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This article considers forecasting a single time series when there are many predictors (N) and time series observations (T). When the 
data follow an approximate factor model, the predictors can be summarized by a small number of indexes, which we estimate using 
principal components. Feasible forecasts are shown to be asymptotically efficient in the sense that the difference between the feasible 
forecasts and the infeasible forecasts constructed using the actual values of the factors converges in probability to 0 as both N and T 
grow large. The estimated factors are shown to be consistent, even in the presence of time variation in the factor model. 
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1. INTRODUCTION classic factor analysis model. In our macroeconomic forecast- 

This article considers forecasting one series using a large 
number of predictor series. In macroeconomic forecasting, for 
example, the number of candidate predictor series (N) can be 
very large, often larger than the number of time series obser- 
vations (T) available for model fitting. This high-dimensional 
problem is simplified by modeling the covariability of the 
series in terms of a relatively few number of unobserved latent 
factors. Forecasting can then be carried out in a two-step pro- 
cess. First, a time series of the factors is estimated from the 
predictors; second, the relationship between the variable to be 
forecast and the factors is estimated by a linear regression. If 
the number of predictors is large, then precise estimates of the 
latent factors can be constructed using simple methods even 
under fairly general assumptions about the cross-sectional and 
temporal dependence in the variables. We estimate the factors 
using principal components, and show that these estimates are 
consistent in an approximate factor model with idiosyncratic 
errors that are serially and cross-sectionally correlated. 

To be specific, let y, be the scalar time series variable to be 
forecast and let Xi be a N-dimensional multiple time series 
of candidate predictors. It is assumed that (Xi, y,,,) admit a 
factor model representation with r common latent factors F,, 

X, = AF, +e, (1) 

and 
Yr+h =PkFr +PLwt +Et+h (2) 

where e, is a N x 1 vector idiosyncratic disturbances, h is the 
forecast horizon, w, is a m x 1 vector of observed variables 
(e.g., lags of y,), that together with F, are useful for forecasting 
y,+,, and st+,is the resulting forecast error. Data are available 
for {y,, X,, w,}:,, and the goal is to forecast y,+,. 

If the idiosyncratic disturbances e, in (1) were cross-
sectionally independent and temporally iid, then (1) is the 
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ing application, these assumptions are unlikely to be satisfied, 
and so we allow the error terms to be both serially corre- 
lated and (weakly) cross-sectionally correlated. In this sense, 
(1) is a serially correlated version of the approximate factor 
model introduced by Chamberlain and Rothschild (1983) for 
the study of asset prices. To construct forecasts of y,,,, we 
form principal components of {X,}T=, to serve as estimates of 
the factors. These estimated factors, together with w,, are then 
used in (2) to estimate the regression coefficients. The fore- 
cast is constructed as j,,, = &PT +F,w,, where p,, p,, 
and pT are the estimated coefficients and factors. 

This article makes three contributions. First, under general 
conditions on the errors discussed in Section 2, we show that 
the principal components of Xi are consistent estimators of 
the true latent factors (subject to a normalization discussed 
in Sec. 2). Consistency requires that both N and T + co, 
although there are no restrictions on their relative rates of 
increase. Second, we show that the feasible forecast, j,,,, 
constructed from the estimated factors together with the esti- 
mated coefficients converge to the infeasible forecast that 
would be obtained if the factors and coefficients were known. 
Again, this result holds as N ,  T + co.Thus the feasible fore- 
cast is first-order asymptotically efficient. Finally, motivated 
by the problem of temporal instability in macroeconomic fore- 
casting models, we study the robustness of the consistency 
results to time variation in the factor model. We show that 
these results continue to hold when the temporal instability 
is small (as suggested by empirical work in macroeconomics) 
and weakly cross-sectionally dependent, in a sense that is 
made precise in Section 3. 

This article is related to a large literature on factor anal- 
ysis and a much smaller literature on forecasting. The liter- 
ature on principal components and classical factor models is 
large and well known (Lawley and Maxwell 1971). Sargent 
and Sims (1977) and Geweke (1977) extended the classical 
factor model to dynamic models, and several researchers have 
applied versions of their dynamic factor model. In most appli- 
cations of the classic factor model and its dynamic general- 
ization, the dimension of X is small, and so the question of 
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consistent estimation of the factors is not relevant. However, 
several authors have noted that with large N, consistent esti- 
mation is possible. Connor and Korajczyk (1986, 1988, 1993) 
discussed the problem in a static model and argue that the fac- 
tors can be consistently estimated by principle components as 
N -t co even if the errors terms are weakly cross-sectionally 
correlated. Forni and Reichlin (1996, 1998) and Forni, Hallin, 
Lippi, and Reichlin (1999) discussed consistent (N, T + co) 
estimation of factors in a dynamic version of the approximate 
model. Finally, in a prediction problem similar to the one con- 
sidered here, Ding and Hwang (1999) analyzed the properties 
of forecasts constructed from principal components in a set- 
ting with large N and T. Their analysis is conducted under 
the assumption that error process {e,, is cross-sectionally 
and temporally iid, an assumption that is inappropriate for 
economic models and when interest focuses on multiperiod 
forecasts. We highlight the differences between our results and 
those of others later in the article. 

The article is organized as follows. Section 2 presents the 
model in more detail, discusses the assumptions, and presents 
the main consistency results. Section 3 generalizes the model 
to allow temporal instability in the factor model. Section 4 
examines the finite-sample performance of these methods in a 
Monte Carlo study, and Section 5 discusses an application to 
macroeconomic forecasting. 

2. THE MODEL AND ESTIMATION 

2.1 Assumptions 

As described in Section 1, we focus on a forecasting sit- 
uation in which N and T are both large. This motivates our 
asymptotic results requiring that N ,  T + co jointly or, equiv- 
alently, that N = N(T) with lim,,, N(T) + co. No restric- 
tions on the relative rates of N and T are required. 

The assumptions about the model are grouped into assump- 
tions about the factors and factor loading, assumptions about 
the errors in the (I), and assumptions about the regressors and 
errors in (2). 

