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Abstract

In this paper we consider the problem of calculating the quantiles of a risky position,
the dynamic of which is described as a continuous time regime-switching jump-diffusion, by
using Fourier Transform methods. Furthermore, we study a classical option-based portfolio
strategy which minimizes the Value-at-Risk of the hedged position and show the impact of
jumps and switching regimes on the optimal strategy in a numerical example. However, the
analysis of this hedging strategy, as well as the computational technique for its implemen-
tation, is fairly general, i.e. it can be applied to any dynamical model for which Fourier
transform methods are viable.
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Fourier transform methods.
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1 Introduction

Quantiles computation of profit and losses of a given financial position is a basic task for mea-
suring and managing portfolio market risks. The dynamic of the driving risk factors, as well
as the chosen risk measure are the basic ingredient for the analysis of any risk management
strategy. In this paper the model we consider for the risky position is of the form S(t) = s0e

X(t),
where X(t) is specified on a filtered probability space (Ω, {Ft},F ,P) as a jump-diffusion whose
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parameters change over time, driven by a continuous time and stationary Markov Chain on the
finite state space S = {1, 2, . . . ,M}, representing the unobserved state of the world. In fact, em-
pirical studies on the behavior of financial markets show the ability of regime-switching models
to capture some peculiarities in the observed data, as firstly highlighted in the seminal paper
by Hamilton [13]. Since then there has been a growing effort in applying switching models to a
wide class of financial and/or economic problems, such as time series analysis, portfolio theory,
derivative pricing and risk management. On the other hand, the necessity of including jumps in
the underlying models to provide better representation of their dynamical properties is widely
recognized (see e.g. [9]). Regime-switching jump-diffusions turns out to be an appealing and
flexible class of dynamic models.

Among many different risk measures proposed in the literature, Value-at-Risk, although
sharply criticized for the lack of sub-additivity and its inability to quantify the severity of an
exposure to rare events, has been adopted as a benchmark in the financial industry and for
regulatory purposes. It plays a central role in banking regulation and internal risk management,
mainly due to its simplicity. We therefore take the VaR as a starting point of our analysis of
risk management strategies. The computation of VaR in Regime-Switching models has been
considered by several authors mainly in discrete-time setting (see e.g. [6] or more recently [14],
[23]). Here we consider this problem directly in the continuous time framework: as a matter
of fact, the required computations can be very efficiently implemented with the help of Fourier
Transform methods (see e.g. [20]). The use of this kind of technique for the analytical calculation
of VaR has been considered in Duffie and Pan [12] who exploited the classical characterization of
the distribution function in terms of the Fourier inversion of its characteristic function. The use
of Generalized Fourier Transform and the FFT algorithm is more recent: see Le Courtois and
Walter [17] who calculate the VaR for the Variance Gamma (VG) model and Kim et al. [15],
Scherer et al. [22], who consider the class of tempered stable and infinitely divisible distributions.

As an application to risk management, we investigate the influence of jumps and switching
regimes on the exposure to an underlying risky asset. More precisely we study a classical hedging
policy based on options followed by an institutional manager whose aim is to minimize the VaR
of a position. This type of analysis has been initiated by [1] a decade ago for a portfolio made
by a risky asset following a log-normal random dynamic, and hence analytically solved in a
Black-Scholes setting. More recently, it has been considered for a bond portfolio in [11], [3], [4].

By taking the VaR as the risk measure for potential losses L of a portfolio at a given level α
(i.e. the value VaRα(L) such that Prob{L > VaRα(L)} = α), the strategy considered consists
on minimizing the VaR of the option-hedged portfolio Lh,K with respect to the strike price and
the quantity of the put option written on the risky asset, subject to a budget constraint: in
other words, we hedge the risky position by buying a fraction h ∈ (0, 1] of a put option with
maturity T and strike price K, but what K and h? The optimal hedging strategy is therefore
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given by the solution of the following program:







minK,hVaRα(L
h,K)

hΠP
0 (K,T ) = C, h ∈ (0, 1]

ΠP
0 (K,T ) being the time 0 put price with strike K and maturity T . To implement the strategy,

it is therefore needed i) the calculation of the VaR for the risky asset and ii) the corresponding
value of a put option ΠP

0 (K,T ). Under the classical no-arbitrage assumption, the price of
the put option can be represented as the expected value of the payoff with respect to a risk-
neutral probability (see e.g. [7]). Conversely, VaR is obtained under the objective or historical
probability measure. Both steps can be efficiently faced with the Fourier transform technique.

The paper is organized as follows: we firstly derive the optimality conditions for the VaR
minimizing strategy (Section 2) and then we specify the Fourier Transform technique for calcu-
lating quantiles and put/call option prices in a very general setting (Section 3). In Section 4 we
introduce the regime-switching dynamic model, its generalized characteristic function and the
main change-of-measure result for switching from the historical to the risk-neutral probability.
Finally, in Section 5 some numerical experiments are reported to show the impact of jumps
and regime-switching on the process quantiles and on the optimal hedging strategy. We use in
particular a simple two-state model with gaussian jumps and quantify in such a case what is
the effect of a wrong model choice.

