slightly more sophisticated
reason for introducing condition (9): As is well-known, a magnetic system is modeled by
two subsystems, namely, the lattice and the spins [12]. These subsystems are in thermal
contact and may fluctuate around an equilibrium point. Thus, energy flows between them;
e.g., when the spins experience a negative temperature, energy flows from the spins to the
lattice, since negative temperatures are hotter than positive ones [13]. Also note that there
is no upper limit for the lattice energy; thus, its Kelvin temperature is always positive.
In our own experience, historical volatility relates to lattice temperatures, whereas implied
volatility relates to spin temperatures. Thus, historical volatility is a good estimation of
spin temperature whenever both subsystems are in mutual equilibrium; however, if they
fluctuate, it is necessary to introduce implied volatility for a good estimation of the spin
temperature, as for magnitude and sign.

The time series of daily temperatures is a good leading indicator for trend changes in
markets. By applying the algorithm described above to market data from May 2005 up to
the present, we found several temperature patterns, two of which are especially significant
since they resemble well-known processes in phenomenological thermodynamics. Indeed,
Fig. 2 shows a stylized pattern similar to what appears in so-called population inversion:
The external field reverses so suddenly that the spins cannot follow such a switch-over. This
leaves the spin system in a state of nonequilibrium. During a certain period, the spins reach
a new equilibrium state. Through this transition, the temperature increases and decays
corresponding to a theoretical passage from T = −∞ to T = +∞ [12]. Note the dramatic
change in index trend that occurs on subsequent trading days. By contrast, Fig. 3 shows a
stock whose investors are “aligned” in expectation of a generous dividend payout. Such an
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FIG. 2. (a) Time series of temperatures Tt corresponding to (b) the Dow Jones index. The inset C

shows how a discrete register of a physical population inversion would be. Compare the inset with

detail A.

FIG. 3. (a) Time series of temperatures Tt corresponding to (b) quotes of a particular stock. After

a dividend payout, this stock suffers an extreme “cooling” near to Tt = 0 (detail A).

expectation represents a strong external field that suddenly vanishes on payday. Then, that
stock experiences a cooling near to T = 0, resembling a magnetocaloric effect (detail A).
Note the dramatic drop in prices because of investors’ trend towards random self-alignment;
this may induce an on-stop orders collapse depending on “order density.”

The magnitude of negative temperature peaks (see detail B in Fig. 2) correlates with
subsequent prices or index movements (upward or downward). Figure 4 shows how such
magnitudes are correlated for the Dow Jones Industrial Average using a sample consisting
of 109 cases of negative temperatures that occurred from May 2005 to January 2012.

An online database daily updated with the latest data from the New York Stock Exchange
is freely available to every reader wanting to review graphs like those in Fig. 2 and 3 [20].
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FIG. 4. Correlation and linear regression between magnitude of negative temperature peaks | −Tt |
and subsequent movement (upward or downward) of Dow Jones within the 14 following days. The

Pearson correlation coefficient equals 68%.
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