Assumption Fl (Factors and Factor Loading). 

a. 	(A'AIN) -+I,. 
b. 	 E(F,FI1)= C,,, where Z F F is a diagonal matrix with 

elements a,,> a, > 0 for i < j .  
C. 	 Ihi,,,l 5 h < M. 

d. T-I C,F,F; i;X F F .  

Assumption F1 serves to identify the factors. The nonsin- 
gular limiting values of (A'AlN) and ZFFimply that each of 
the factors provides a nonnegligible contribution to the aver- 
age variance of x,,, where x,, is the ith element of X, and 
the average is taken over both i and t. Moreover, because 
AF, = ARR-'F, for any nonsingular matrix R, a normaliza- 
tion is required to uniquely define the factors. Said differ- 
ently, the model with factor loadings AR and factors R-IF, 
is observationally equivalent to the model with factor load- 
ings A and factors F,. Assumption Fl(a) restricts R to be 
orthonormal, and this together with Assumption Fl(b) restricts 
R to be a diagonal matrix with diagonal elements of * I .  This 
identifies the factors up to a change of sign. Equivalently, 
Assumption Fl  provides this normalization (asymptotically) 
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by associating A with the ordered orthonormal eigenvectors of 
(NT)-I xT=, AF,F:A' and {F,}~=, with the principal compo- 
nents of {AF,}:=,. The diagonal elements of ZFFcorrespond 
to the limiting eigenvalues of (NT)-I cT=, AF,F,'A1. For con- 
venience, these eigenvalues are assumed to be distinct. If they 
were not distinct, then the factors could only be consistently 
estimated up to an orthonormal transformation. 

Assumption Fl(b) allows the factors to be serially corre-
lated, although it does rule out stochastic trends and other pro- 
cesses with nonconstant uncondititional second moments. The 
assumption also allows lags of the factors to enter the equa- 
tions for x,, and y,+, . A leading example of this occurs in the 
dynamic factor model 

and 

Yt+h =Ps(L)'fr +P:.wI +&i+h, (4) 

where A,(L) and Pf(L)  are lag polynomials is nonnegative 
powers of the lag operator L. If the lag polynomials have 
finite order q, then (3)-(4) can be rewritten as (1)-(2) with 
F, = (f( fk ,  . . .f(-,)', and Assumption Fl(b) will be satisfied 
if the f, process is covariance stationary. 

In the classical model, the errors or "uniquenesses" are 
assumed to be iid and normally distributed. This assumption is 
clearly inappropriate in the macroeconomic forecasting appli- 
cation, because the variables are serially correlated, and many 
or the variables (e.g., alternative measures of the money sup- 
ply) may be cross-correlated even after the aggregate factors 
are controlled for. We therefore modify the classic assump- 
tions to accommodate these complications. 

Assumption MI  (Moments of the Errors e,) 

Let e,, denote the zth element of e,; then 

b. E(e,telr) = rll,r ,  limN+, SUP, N-' CLl C,N_lIriJ l1 	 < "9 

and 
C. 1lmN-m SUP, 5 N-I EL1 Ey=1lcov(e,sei,, e,seJ,)l < CQ. 

Assumption Ml(a) allows for serial correlation in the el,  
processes. As in the approximate factor model of Chamber- 
lain and Rothschild (1983) and Connor and Korajczyk (1986, 
1993), Assumption Ml(b) allows (e,,} to be weakly corre-
lated across series. Forni et al. (1999) also allowed for serial 
correlation and cross-correlation with assumptions similar to 
Ml(a)-(b). Normality is not assumed, but Ml(c) limits the 
size of fourth moments. 

It is assumed that the forecasting equation (2) is well 
behaved in the sense that if {F,} were observed, then ordi- 
nary least squares (OLS) would provide a consistent estimator 
of the regression coefficients. The specific assumption is as 
follows. 

Assumption YI (Forecasting Equation). Let z ,  = (F: w:)' 
and p =  (pk PL,)'.Then the following hold: 

a. E(z,zi) = X I  = ['FF xu,io a positive definite matrix. x w ~' ~ ~ ' 1  
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Assumptions Yl(a)-(c) are a standard set of conditions that 
imply consistency of OLS from the regression of y,+, onto 
(Fi wi). Here F, is not observed, and the additional assump- 
tions are useful for showing consistency of the OLS regres- 
sion coefficients in the regression of y,,, onto (ew:) and the 
resulting forecast of y,+,. 

2.2 	 Estimation 

In "small-N" dynamic factor models, forecasts are gener- 
ally constructed using a three-step process (see, e.g., Stock 
and Watson 1989). First, parametric models are postulated for 
the joint stochastic process {y,,,, X,, w,, e,}, and the sample 
data {y,,,, X,, w,}:_;~ are used to estimate the parameters of 
this process, typically using a Gaussian Maximum likelihood 
estimator (MLE). Next, these estimated parameters are used 
in signal extraction algorithms to estimate the unknown value 
of F,. Finally, the forecast of y,,, is constructed using this 
estimated value of the factor and the estimated parameters. 
When N is large, this process requires estimating many param- 
eters using iterative nonlinear methods, which can be compu- 
tationally prohibitive. We therefore take a different approach 
and estimate the dynamic factors nonparametrically using the 
method of principal components. 

Consider the nonlinear least squares objective function, 

written as a function of hypothetical values of the factors (F)-
and factor loadings (A), where F= ( 4 F 2 .  . .FT)' and Xi is the 
ith row of X. Let FI and ;idenote the minimizers of v ( F ,  X). 
After concentrating out F, minimizing (5) is equivalent to 
maximizing ~ ~ [ X ' X ' X X ]  = where X is subject to A'A/N I,, 
the T x N data matrix with tth row Xi and tr( .)  denotes the 
matrix trace. This is the classical principal components prob- 
lem, which is solved by setting ;iequal to the eigenvectors of 
X'X corresponding to its r largest eigenvalues. The resulting 
principal components estimator of F is then 

Computation of F requires the eigenvectors of the N x N 
matrix X'X; when N > T, a computationally simp@ approach 
uses the T x T matrix XX'. By concentrating ou@, minimiz-
ing (5) is equivalent to maximizing ~ ~ [ F ( x x ' ) F ] ,  subject to 
FFIT= I ,  which yields the estimator, say ?, which is the 
matrix of the first r eigenvectors of XX'. The column spaces -
of 	F^ and F are equivalent, and so for forecasting purposes 
they can be used interchangeably, depending on computational 
convenience. 