2 VaR and optimal risk management

To measure the risk of a financial position the quantiles of its distribution function are commonly
used. Given a confidence level α ∈ (0, 1), the set of ǫ-quantiles of the random variable Y is the
interval [q−α (Y ), q+α (Y )] where

q−α (Y ) = inf{q ∈ R|P (Y ≤ q) ≥ α}, q+α (Y ) = inf{q ∈ R|P (Y ≤ q) > α}.

For a random variable having continuous and strictly increasing distributions function FY (y),
q−α (Y ) = q+α (Y ) ≡ qα(Y ) and qα(Y ) = F−1

Y (α), i.e. it solves the equation

P (Y ≤ qα(Y )) = α.

Here we take the portfolio loss L to describe a financial position in a fixed time interval and,
in order to simplify notations, we assume in this section that L has a continuous and strictly
increasing distributions function. The Value-at-Risk at level α is defined as

VaRα(L) ≡ inf{q ∈ R|P (L ≤ q) ≥ α}.

3



Let St be the value of the risky asset, t ∈ [0, T ] and r be the risk-free rate, that without loss
of generality we consider fixed in the period: we define the loss at time 0 of such a position as

Lu = S0 − e−rTST .

Then
VaRα(L

u) = S0 − e−rT q1−α(ST ).

Let us now consider a classical hedging problem in which an institution has an exposure
to a risky asset St and decide to hedge such an exposure in the interval [0, T ] by buying a
fraction h ∈ (0, 1] of an European put option on the asset with maturity T and strike price K.
Analogously to the situation considered by Ahn et al. (1999), we take as the hedged position
the portfolio composed by the risky asset and the put option: the loss of the hedged portfolio
at time 0 is therefore

Lh,K = S0 + hΠP
0 (K,T ) − e−rT (ST + h(K − ST )

+)

where ΠP
t (K,T ) is the price of the put option at time t. By defining the strictly increasing

function
g(u) = u− h(u− K̄)+ + hΠP

0 (K,T )

where K̄ = S0 − e−rTK, it is immediately seen that

Lh,K = g(Lu);

therefore

VaRα(L
h,K) = g(VaRα(L

u)) = S0 − e−rT q1−α(ST ) + hΠP
0 (K,T ) − e−rTh(K − q1−α(ST ))

+

= VaRα(L
u) + hΠP

0 (K,T )− e−rTh(K − q1−α(ST ))
+.

Let us firstly notice that if K ≤ q1−α(ST ), then

VaRα(L
h,K) > VaRα(L

u)

since ΠP
0 (K,T ) > 0. Therefore the optimal hedging strategy is given by the following problem:























minK,hVaRα(L
u) + hΠP

0 (K,T ) − e−rTh(K − q1−α(ST ))

hΠP
0 (K,T ) = C,

h ∈ (0, 1], K > q1−α(ST ),

(1)
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C being the budget constraint. Since h = C/ΠP
t (K,T ), the optimality first order condition for

K is given by the following non-linear equation:

ΠP
0 (K,T ) = (K − q1−α(ST ))

∂

∂K
ΠP

0 (K,T ). (2)

Assuming that (2) has a solution K∗ > q1−α(ST ) and the twice differentiability of the price
functional we can prove that this is actually a minimum since

∂2VaRα(L
h,K)

∂K2
=

e−rTC(K∗ − q1−α(ST ))

ΠP (K∗, T )2
∂2ΠP

∂K2
(K∗, T ) > 0

by the convexity of the price functional w.r.t. the strike. Correspondingly, the optimal amount
of the hedging put option is

h∗ =
C

ΠP
0 (K

∗, T )
. (3)

We now assume the following:

Assumption 2.1. The price of the put option can be represented as the discounted expected
value of the payoff at time T under a risk-neutral measure Q:

ΠP
t (K,T ) = e−rTEQ[(K − ST )

+].

Furthermore, let FS(s) = Q(ST ≤ s) be the cumulative distribution function (cdf) of the random
variable ST under such a measure: hence

ΠP
t (K,T ) = e−rT

∫ +∞

−∞
(K − s)+dFS(s) = e−rT

(

K

∫ K

−∞
dFS(s)−

∫ K

−∞
sdFS(s)

)

= e−rT

(

KQ(ST ≤ K)−

∫ K

−∞
sdFS(s)

)

and
∂

∂K
ΠP

t (K,T ) = e−rTQ(ST ≤ K).

We can finally prove the following property:

Proposition 2.1. If K∗ > q1−α(ST ), then VaRα(L
h∗,K∗

0 ) < VaRα(L
u).

Proof. Since K∗ and h∗ are characterized through (2) and (3), we get

VaRα(L
h∗,K∗

0 ) = VaRα(L
u) + C − e−rTh∗(K∗ − q1−α(ST ))
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= VaRα(L
u) +

C

ΠP
t (K

∗, T )

(

ΠP
t (K

∗, T )− e−rT (K∗ − q1−α(ST ))
)

= VaRα(L
u) +

C

ΠP
t (K

∗, T )
(K∗ − q1−α(ST ))

(

∂

∂K
ΠP

t (K
∗, T )− e−rT

)

.

From Assumption 2.1, we have

∂

∂K
ΠP

t (K,T ) − e−rT = e−rT (Q(ST ≤ K)− 1) < 0.

Therefore

VaRα(L
h∗,K∗

0 ) = VaRα(L
u) +

C

ΠP
t (K

∗, T )
(K∗ − q1−α(ST ))e

−rT (Q(ST ≤ K∗)− 1) < VaRα(L
u).

Remark 2.1. Notice that the optimality condition (2) under Assumption 2.1 becomes

e−rT

(

KQ(ST ≤ K)−

∫ K

−∞
sdFS(s)

)

= (K − q1−α(ST ))e
−rTQ(ST ≤ K)

which simplifies to
1

Q(ST ≤ K)

∫ K

−∞
sdFQ

S (x) = q1−α(ST ) (4)

and depends on both the objective and the risk neutral distributions P and Q. Furthermore, it
easily seen that the l.h.s. is equal to the conditional expectation EQ[ST |ST ≤ K] which is an
increasing function of K bounded by EQ[ST ]. Therefore, the eq. (4) has a unique solution if and
only if q1−α(ST ) < EQ[ST ].

The minimum VaR as a function of the budget C is therefore

VaR∗ = VaRǫ(V ) + C
Π(K∗, T )erT − (K∗ − q+X(ǫ))

Π(K∗, T )
, (5)

which is a linear function with negative slope. In the plane budget-risk the previous equation
describe an efficient frontier giving for each level of the budget C the minimum VaR.

Remark 2.2. It is easy to show that the problem of looking for the hedging strategy with the
minimum cost C(h,K) = hΠ(K,T ) for a target level v of VaR, results in the same first order
optimality condition for K and that we get the same linear efficient frontier

C∗ = h∗Π(K∗) = (v −VaRǫ(V ))
Π(K∗)

Π(K∗)erT − (K∗ − q+X(ǫ))
,

in the budget-risk plane.
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3 The Fourier transform method

Fourier transform methods are efficient techniques emerged in recent years as one of the main
methodology for the evaluation of derivatives. In fact, the no-arbitrage price of an european
style contingent claim can be represented as the (conditional) expectation of the derivative
payoff under a proper risk-neutral measure (see e.g. [7]). These methods essentially consist
on the representation of such an expectation as a ”convolution” of two Generalized Fourier
Transforms. Since the value of most derivatives depend on a trigger parameter, two main
variants have been developed depending on which variable of the payoff is transformed into the
Fourier space. Here we consider the technique introduced in [8] which consider the generalized
Fourier transform with respect to the trigger parameter.

More formally, let Π(S,K) be the payoff at maturity of the derivative: for example, Π(S,K) =
(K − S)+ is the payoff of the put option. The no-arbitrage price is therefore given by

Π0 = e−rTEQ[Π(ST ,K)].

Due to the exponential structure of typical underlying dynamics of the form St = s0 exp(Xt),
it is convenient to represent the payoff with respect to the new variables XT = log(ST )− log(s0)
and k = log(K), in such a way Π(ST ,K) = Π(s0 exp(XT ), exp(k)) = Π(XT + log(s0), log(K)).

Therefore, let us denote with Π(x, k) an arbitrary payoff function and with Π̂x(z) its gener-
alized Fourier transform (GFT) w.r.t. k, that is

Π̂x(z) =

∫

R

eizkΠ(x, k)dk, z ∈ C;

under proper regularity conditions (see e.g. [18]), Fourier inversion gives

Π(x, k) =
1

2π

∫ iν+∞

iν−∞
e−izkΠ̂x(z)dz,

in some strip of C, from which

BTΠ0 ≡ E[Π(X(T ) + log(s0), k)] =

∫

R

Π(x, k)Q(dx)

=

∫

R

1

2π

∫ iν+∞

iν−∞
e−izkΠ̂x(z)dzQ(dx) =

1

2π

∫ iν+∞

iν−∞
e−izk

∫

R

Π̂x(z)Q(dx)dz

=
1

2π

∫ iν+∞

iν−∞
e−izkEQ[Π̂X(T )+log(s0)(z)]dz.

In order to implement our program, we need to evaluate
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1. the VaR of the hedged position: this step require to solve w.r.t. v the equation P{ST <
v} = α;

2. the value of a put option ΠP
0 (k, T ) = e−rTEQ[(ek − S0e

XT )+].

Let us consider the following ”payoff” functions,

Φ1(x, k) = (ek − ex)+, and Φ2(x, k) = I{x≤k},

in such a way ΠP
0 (κ, T ) = e−rTEQ[Φ1(XT + log(S0), k)] and P{ST < v} = P{XT < k} =

E[Φ2(XT , k)], with k = log(v/S0). Their GFT w.r.t. the trigger parameter k are

Φ̂1(x, z) =
ex(1+iz)

iz − z2
, ν > 1 and Φ̂2(x, z) =

i

z
eixz, ν > 0

giving therefore the formulas

ΠP
0 (k, T ) = e−rT 1

2π

∫ iν+∞

iν−∞
e−ikz e

i log(S0)(z−i)φX(z − i)

iz − z2
dz, ν > 1

= e−rT e
νkS1−ν

0

π
ℜ

(
∫ +∞

0
e−iu(k−log(S0)) φX(u+ i(ν − 1))

ν2 − u2 − ν + iu(1− 2ν)
du

)

, (6)

and

P{ST < v} =
i

2π

∫ iν+∞

iν−∞
e−iz log(v/S0)φX(z)

z
dz, ν > 0

=
(v/S0)

ν

π
ℜ

(
∫ +∞

0
e−iu log(v/S0)φX(u+ iν)

ν − iu
du

)

(7)

φX(z) being the GFT of the process XT under the appropriate measure. If this is a regular
functions in a properly defined strip of C, the transform method can be applied in both cases
(see Lee (2004)).