2.3 	 Consistent Estimation of Factors 
and Forecasts (1) and (2) 

The first result presented in this section shows that the prin- 
cipal component estimator is pointwise (for any date t)  con- 
sistent and has limiting mean squared error (MSE) over all t 

that converges in probability to 0. Because Assumption F1 
does not identify the sign of the factors, the theorem is stated 
in terms of sign-adjusted estimators. 

Theorem 1. Let Si denote a variable with value of f1, let 
N ,  T + co,and suppose that F1 and MI hold. Suppose that 
k factors are estimated, where k may be 5 or > r ,  the true 
number of factors. Then Si can be chosen so that the following 
hold: 

P 
a. 	For i = 1 ,2 ,  . . . ,r ,  T-' C L , ( S ~ E ,- -+ 0.- P
b. For i =  1 , 2 , . .  . , r ,  SiFl,-+ Fir. 
c. F o r i = r + l ,  . . . ,k, T - ' C ~ ~ ~ $ O .  

The details of the proof are provided in the Appendix; 
here we offer only a few remarks to provide some insight 
into problem and the need for the assumptions given in 
the preceding section. The estimation problem would be 
considerably simplified if it happened that A were known, 
because then F, could be estimated by the least squares 
regression of {xit)El onto {Ai)E1. Consistency of the result- 

A 

ing estimator would then be studied by analyzing F, -F, = 
(A'A/N)-' (N-' Elhie,,). Because N -+ oo,(AfA/N) -+ I ,  
[by Fl(a)], and N-' xihiei, 5 0 [by Ml(a) and Fl(c)], the 
consistency of would follow directly. Alternatively, if F 
were known, then A, could be estimated by regression {xit}~=, 
onto {F,}:, , and consistency would be studied analyzing 
(T-' C,F,F:)-'T-' ErFreir, as T + oo in a similar fashion. 
Because both F and A are unknown, both N and T + co are 
needed, and as it turns out, the proof is more complicated than 
these two simple steps suggest. The strategy that we have used 
is to show that the first r eigenvectors of (NT)-'X'X behave 
like the first r eigenvectors of (NT)-'A'F'FA (Assumption 
M1 is critical in this regard), and then show that these eigen- 
vectors can be used to construct a consistent estimator of F 
(Assumption F1 is critical in this regard). 

The next result shows that the feasible forecast (constructed 
using the estimated factors and estimated parameters) con-
verges to the optimal infeasible forecast and thus is asymptoti- 
cally efficient. In addition, it shows that the feasible regression 
coefficient estimators are consistent. 

The result assumes that the forecasting equation is estimated 
using the k = r factors. This is with little loss of generality, 
because there are several methods for consistently estimating 
the number of factors. For example, using analysis similar to 
that in Theorem 1, Bai and Ng (2001) constructed estimators 
of r based on penalized versions of the minimized value of 
(5), and in an earlier version of this article (Stock and Watson 
1998a), we developed a consistent estimator of r based on the 
fit of the forecasting equation (2). 

Theorem 2. Suppose that Y1 and the conditions of The- 
orem 1 hold. Let @, and fi, denote the OLS estimates of 
@, and @, from the regression of {y, , ,}~.  onto {c,w,}Y_;h. 
Then the following conditions hold: 

a. 	(fi>F^,+fiU,wT>- (P>FT +@mwT) + 
P 

0. 

b. 	p,,-@, 0 and Si (defined in Theorem 1) can be cho- 
sen so that SipiF -Pi, 0 for i = I ,  . . . , r. 
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The theorem follows directly from Theorem 1 together with 
Assumption Y1. The details of the proof are given in the 
Appendix. 

3. TIME-VARYING FACTOR LOADINGS 

In practice, when macroeconomic forecasts are constructed 
using many variables over a long period, some degree of tem- 
poral instability is inevitable. In this section we model this 
instability as stochastic drift in the factor loadings, and show 
that if this drift is not too large and not too dependent across 
series (in a sense made precise later), then the results of Theo- 
rems 1 and 2 continue to hold. Thus the principal components 
estimator and forecast are robust to small and idiosynchratic 
shifts in the factor loadings. 

Specifically, replace the time-invariant factor model (1) with 

and 

'it = 'it-1 +g i~ l i r  @I 

for i = 1, . . . ,N and t = 1, . . . , T, where g,, is a scalar and 
Lit is an r x 1 vector of random variables. This formulation 
implies that factor loadings for the ith variable shift by an 
amount, giTli,, in time period t. The assumptions given in this 
section limit this time variation in two ways. First, the scalar 
giT is assumed to be small [g,, --Op(T-I)] which is consistent 
with the empirical literature in macroeconomics that estimates 
the degree of temporal instability in macroeconomic relations 
(Stock and Watson 1996, 1998b). This nesting implies that 
means that A,, -Aio  - O,(T-'/~). Second, litis assumed to 
have weak cross-sectional dependence. That is, whereas some 
of the x variables may undergo related shifts in a given period, 
wholesale shifts involving a large number of the x's are ruled 
out. Presumably such wholesale shifts could be better repre- 
sented by shifts in the factors rather than in the factor load- 
ings. In any event, this section shows that when these assump- 
tions hold (along with technical assumptions given later), then 
the instability does not affect the consistency of the principal 
components estimator of F,. 

To motivate the additional assumptions used in this section, 
rewrite (7) as 

where a i r  =eit+(A,, -Aio)F, =eit+giT C:=, lL!sF,.This equa- 
tion has the same general form of the time-invariant factor 
model studied in the last section, with A, and a,, in (9) replac- 
ing A, and e,, in the time-invariant model. This section intro- 
duces two new sets of assumptions that imply that Aio and a,, 
in (9) satisfy the assumptions concerning hi and e,, from the 
preceding section. This means that the conclusions of Theo- 
rems 1 and 2 will continue to hold for the time-varying factor 
model of this section. 

The first new assumption is as follows. 