Since under the Assumption (2.1) the optimality condition is

(K − q1−α(ST )) =
ΠP

0 (K,T )
∂
∂KΠP

0 (K,T )
≡

ΠP
0 (K,T )

e−rTQ(ST ≤ K)
.

the optimal hedging strategy is then implemented by running

1. root search algorithm to find the value q∗ solution of

(q∗/S0)
ν

π
ℜ

(
∫ +∞

0
e−iu log(q∗/S0)φ

P
X(u+ iν)

ν − iu
du

)

= α, ν > 1;
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2. root search algorithm to find the value K∗ solution of

(K∗ − q∗) =
S0ℜ

(

∫ +∞
0 e−iu(log(K∗/S0)) φQ

X
(u+i(ν−1))

ν2−u2−ν+iu(1−2ν)
du

)

ℜ
(

∫ +∞
0 e−iu(log(K∗/S0)) φ

Q
X
(u+i(ν̄−1))
ν̄−iu du

) , ν > 1, ν̄ > 0.

Numerical quadrature must be used for integral evaluation. Alternatively the FFT algorithm
can be used to efficiently approximate integrals (see [18]) and then a standard root-finding routine
will find the required solutions.

4 Regime-Switching Jump Diffusions and measure change

Let us consider on a filtered probability space (Ω,F ,Ft,P) a stochastic process of the form
St = S0e

Xt , S0 > 0, modeling the value, or price, of a risky asset for t ∈ [0, T ]. We consider a
jump-diffusion setting in which the jump process is described as a marked point process (MPP),
the parameters of which are driven by a finite state and continuous time Markov chain.

We briefly recall here (see e.g. Runggaldier (2003)) that a MPP can be characterized through
the couple (Tn, Yn), where {Tn} is an univariate point process on R+ and {Yn} is a sequence of
random variables on a given measurable space (E, E), as a random measure p(dy, dt) for which

∫ t

0

∫

E
H(y, s)p(dy, ds) =

Nt
∑

n=1

H(Yn, Tn)

Nt being the Poisson point process. The corresponding intensity for p is a measure-valued
process λt(dy) for which

∫ t

0

∫

E
H(y, s)(p(dy, ds) − λs(dy)ds)

is a martingale for each predictable process H and it characterizes the MPP. A common form
of the intensity is λt(dy) = λtmt(dy), where λt represents the intensity of the Poisson counting
process and mt(dy) is a probability measure on the mark space (E, E) describing the jump
component. Finally, the couple (λt,mt(dy)) is called the (P,Ft)-local characteristic of p(ds, dy).
This setting has been introduced in the financial literature by Bjork et al. (1997). Although
jump diffusion models can be described in somewhat different ways, the approach based on MPP
turns out to be particularly useful for managing absolutely continuous change of measures. As
a matter of fact, for our application we have to specify the dynamic model under both the
objective (or historical) measure P and an equivalent risk-neutral (or pricing) measure Q.

Let α(t) be a continuous time, homogeneous and stationary Markov Chain on the state
space S = {1, 2, . . . ,M} with a generator H ∈ RM×M ; furthermore, µ : S → R, σ : S → R and
γ : E × S → R are given functions, (E, E) being the measurable mark space. Without loss of
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generality, we can assume in the following E ⊆ R. In a given interval 0 ≤ t ≤ T , we consider
therefore the dynamic

dX(t) = (µ(α(t)) −
1

2
σ2(α(t))dt + σ(α(t))dW (t) +

∫

E
γ(y, α(t−))pα(dy, dt), X(0) = 0, (8)

whereW (t) is a standard brownian motion and pα(dy, dt) is a MPP characterized by the intensity

λαt (dy) ≡ λ(α)m(α, dy).

Here λ(·) represents the (regime-switching) intensity of the Poisson process Nt, whilem(·, dy) are
a set of probability measures on E, one for each state (regime) i ∈ S of the chain. The function
γ(y, α) represents the jump amplitude relative to the mark y in regime α. Throughout the paper
we assume that the processes α(·) and W (·) are independent and that W (·) and pα(dy, dt) are
conditionally independent given α(t). We denote Fα

t = σ{α(s) : 0 ≤ s ≤ t} the σ-algebra
generated by the Markov chain. Furthermore, we assume that E[eγ(Y,α)] =

∫

E eγ(y,α)m(α, dy) is
finite for each regime α. As usual, we also define the compensated point process qα(dy, dt) =
pα(dy, dt) − λ(α(t−))m(α(t−), dy)dt in such a way

∫ t
0

∫

E H(y, α(s−))qα(dy, ds) is a martingale
in t for each predictable process H satisfying appropriate integrability conditions.

An application of the generalized Ito’s Formula gives the corresponding jump-diffusion SDE
for the asset price

dS(t)

S(t−)
= µ(α(t))dt + σ(α(t))dW (t) +

∫

E
(eγ(y,α(t−)) − 1)pα(dy, dt) (9)

= [µ(α(t)) + λ(α(t))]κ(α(t))))dt + σ(α(t))dW (t) +

∫

E
(eγ(y,α(t−)) − 1)qα(dy, dt),

with S(0) = s0 and κ(α) = E[eγ(Y,α) − 1].

Measure changes. An absolutely continuous transformation of measures in a jump-diffusion
setting allows to change the intensities of the MPP and the Markov chain in addition to the
translation of the Wiener process (see Runggaldier (2003)). In this context it results convenient
to represent the underlying Markov chain itself as a MPP (see Landen (2001)) in such a way

dα(t) =

∫

S
δ(z)υ(dt, dz) (10)

where υ(dt, dz) is a marked point process with finite mark space (S,P(S)), S = {z = (i, j) : i 6=
j, i, j ∈ {1, 2, . . . , N}} and P(S) = 2S and compensator

λυ(t, α(t−), dz) =
∑

i 6=j

hij1(α(t−)=i)ǫ(i,j)(dz) (11)
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ǫ(i,j)(dz) being the Dirac measure. In the previous formula the numbers hij are positive and

such that
∑N

j 6=i,j=1 hij = −hii, for i = 1, . . . , N .

Consequently, let ϑt(α) be a square integrable predictable processes, ht(α, y) a non-negative
function such that

∫

E
ht(α, y)m(α, dy) = 1,∀t ∈ [0, T ]

and let ψ(α) and Φ(z) be strictly positive functions defined on S and S, respectively. We can
define a new measure Q on the measurable space by setting







dWQ
t = dWt − ϑt(α(t))dt

qQ,α(dt, dy) = p(dt, dy)− ψ(α(t))λ(α(t))ht(α(t), y)m(α(t), dy)dt

λQυ (t, α, dz) = Φ(z)λυ(t, α, dz).

(12)

Besides the translation of the Wiener process Wt, we perform a change in the intensity of the
MPP giving the compensated process qQ,α(dt, dy) with (Q,Ft)-local characteristic (ψ(α(t))λ(α(t)),
ht(α(t), y)m(α(t), dy)) and a change of the intensity of the Markov chain which under Q has
generator HQ = {hQij} where

hQij = Φ(i, j)hij , hQii = −
N
∑

k=1,k 6=i

Φ(i, k)hik , i = 1, . . . , N.

By taking the Radon-Nikodym derivative

Lt = exp

(

−
1

2

∫ t

0
ϑs(α(s))

2ds+

∫ t

0
ϑs(α(s))dW

Q
s

+

∫ t

0
(1− ψ(α(s))λ(α(s))ds +

∫ t

0

∫

E
log(ψ(α(s))ht(α(s), y))p(ds, dy) (13)

+

∫ t

0
(1− Φ(z))λυ(t, α(t−), dz)ds +

∫ t

0

∫

S
log(Φ(z))υ(ds, dz)

)

and supposing that EP [Lt] = 1 for all t, we have a probability measure Q on F equivalent to P
with dQ = LTdP, under which

dS(t)

S(t−)
=

[

µ(α(t)) + σ(α(t))ϑt(α(t)) + ψ(α(t))λ(α(t))κQ(α(t))
]

dt+ σ(α(t))dWQ(t)

+

∫

E
(eγ(y,α(t−)) − 1)qQ,α(dy, dt), (14)

where κQ(α) = EQ[eγ(Y,α) − 1].
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In order to price derivatives under the model (9) we need to specify a risk-neutral or martin-
gale measure, that is a measure under which the discounted price process e−rtSt is a martingale.
This is done by taking

ϑ(α) ≡
r − µ(α)− ψ(α)λ(α)κQ(α)

σ(α)
(15)

from which we finally get the risk-neutral dynamic for the underlying

dS(t)

S(t−)
= rdt+ σ(α(t))dWQ(t) +

∫

E
(eγ(y,α(t−)) − 1)qQ,α(dy, dt) (16)

= [r − ψ(α(t))λ(α(t))κQ(α(t))]dt + σ(α(t))dWQ(t) +

∫

E
(eγ(y,α(t−)) − 1)pQ,α(dy, dt).

Consequently, from (15) and (9), the market price of risk is (see [21])

ρ(α) ≡ µ(α)− λ(α)κ(α) − r = λ(α)[κ(α) − ψ(α)κQ(α)]− σ(α)θ(α)

= λ(α)

[
∫

E
(eγ(y,α) − 1)(1 − ψ(α)ht(α, y))m(α, dy)

]

− σ(α)θ(α). (17)

Correspondingly, for the process X(t) we have

dX(t) = [r −
1

2
σ2(α(t))]dt + σ(α(t))dWQ(t) +

∫

E
γ(y, α(t−))qQ,α(dy, dt)

= [r −
1

2
σ2(α(t)) − ψ(α(t))λ(α(t))κQ(α(t))]dt + σ(α(t))dWQ(t)

+

∫

E
γ(y, α(t−))pQ,α(dy, dt). (18)

The measure transformation defined by (12) through (13) preserves the probability structure
of the stochastic process X(t) under both P and Q. It worth noting that we can specify infinitely
many equivalent measures Q. In practice, the usual way to select one of the equivalent measures
is to calibrate the model to a set of observed data.