Assumption F2. 

a. g,, is independent of F,, ej,, and lj,for all i, j ,  and t 
and supi,j.k.m T[E(lgrTgjTgkTgmT1)1141 < < co i, 
j ,  k ,  and m. 
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b. The initial values of the values loadings satisfy 
N-I CiA:,Aio= AbA,,/N 4 I ,  and sup,,, IAij,,\ < A, 
where Aij,, is the jth element of A,. 

As discussed earlier, Assumption F2(a) makes the amount 
of time variation small. Assumption F2(b) means that the ini- 
tial value of the factor loadings satisfy the same assumptions 
as the time-invariant factor loading of the preceding section. 

The next assumption limits the dependence in i f , .  This 
assumption is written in fairly general form, allowing for some 
dependence in the random variables in the model. 

Assumption M2. Let l,,,,denote the mth element of lit. 
Then the following hold: 

This assumption essentially repeats Assumption M1 for 
the components of the composite error term a,, in (9). 
To interpret the assumption, consider the leading case in 
which the various components { E , } ,  {F,}, {ei,}, and {lit} 
are independent and have mean 0. Then, assuming that 
the F, have finite fourth moments, and given the assump- 
tions made in the last section, Assumption M2 is satis-
fied if (a) limT+m T-s

Cu=l-s su~i ,m IE(lis,/lis+u,m)l < ~ 2 3 ;  
(b) lim~,m N-' Ci Cjs'JPi.s,u IE(lis,/lju.m)I < and (c) 

l i m ~ + mN-' Ci CjSUP(ikl;=,. I l i t 2 . i Z '  l j t j ,m. {tkl;=, ~ ~ ~ ( l i t , , i ~
l,,,lA)l< co,which are the analogs of the assumptions in M1 
applied to the [ error terms. 

These two new assumptions yield the main result of this 
section, which follows. 

Theorem 3. Given Fl(b), Fl(d), F2, MI,  and M2, the 
results of Theorems 1 and 2 continue to hold. 

The proof is given in the Appendix. 

4. MONTE CARL0 ANALYSIS 

In this section we study some of the finite-sample proper- 
ties of the principal components estimator and forecast using 
a small Monte Carlo experiment. The framework used in the 
preceding two sections was quite rich, allowing for distributed 
lags of potentially serially correlated factors to enter the x and 
y equations, error terms that were conditionally heteroscedas- 
tic and serially and cross-correlated, and factor loadings that 
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evolved through time. The design used here incorporates all 
of these features, and the data are generated according to 

and 
a: =So +S,U:~, +Slv;,-l, (15) 

where i = 1, . . . ,N, t = 1, . . . ,T, f, and A:,, are J x 1, and 
the variables {Jijt}, {uj,}, and {77il} are mutually independent 
iid N(0, 1) random variables. Equation (10) is dynamic factor 
model with q lags of J factors that, as shown in Section 2, can 
be represented as the static factor model (1) with r = J ( l  +q) 
factors. From (12), the factors evolve as a vector autoregres- 
sive [VAR(l)] model with common scalar autoregressive (AR) 
parameter a. From (13), the error terms in the factor equation 
are serially correlated, with an AR(1) coefficient of a, and 
cross-correlated, [with spatial moving average [MA(1)] coeffi- 
cient b]. The innovations wit are conditionally heteroscedastic 
and follow a GARCH(1, 1) process with parameters So, S,, 
and 6, [see (14) and (15)l. Finally, from (1 I), the factor load- 
ings evolve as random walk, with innovation standard devia- 
tion proportional to c. 

The scalar variable to be forecast is generated as 

where L is an J x 1 vector of 1s and E,+, - iid N(0, 1) and is 
independent of the other errors in (10)-(15). 

The other design details are as follows. The initial factor 
loading matrix, A,, was chosen as a function of RZ, the frac- 
tion of the variance of xio explained by Fo.The value of R? 
was chosen as an iid random variable equal to 0 with proba- 
bility T and drawn from a uniform distribution on [.1, .8] with 
probability 1 -T. A nonzero value of .rr allows for the inclu- 
sion of x's unrelated to the factors. Given this value of R;, the 
initial factor loading was computed as Aijo =A* (R;) hijo, where 
A*(R;) is a scalar and hijo- iid N(O,1) and independent of 
{qi,, lij,  u,}. The initial values of the factors were drawn from 
their stationary distribution. The parameter So was chosen so 
that the unconditional variance of vi, was unity. 

Principal components were used to estimate k factors, as 
discussed in Section 2.2. These k estimated factors were 
used to estimate r (the true number of factors) using meth- 
ods described later, and the coefficients P in the forecasting 
regression (2) were estimated by the OLS coefficients 6 in the 

A 

regression of y,+, onto F,,, j = 1, . . . ,i, t = 1, . . . ,T - 1, 
where F is the estimated ntm_ber of factors. The out-of-sample 
forecast is jT+,/,= c:=, PjFjT. For comparison purposes, the -
infeasible out-of-sample forecast jT+,/,=PIFTwas also com- 
puted, where p is the OLS estimator obtained from regress- 
ing y,,, onto F,, t = 1, . . . ,T - 1. The free parameters in 

the Monte Carlo experiment are N, T, ?, q, k, T, a, b, c, S,, 
and 6,. 

The results are summarized by two statistics. The first statis- 
tic is a trace R2 of the multivariate regression of FI onto F ,  

where 2 denotes the expectation estimated by averaging the 
relevant statistic over the Monte Carlo repetitions and PF= 

P
F(F'F)-IF'. According to Theorem 1, R;, -+1. 

The second statistic measures how close the forecast based 
on the estimated factors is to the infeasible forecast based on 
the true factors, 

P
Because jT+llT- jT+,/,-+ 0 when k = r from Theorem 1, 
S;,j, should be close to 1 for appropriately large N and T. S;,? 
is computed for several choices of i.First, as a benchmark, 
results are shown for i = r .  Second, F is formed using three 
of the information criteria suggested by Bai and Ng (2001). 
These criteria have the form ICp(k) = l n ( c )  + kg(T, N), 
where f;, is the minimized value of the objective function (5) 
for a model with k factors and gj(T, N) is a penalty function. 
Three of the penalty functions suggested by Bai and Ng are 
used: 

and 

where C;, = min(N, T), resulting in criteria labeled IC,,, 
IC,,, and ICp3. The minimizers of these criteria yield a con- 
sistent estimator of r ,  and interest here focuses on their rela- 
tive small-sample accuracy. Finally, results are shown with i 
computed using the conventional Akaike information criterion 
(AIC) and Bayes information criterion (BIC) applied to the 
forecasting equation (2). 