GFT for regime-switching jump-diffusions. The formulas (6) and (7) depend from the
dynamic model only through its generalized Fourier transform φX(z). In this section we report
the GTF for the regime-switching jump-diffusion model. Since we have to consider the process
XT under two different measure, we derive its characteristic function for the following general
dynamic

dX(t) = ξ(α(t))dt + σ(α(t))dW (t) +

∫

E
γ(y, α(t−))p(dy, dt)

where

ξ(α) =

{

r − 1
2σ

2(α) − ψ(α)λ(α)κQ(α) under the measure Q
µ(α)− 1

2σ
2(α) under the measure P

(19)
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the MPP p(dy, dt) has intensity

λ(α, dy) =

{

ψ(α)λ(α)h(α, y)m(α, dy) under the measure Q
λ(α)m(α, dy) under the measure P

and the Markov chain has generator Q = {qij}i,j=1,...,N where

qij =

{

eΦ(i,j)hij under the measure Q
hij under the measure P

i, j = 1, . . . , N, i 6= j, and qii = −
N
∑

k=1,k 6=i

qik. (20)

In [20] (see also [10]) it was proved the following

Proposition 4.1. Let φj(z) = E[eizγ(Y (j),j)] be the generalized Fourier transform of the jump
magnitude under the given measure. Then, by letting

ϑj(z) = zξ(j) +
1

2
iz2σ2(j) − iλ(j)(φj(z) − 1) (21)

and ϑ̃i(z) = ϑj(z)− ϑM (z), we have

ϕT (z) = eiϑM (z)T
(

1′ · e(Q
′+i diag(ϑ̃1(z),...,ϑ̃M−1(z),0))T · I(0)

)

= 1′ · e(Q
′+i diag(ϑ1(z),...,ϑM (z)))T · I(0),

(22)

where 1 = (1, . . . , 1)′ ∈ RM×1, I(0) = (Iα(0)=1, . . . , Iα(0)=M )′ ∈ RM×1 and Q′ is the transpose of
Q.

Different models can be recovered with simple linear constraints on the full parameter set of
our dynamics (9), (16). This follows by noticing that if ξ(i) = ξ, σ(i) = σ, λ(i) = λ and φi(z) =
φ(z) we are implicitly assuming a unique regime so recovering the well-known characteristic
function of the (single-regime) jump-diffusion dynamic ϕT (z) = exp(zξ + 1

2 iz
2σ2 − iλ(φ(z)− 1))

which includes the standard geometrical Brownian motion (GBM) (λ = 0) and the Merton
jump-diffusion models (JDM). By letting λi = 0 in (22) we get the regime-switching version of
GBM (RSGBM) and finally the regime-switching jump diffusion model (RSJDM) with the full
set of parameters

ξi, σi, λi, hij , i, j = 1, . . . ,M.

The evaluation of the characteristic function requires to compute matrix exponentials for
which efficient numerical techniques are available (see Higham (2009)); conversely, the case
M = 2 can be considered explicitly. The following can be proved (see [20] and the references
therein).
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Proposition 4.2. Let y1,2 be the solutions of the quadratic equation y2+(q1+q2−iθ)y−iθq2 = 0
and

qT1 (θ) = 1
y1−y2

(

ey1T (y1 + q1 + q2)− ey2T (y2 + q1 + q2)
)

qT2 (θ) = 1
y1−y2

(

ey1T (y1 + q1 + q2 − iθ)− ey2T (y2 + q1 + q2 − iθ)
)

.

Then
Et[e

iθT1 ] = Iα(t)=1q
T
1 (θ) + Iα(t)=2q

T
2 (θ)

and therefore
ϕX(z) = eiϑ2(z)T

(

Iα(t)=1q
T
1 (θ(z)) + Iα(t)=2q

T
2 (θ(z))

)

✷

5 Numerical results

In this section we report results about two kind of numerical experiments:

1. calculation of quantiles for RSJD. The objective is to study the behavior of such a quan-
tities by varying diffusions and jumps parameters.

2. valuation of the optimal hedging strategy in the regime-switching jump-diffusion frame-
work.

We consider a two-state regime switching version of the jump-diffusion model with gaussian
jumps. This is defined by choosing γ(y, α) = y and two kinds of normal jumps, i.e. Y (i) ∼
N (ai, bi) from which κ(i) = E[(eY (i) − 1)] = eai+b2

i
/2 − 1, i = 1, 2. The two state Markov chain

α(t) ∈ S = {1, 2} has generator under the chosen measure Q =

(

−q1 q1
q2 −q2

)

. Let σi, λi > 0

and µi, i = 1, 2 be given parameters: the regime switching jump-diffusion Merton model is
defined as

dX(t) = ξ(α(t))dt + σ(α(t))dW (t) +

∫ t

0

∫

E
ypα(dy, ds) (23)

where ξ(α(t)) is given by (19), λ(t, α(t), dy) = λ(α(t))φα(t)(y)dy is the intensity process of the
Poisson jump component and λ(α(t)) ∈ {λ1, λ2}, σ(α(t)) ∈ {σ1, σ2}, µ(α(t)) ∈ {µ1, µ2}, φi(y)
being the density of a normal distribution N (ai, bi), i = 1, 2.

All numerical procedures were implemented in the MatLab© framework.
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5.1 Quantiles and VaR Calculation

Quantiles were computed by solving the equation

(q/S0)
ν

π
ℜ

(
∫ +∞

0
e−iu log(q/S0)

φPX(u+ iν)

ν − iu
du

)

= α,

with respect to q (see Section 3). A standard root-search algorithm was used together with the
Gauss-Lobatto quadrature for approximating the integral. Few milliseconds were needed to get
the required quantile on an Intel© Core i5.

We calculate the quantiles of the RSJD models for different values of the parameters under
the historical probability P. We start by considering the simple regime-switching geometrical
brownian motion (λi = ai = bi = 0): as expected, the effect of switching drift and volatility
results in a sort of mixing behavior between the corresponding GBM models, see figures (1),
(2), and such effect becomes more evident for growing time T . The frequency of Markov chain
switching, driven by the generator Q, induces a quite different behavior, whose impact also
depends on the value of T (figures (3), (4).

It is well-known ([9]) that introducing (gaussian) jumps in the GBM dynamic has a great
impact on the tails of the distribution, see figure (5). As before, the Markov switching generates
a mixing effect: quantiles curves of the RSJD models are between the curves of the corresponding
JD models without regime switching.

5.2 Optimal risk management

In the second set of numerical experiments we face two main issues: (a) Risk Reduction: how
much reduction of risk is obtained by implementing the optimal hedging strategy in the RSJD
framework and in particular what is the impact of jumps and switching regimes on the main
quantities driving the strategy? (b) Misspecified Modeling: what is the effect of a wrong model
specification which discards regime switchings and jumps, when they are indeed present in the
market, and consider the simpler GBM model?

(a) Risk reduction and model impact. Inside each model - GBM, JD, RSGBM, RSJD -
we show the behavior of the optimal hedging strategy obtained by changing the value of some
relevant parameters: this corresponds to specify different levels of the market price of risk. In
the figures (9), (10), (11, (12) and (13) the optimal strike K∗ and the corresponding value of
the VaR are depicted together with the risk reduction percentage

R = 1−
VaRα(L

h∗,K∗

0 )

VaRα(Lu)
.

It is apparent how the the strategy can be effective in reducing risk. On the other hand,
it can be noticed that a perturbation of a single parameter results in a change of the optimal
strategy.
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Optimal strategy RSJD Optimal strategy GBM (σ̂) βRSJD

T=.5 64.7442, 0.7197, 37.0189 65.6191, 0.8433, 35.3880 (0.2905) 0.0132
T=1 55.5928, 0.6165, 47.1767 57.1579, 0.7644, 44.4718 (0.2689) 0.0148
T=3 41.6851, 0.5294, 62.3356 43.5664, 0.7382, 58.6379 (0.2254) 0.0157

Table 1: Optimal hedging strategy (K∗, h∗,VaR∗) under the simulated true model (first column),
the fitted GBM model (second column - estimated volatility) and the corresponding value of
βRSJD. Here σ1 = .3, σ2 = .05, λ1 = 2, λ2 = .8, a1 = 0.0, a2 = 0.0, b1 = 0.08, b2 = 0.15, q1 = 1,
q2 = 0.2; furthermore r = 0.5%, α = 0.01 and the budget constraint is C = 0.1.

Optimal strategy RSJD Optimal strategy GBM (σ̂) βRSJD

T=.5 61.1841, 0.0581, 45.2341 63.3076, 0.0816, 41.3746 (0.3137) 0.0166
T=1 45.8347, 0.0833, 60.5069 52.7089, 0.0744, 52.6106 (0.3047) 0.0255
T=3 18.8056, 0.4015, 83.7630 32.7103, 0.0797, 72.5986 (0.2930) 0.0640

Table 2: Optimal hedging strategy (K∗, h∗,VaR∗) under the simulated true model (first column),
the fitted GBM model (second column - estimated volatility) and the corresponding value of
βRSJD. Here σ1 = .3, σ2 = .05, λ1 = 2, λ2 = .8, a1 = 0.05, a2 = −0.3, b1 = 0.08, b2 = 0.15,
q1 = 1, q2 = 0.2; furthermore r = 0.5%, α = 0.01 and the budget constraint is C = 0.01.

(b) Misspecified Modeling. In order to explore the model sensitivity of the optimal hedging
strategy, we implemented the following exercise. We firstly fixed a RSJD model by choosing
a complete set of parameters. Then we generated a set of call/put prices on which we cali-
brate the GBM model: hence we run the optimal hedging strategy obtaining K∗

GBM , h
∗
GBM and

correspondingly the minimal VaR, VaR∗
GBM . We finally calculated the probability

βRSJD = P(LK∗,h∗

≥ VaR∗
GBM )

under the RSJD model. Results are shown in Table (1) and (2). Notice that even when the
optimal strategies are similar, the probability that the portfolio loss exceeds the (optimal) VaR
is greater than the fixed level α = 0.01. Of course this behavior depends on the choice of the
parameters, but the underestimation produced by a wrong model choice can be quite severe:
see Table (3), where parameters from a real data set were used (see [20]).