The results are summarized in Table 1. Panel A presents 
results for the static factor model with iid errors and factors 
and with large N and T(N, T > 100). Panel B gives corre- 
sponding results for small values of N and T(N, T 1 50). 
Panel C adds irrelevant xi,'s to the model (T > 0). Panel D 
extends the model to idiosyncratic errors that are serially 
correlated, cross-correlated, conditionally heteroscedastic, or 
some combination of these. Panel E considers the dynamic 
factor model with serially correlated factors and/or lags of the 
factors entering' X,. Finally, panel F gives time-varying factor 
loadings. 

First, consider the results for the static factor model shown 
in panel A. The values of R;, exceed .85 except when many 
redundant factors are estimated. The smallest value of R; ,~ 
is .69, which obtains when N and T are relatively small 
(N = T = 100) and there are 10 redundant factors ( r  =5 and 
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k = 15). The values of s:,? generally exceed .9, and this is 
true for all methods used to estimate the number of fac-
tors. The only important exception is when k = r = 10 and 
N = T = 100; in this case, IC,, and IC,, perform poorly. The 
penalty factors for IC,, and ICPz are larger than for IC,, [e.g., 
when T = N, g,(N, T )  = 2g3(N, T ) ] ,and apparently these 
large penalties lead to serious underfitting. 

Performance deteriorates somewhat is small samples, as 
shown in panel B. With only two factors, Si. is near .9 for 
k = r, so that the forecasts perform nearly as well as the infea- 
sible forecasts. When k is much larger than r (k = 10 and 
r = 2), IC,, performs poorly because of overfitting. particu- 
larly when T is very small (T  =25). All of the methods dete- 
riorate when there are five factors; for example, when T =25, 
the values of S,'2,j are closer to .6. 

Panel C suggests that including irrelevant series has little 
effect on the estimators and forecasts when N and T are large. 
Results are shown for n- = .25 (so that 25% of the series are 
unrelated to the factors) and N = 333. The results for the 
models with five factors are nearly identical to the results in 
panel A with the same number of relevant series (N = 250). 
The results for 10 factors are also similar to those in panel 
A, although panel C shows some deterioration of the forecasts 
using IC,, and IC,, . 

From panel D, moderate amounts of serial or spatial cor- 
relation in the errors have little effect on the estimators and 
forecasts. For example, on the one hand, when moderate serial 
correlation is introduced by setting a = .5, the results in the 
table are very similar to the results with a =0; similarly, there 
is little change when spatial correlation is introduced by sett- 
ting b = 1.0. On the other hand, some deterioration in perfor- 
mance occurs when the degree of serial correlation is large 
(compare the entries with a = .9 to those with a = .5). Condi- 
tional heteroscedasticity has no apparent effect on the perfor- 
mance of the estimator and forecasts. 

From panel E, introducing lags of the factors has little effect 
on the quality of the estimators and forecasts: the results with 
? =5 and q = 1 (so that r = 10) are essentially identical to the 
static factor model with 10 factors. However, a high degree of 
serial correlation in the factor process ( a  = .9) does result in 
some deterioration of performance. For example, when T = 
100, N =250, and r =5, R2̂  = .97 in the static factor model 

F ,  F 
( a  =O), and this falls to .89 when a = .9. 

Finally, panel F shows the effect of time variation on the 
factor loadings in isolation and together with other compli- 
cations. There appears to be only moderate deterioration of 
the forecast performance even for reasonably large amount of 
temporal instability (e.g., S;, remains high even as the param- 
eter governing time-variation increases from 0 to 10). How- 
ever, when all of the complications are present (i.e., serially 
correlated dynamic factors, k > r, serial and cross-correlated 
heteroscedastic errors, time-varying factor loading, and a large 
number of unrelated x's), forecast performance deteriorates 
significantly, as shown in the last few entries in panel F. 

5. AN EMPIRICAL EXAMPLE 

In related empirical work we have applied factor mod- 
els and principal components to forecast several macroeco- 
nomic variables (see Stock and Watson 1999, 2002). In this 

section we describe a forecasting experiment for the Federal 
Reserve Board's Index of Industrial Production, an important 
monthly indicator of macroeconomic activity. The variables 
making up X, are 149 monthly macroeconomic variables rep- 
resenting several different facets of the macroeconomy (e.g., 
production, consumption, employment, price inflation, inter- 
est rates). We have described the variables in detail in earlier 
work (Stock and Watson 2002). The sample period is January 
1959-December 1998. Principal components of X, were used 
to construct forecasts of y,+,, = ln(lP,+,,/IP,), where IP, is 
the index of industrial production for date t .  These 12-month- 
ahead forecasts were constructed in each month starting in 
1970:l and extending through 1997:12, using previously avail- 
able data to estimate unknown parameters and factors. 

To simulate real-time forecasting, we used data dated T and 
earlier in all calculations for constructing forecasts at time T. 
Thus for example, to compute the forecast in T = 1970: 1, the 
variables making up X ,  were standardized using data from 
t = 1959: 1-1970: 1, and principal components were computed. 
These estimated values of F, were used together with Y , + , ~  for 
t = 1959: 1-1969: 1 to estimate P in (2). Model selection with 
k = 10 based on IC,,, IC,,, IC,,, AIC, and BIC were used 
to determine the number of factors to include in the regres- 
sion. Finally, the forecasts constructed in T = 1970: 1 were 
formed as ~,+,,,,= B E .  This process was repeated for 1970:2- 
1997: 12. 

We also computed forecasts using four other methods: a 
univariate autogression in which y,+,, was regressed on lags 
of ln(lP,/IP,-,), a vector autoregression that included the 
rate of price inflation and short-term interest rates in addi- 
tion to the rate of growth of the industrial production index, 
a leading-indicator model in which y,,,, was regressed on 
11 leading indicators chosen by Stock and Watson (1989) 
as good predictors of aggregate macroeconomic activity; and 
an autoregressive-augmented principal components model in 
which y,,,, was regressed on the estimated factors and lags 
of ln(lP,/IP,-,). We gave details of the specification, includ- 
ing lag length choice and exact description of the variables, in 
earlier work (Stock and Watson 2002). 