6 Conclusions

In this paper we considered the problem of computing the quantiles of a risky position described
by a regime-switching jump-diffusion dynamic model. The knowledge of generalized characteris-
tic function for this class of processes allowed us to use the Fourier Transform methods to design
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Optimal strategy RSJD Optimal strategy GBM (σ̂) βRSJD

T=.5 38.3721, 0.2497, 66.0564 60.0168, 0.0785, 44.8655 (0.3479) 0.1165
T=1 26.6034, 0.4103, 76.3270 49.4859, 0.0737, 55.8926 (0.3320) 0.1304
T=1.5 19.6884, 0.6506, 81.8069 41.9632, 0.0741, 63.4963 (0.3291) 0.1430

Table 3: Optimal hedging strategy (K∗, h∗,VaR∗) under the simulated true model (first column),
the fitted GBM model (second column - estimated volatility) and the corresponding value of
βRSJD. Here σ1 = .27, σ2 = .13, λ1 = 6.8, λ2 = .8, a1 = −0.13, a2 = −0.34, b1 = 0.08,
b2 = 0.15, q1 = 6.5, q2 = 0.002; furthermore r = 0.5%, α = 0.01 and the budget constraint is
C = 0.01.

an efficient algorithm for the calculation of quantiles. With this same technique, we analyzed
a static hedging policy based on the constrained minimization of the VaR of the option-hedged
portfolio. Numerical examples showed the impact of jumps and switching regimes on the optimal
strategy in a two-regime, gaussian jumps framework and moreover the risk of a wrong model
choice.

Some final comments can be briefly outlined. Firstly, notice that different kind of jumps, as
well as the number of regimes, can be readily considered in our computational framework, such
as the double exponential Kou model ([16]). Furthermore, the analysis of the hedging strategy
is fairly general, that is it can be applied to any dynamical model for which Fourier transform
methods are viable, for example it can be extended to Variance-Gamma or Bates models. Finally,
besides the choice of different dynamic models, it would be interesting to consider alternative
risk measures, such as the Conditional Value at Risk (CVaR). This is certainly less commonly
used in finance industry, but it is widely used in insurance industry being a coherent, convex
and stable risk measure (see [5]).
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Figure 1: Regime-switching GBM, starting state α0 = 1, q1 = q2 = 5 and T = 1. Comparison with
standard GBM. Analogous results for starting state α0 = 2.
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Figure 2: Regime-switching GBM, starting state α0 = 1, q1 = q2 = 5 and T = 1.
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Figure 3: Regime-switching GBM for different values of qi and T = 1.
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Figure 4: Regime-switching GBM for different values of qi and T = 10.
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Figure 6: RSJD model with gaussian jumps: switching volatility (left picture) and drift (right picture).
T = 1.
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Figure 7: RSJD model: switching variance (left picture) and mean (right picture) of the gaussian jumps.
T = 1.
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Figure 8: RSJD model: switching jump arrival times λi (left picture) and intensity of the Markov chain
qi (right picture). T = 1.
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Figure 9: Risk reduction in GBM model: the continuous line corresponds to a model in which the risk
is not priced, the dotted line to a variation of +25% of the drift and the dashed line to a variation of
−25%. The other parameters are σ = 0.1, r = 0.05, T = 1 and S0 = 1.
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Figure 10: Risk reduction in JDM model: the continuous line corresponds to a model in which the risk
is not priced, the dotted line to a variation of +25% of the drift (µ - left figure) and mean jump (a - right
figure) and the dashed line to a variation of −25%. The other parameters are σ = 0.1, r = 0.05, T = 1
and S0 = 1.
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Figure 11: Risk reduction in JDM model: the continuous line corresponds to a model in which the risk
is not priced, the dotted line to a variation of +25% of the jump intensity (λ - left figure) and jump std
(b - right figure) and the dashed line to a variation of −25%. The other parameters are σ = 0.1, r = 0.05,
λ = 1, a = 0, T = 1 and S0 = 1.
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Figure 12: Risk reduction in RS model: the continuous line corresponds to a model in which the risk is
not priced, the dotted line to a variation of +25% of the drift (µ1, µ2 - left figure) and volatility (σ1, σ2
- right figure) and the dashed line to a variation of −25%. The parameters are σ1 = 0.15, σ2 = 0.05,
r = 0.05, q1 = q2 = 1, T = 1 and S0 = 1. No substantial changes are observed for this kind of variation
of the parameters qi.
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Figure 13: Risk reduction in RSJD model: the continuous line corresponds to a model in which the risk
is not priced, the dotted line to a variation of +25% of the volatility (σ1, σ2 - left figure) and jump std
(b1, b2 - right figure) and the dashed line to a variation of −25%. The parameters are σ1 = 0.15, σ2 = 0.05,
b1 = 0.1, b2 = 0.2, r = 0.05, q1 = q2 = 1, T = 1 and S0 = 1. No substantial changes are observed for this
kind of variation of the other parameters λ1 = 1, λ2 = 0.1, a1 = 0, a2 = −.1, qi = 1.
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