Table 2 shows the MSE of the resulting forecasts, where 
we have shown each MSE relative to the MSE for the univari- 
ate autoregression. The first three rows show results from the 
benchmark AR, VAR, and leading indicator models. The next 
row shows the results for the principal components forecasts, 
with the number of factors determined by IC,,. (The results 
for the other selection procedures are similar and thus are not 
reported.) This is followed by principal components forecasts 
using a fixed number of factors (k = 1-k =4). Finally, the last 
row shows the principal components forecasting model (with 
r estimated by IC,,) augmented with BIC-selected lags of the 
growth rate of industrial production. (Again, results for other 
selection procedures are very similar and are not reported.) 

Both the leading indicator and VAR models perform slightly 
better than the univariate AR in this simulated out-of-sample 
experiment. However, the gains are not large. The factor mod- 
els offer substantial improvement. The results suggest that 
nearly all of the forecasting gain comes from the first two 
or three factors and that once these factors are included, no 
additional gain is realized from including lagged values of IP 
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Table 2. Simulated Out-of-Sample Forecasting Results Industrial 

Production, 12-Month Horizon 


Forecast method Relative MSE 

Univariate autoregression 
Vector autogression 
Leading indicators 
Principal components 
Principal components, k = 1 
Principal components, k =2 
Principal components, k =3 
Principal components, k =4 
Principal components, AR 

Root MSE, AR model 

NOTE: For each forecast method, this table shows the ratio of the MSE of the forecast made 
by the method for that row to the MSE of a univariate autoregresslve forecast with lag length 
selected by the BIC. The final line presents the root MSE for the autoregressive model in 
native (decimal growth rate) units at an annual rate. 

growth. We have already reported similar results for other real 
macroeconomic variables (Stock and Watson 2002). 

6. DISCUSSION 

This article has shown that forecasts of a single series 
based on principal components of a large number of predic- 
tors are first-order asymptotically efficient as N, T + for 
general relationships between N and T in the context of an 
approximate factor model with dynamics. The Monte Carlo 
results suggest that these theoretical implications provide a 
useful guide to empirical work in datasets of the size typi- 
cally encountered in macroeconomic forecasting. The empiri- 
cal results summarized here and reported in more detail else- 
where suggest that these methods can contribute to substantial 
improvement in forecasts beyond conventional models using 
a small number of variables. 

Several methodologic issues remain. One issue is to explore 
estimation methods that might be more efficient in the pres- 
ence of heteroscedastic and serially correlated uniquenesses. 
Another is to develop a distribution theory for the estimated 
factors that goes beyond the consistency results shown here 
and provides measures of the sampling uncertainty of the esti- 
mated factors. A third theoretical extension is to move beyond 
the I (0 )  framework of this article and to introduce strong per- 
sistence into the series; for example, by letting some of the 
factors have a unit autoregressive root, which would permit 
some of the observed series to contain a common stochastic 
trend. 

APPENDIX: PROOFS OF THEOREMS 

W e  begin with some notation. 
Define 1,=ELl and = CT=I. 
Let y denote an N x 1 vector and let r = { y l y l y / N= I } ,  R ( y )  = 

N - ~ T - I  y' CrX,X; y, and R*(y)  =N - ~ T - I  y' C ,AFtF;A1y. 
W e  begin by collecting a set o f  results used in the proof. 

Results (R1)-(R19) Hold Under Assumptions F1 and MI  

( R l )  N - '  xief, -0,(1). 

Proof. N- '  xie: = N- '  x,rli,,+N-I x , (e? ,  - rii,,). 
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The term N-' xirli,, is O(1)  from Assumption Ml(b)  (because 
N-' xirii, ,5 N - I  x,El 1ri1,,l- O(1)) .  SO it suffices that the sec- 
ond term converges to 0 in probability. Now 

by Assumption Ml(c).  Thus N-' x , ( e f ,  - r,,,,) 4 0. 

Proof. 

(N2T)- '  y'e'ey = (N2T)-I x yi yjerrejr 
l j 

=N - ~ E C  T - Iy iYj  C e i , e j t  
i I 

112 

i I 

but N-2 Y;Y; = ( Y , Y I N ) 2 ,and for all E r, ( y , y l N )  = I. 
Thus 

sup(N2T)-I f e ' e y  5 
Y E ,  

NOW 

N - 2  x x ( ~ - 1 x eirelr)2= N - Z T - ~  x x x x eileiselrelx 
i j 1 i j r s 

and 

E[N- 'T-Z ~ ~ ~ ~ e i r e t x ' j r e l sI
I J ' S 

= N - ~ T - ~ C C C C Y ~ . ~ , ~ Y , , ~ , ~  
i j r s 

f W 2 T 2CC C C E [ ( e i l e t s-Yi,t,s)(ejtejs-Yj.r.s)I> 
i j r s 

where Yi,r,s =E(eiretx). 
The first term is 

Yi,r, ( N - I  x Yj , r , r+u)= T - ~  x YN, l (u)2> 
f U I f U 

because (N-I X i  y,,,,,+,) = N-'E xiei,e,,,+,= y,,,(u) defined in 
MI (a). Now the absolute summability o f  1 y,, ,( u )1 in Ml(a)  implies 
square summability, so that lim,,, sup, 1,y , , , ( ~ ) ~< co. This 
implies that N - ' T - ~  El E j  El xsyi,r ,sY , , , , ~-+ 0. 
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The second term is 

by Assumption MI (c). 

(R3) Let q, denote a sequence of random variables with 
T-' C,q: -- OP(1). Then 

Proof. sup,,, IT-' C,q,(N-' Ciyiei,)l I (T-I C,q:)'l2x 
(sup,,, T-I C,(N- '  Ci ~ i e i r ) ~ ) " ~ .  

The first term is 0,(1) by assumption, and so the result follows from 

where the limit follows from (R2). 

(R4) sup,,, I T - '  C,Fl,(N-' C ,  y,e,,)l$0 for j = 1 , 2 , .  . . ,r. 

Proof. Because T-' 1,Fjr4ulj [from Assumption Fl(d)], the 
result follows from (R3). 

Proof. (N2T)-' y'AF'ey =Cj (y 'A j /N )T - 'C ,F , , (N - 'C ,  yiei,), 
so that 

Thus. 

sup l(N2T)-' y'AF'eyl 
YE, 


where the last line follows from (yly/N) = 1, Fl(a), and (R4). 

(R6) sup,,, IR(y)-~*(y)l$0.  

Proof. R(y) - R*(y) = (N2T)-' y'e'ey + 2(N2T)-'y'AF'ey 
and 

sup IR(y) -R*(y)l Isup(N2T)-'ly'e'eyl +sup(N2T)-'ly1AF'eyl, 
Y E ,  YE, YE, 

where the two terms on the rhs of the inequality converge to 0 in 
probability by (R2) and (R5). 
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Proof. I s u ~ , , r R ( ~ ) - s u ~ , , r R * ( ~ ) l~ s u p , , r  I R ( Y ) - R * ( Y ) I ~ O .  
where the first inequality follows by the definition of the sup and the 
convergence follows from (R6). 

Proof. Write A'AIN = (A'A/N) ' /~(A'A/N) ' /~ '  to denote the 
Choleski factorization of A'AIN. Let y be represented as y = 
A ( A ' A / N ) - ' / ~ ~+ V, where V'A = 0. Note that y'y/N = 6'6 + 
V'VIN, so that for all y G r, 6'6 5 1. Thus we can write 

sup R*(y) = sup = B11 3~'(A'A/N)'/~'(F'F/T)(A'A/N)'/~~ 

Y E ,  6.6'651 

where &,, is the largest eigenvalue of (A'A/N)'/~'(F'F/T)(A' 
A / N ) ' / ~ .  But ( A ' A / N ) ~ / ~  by Fl(d), -+ I by Fl(i) and F'F/T$z,, 
so that (A'A/N)'/~'(F'F/T)(A'A/N)'/~~z~~and (by continuity of 
eigenvalues) 4ul 

Proof. This follows from (R7) and (R8). 

(R10) Let i,= argsup,,, R(y); then R * ( ~ , ) ~ u , , .  

Proof. This follows from (R6) and (R9). 

(R11) Let %I denote the first column of x and let S, = 
A ,  

sign($, A,), meaning S, = 1 if A I A l  > 0 and S, = -1 if 
A', 4' < 0. 

Then (S,$;A/N)$C',, where e l  = (100.. . 0)'. 

Proof. For particular values of 8 and p, we can write = 
A(A%/N)- ' /~~+p, where ?A=O and 6'8 5 1. (Note that 6 is 
r x 1.) Let CNrA= (A'A/N)'/~'(F'F/T)(A'A/N)~/~and note that 
R*($,) = 6'cNT6. Thus 

Because c,,~c,, and i is bounded, the first term on the right side 
of this expression is op(l).  This result together with (R10) implies 

A P
that (6: - I)(+,,+ C:=, Sfuii-+O. Because uii > 0, i = 1, . . . ,r 

[Assumption Fl(b)], this implies that 6 i s l  and if40for i > 
1. Note that this result, together with A ' , ~ , / N= 1, implies that 
A 

V ' V I N ~ O .  
The result then follows from the assumption that A'AIN -+ I, 

[Assumption F l (a)]. 

(R12) Suppose that the N x r matrix x is fop,ed as the r ordered 
eigenvectors of X'X normalized as AfA/N = I (with the 
first column corresponding the largest eigenvalue, etc.) Let 
S denote S =diag(sign(;"l'A)). I.Then s ; ~ ' A / N ~  

Proof. The result for the first column of S ~ ' A / N  is given in 
(RI 1). The results for the other columns mimic the steps in (R8)- 
(R1 I), for the other principal components, that is, by maximizing 
R(.) and R*(.) sequentially using orthonormal subspaces of r. For 
later reference, we-note that this process yields a representation of 
the jth column of A as 

Pwhere PA= and $$SO0, ??/N<O, for i # j and 6;,-+1. 

A P
(R13) For j = 1 , .  . . ,r ,  T-' C,? =R(A,)-+ujj. 
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Proof. T-' C, = R ( i j )by the definitions of and R( . ) .The 
convergence result follows from (R9) for j = 1 and from the steps 
outlined in (R12) for j = 2 , .  . . ,r .  

(R14) For i > r ,  T-' C ,E ~ o .  
Proof. Let .i,denote the ith ordered eigenvector of X'X,  i > r ,  

normalized so that ??IN = 1 .  Then T- '  C, =R ( f ) follows from 
the definition of R(.) and E,.  

Now, for particular values of & and p,  we can write 

where Vl'A = 0 ,  &'& 5 1, and 5 1. Now, by construction, 
?'Aj = O for j = 1, . . . ,r .  Using the representation for A+ given 

A A -

in (R12), we can write N-' ?'A, = 2 8 ,  + V I V j / N= 0. Because-- P -- P
from (R12), V,'V,+O and Vl'p/N 5 1 .  VIVj+O. Thus & ' $ , ~ o ,so 

A ^ P&'[$,. . . i,]40.But [ a 1 . .. 8,]+1,, so &-%0. 
Thus R * ( f )  = The 

in (R16.)
& 1 ( ~ ' ~ / ~ ) ' ~ 2 ' ( ~ ' ~ / ~ ) ( ~ ' ~ / ~ ) ' ~ 2 & ~ 0 .  
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Because ( s ~ ' A / N ) <I by (R12)and T-'  C ,F , ~ , ~ z ,by assump- 
tion, 

T-' ~ ( s ~ ' A / N ) F , ~ , ~ z , ~ .  


Now the jth element of T- 'N- '  C ,S ~ ' e , q ,satisfies 


5 sup T-'  C q ,  N- '  C yiei, +O, 
ysl- I , (  , ) I p 

where the final inequality follows because i,E l- and the limit fol- 
lows from (R3). 

(R17) T- '  C ,sEF,-!+z,,. 

Proof. This follows from (R16) with q, = F,,, j = 1 , .  . . ,r. 
Assumption Fl(d) shows that this choice of q, satisfies the restriction 

result then follows from (R6). 
A 

(R15) Sj F,, - F,,-%o for j = 1, . . . ,r 
A I ^ I  

Proof. S,F,, - F,, = SjA,X,/N - F,, = (SjA,A,/N - l ) F j ,+ 
~ , ~ ~ ( s ~ i i ~ i / ~ ) ~ t r+ s j L ; e r / ~ .  

Because s ( ~ ' A / N ) ~from 1):0 andI (R12), ( s , ~ : A , / N  -

s , ~ ~ A , / N - % ofor i # j .  Because IFTI is OP(1) [which follows 

from E(FTF;)=Z,,], ( s , ~ ~ A , / N- ~)F, , -%oand c , , ~ ( s , ~ ; A , / N ) x  
r i 

F,,<o. The result then follows by showing that s , ~ , ~ , / N > o .  
Now 

Also, 

and 

-- P
(R18) T- '  C ,F,F,'+Z,,. 


Proof. This follows from (R16)and (R17).Set q, =~ ~ 5 , . 
(R13) 
shows that q, satisfies the conditions of (R16). 

(R19) For i = 1,2, . . . ,r ,  T - '  c,(S,E, -F , , ) ~ ~ o .  

(R20)-(R23) Hold Given F1, M I ,  and Y1 

(R20) T-'  C ,Scw;<Z,,. 


Proof. This follows from (R16), with q, equal to w,,. Y l ( b )  

shows that this definition of q, satisfies the conditions of (R16). 

(R21) T- '  C ,s E E , + , ~ o .  

Proof. This follows from (R16)and Y l ( c )with q, equal to E,,,. 

Y l ( d )  shows that this definition of q, satisfies the conditions of 
(R16). 

(R22) With p partitioned as p = (pip ' , ) ' ,  flu,  - pu,<O and 

s , P , ~ - P , ~ - % ofor i =  1 , .  . . r .  

by (R12).Finally, N-' C ,ef,-O p ( l )by ( R l ) .Thus IN-' c , ( s ,~ ,  Proof. Write 
-

A,,)e,,140by Slutsky's theorem. T h ~ s  means that S,iie,/N = 

N '  C ,A,,e,, +o P ( l ) .Now 

where the final inequality uses the bound on A,j given in Fl(c) and 

the limit uses Ml(b). Thus S j L ; e , / N s O .  

(R16) Let q, denote a sequence of random variables with 
~ T-' 1,F , ~ , ~ z , , .ThenT-' ~ , q and ~ u ~ T-' 1,S 

E ~ , $ Z ~ , .  
Proof. 

-- P
Because T- '  C ,F,F;+Z,, (R18), T - ' S  C ,E w i < ~ , ,  (R20), 

T- '  C ,w,w;-%Z,, [ Y l ( b ) ] ,T - ' S  C ,E E , + , ~ o(R21), and T - ' x  
C ,w,E,+,-%o [ Y l ( c ) ] ;and because ZZ: is nonsingular [Y l (a)] ,the 
result follows by Slutsky's theorem. 

(R23) Let I ,  = (c,g,..: F),w;)' and p = (I:,;"Z,:^;)-' 
(~:_;h i , ~ ,+~) ;then P ' i ,  -P'zT$0. 

Proof. Let R = [i  ,:, 1, where n,, denotes the number of ele- 
ments in w,. 
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Because zT is 0,(1) [because E(zTz;) = 2:: by Yl(a)], and 

~ f i-~ $ 0  (R22), the first term vanishes in probability by Slut-
sky's theorem. Similarly, because P is finite [Assumption Yl(e)] and 
Ri, - z T 4 0  (R15), the second term vanishes in probability by Slut- 
sky's theorem. 

Proof of Theorem 1 

Part a is proved by (R19); part b, by (R15); and part c, by (R14). 

Proof of Theorem 2 

Part a is proved by (R23); part b, by (R22). 

Proof of Theorem 3 

The model can be written as 

where ail  = e,, +JiT&',Fr, Ji, = TgiT, ti,= T-' Z:=, lis, and where 
(from Assumption F2) A,, satisfies the same conditions as A in 
Assumption Fl .  Thus the results follows if the error terms a, satisfy 
the assumptions in M 1. 

We prove a set of set of results (SO-S5) that yields the results. SO 
is a preliminary result. S1-S3 show that a ,  satisfies the assumption 
in MI. 

SO. 

Let J,, = Tg,,. Then constants K ,  -K, can be chosen so that 

and 
SUP;, ]. k ,  ,El J,T J,T J ~ TJLT I < K4.  

This follows from F2(a). 

The error term a satisfies Assumption Ml(a). That is, 

lim,,,,, sup, C::;-, IE(N-~C,ai,att+u)l < 00. 

We consider each part in turn. 

Sl(a). limN,, sup, C, IE(N-' C,ei,ei,+u)l< m. 

Proof. This is Assumption Ml(a). 

Proof. J,',(F: 6i1)(Fi+u ti,+,) = J$CIE m  F/tFmr+u6zr,l6ir+u.m, 
and we show the result for each term in the sum: 

where the first line follows from the definition of 6, the next line 
follows from independence of J,, and the bound given in SO, the 
next line redefines the index of summation, the next line follows from 
definition of the sup, the next line follows because the summand in 
the summation over s does not depend on s, the next line follows from 
the definition of the sup, the next line follows because the summand 
in the summation over u does not depend on u, and the final line 
follows from Assumption M2(a). 

Proof. JtTeirF:+u6ir+u J i ~Em Frn~+u6t~+~i,and we the= m 

result for each term in the sum: 

where the first line follows from the definition of 6, the next line 
follows from independence of J,, and the bound given in SO, the 
next line follows definition of the sup, the next line follows from 
the definition of the sup, the next line follows because the summand 
in the summation over u does not depend on u, and the final line 
follows from Assumption M2(b). 

Proof. The proof parallels Sl(c). 

The error terms a ,  satisfy Ml(b); that is, lim,,, sup, N-' 
Xi"=)C,N_IIE(airaji)l < 00. 

Proof. aa,,ajt = cite], + J , T J ~ T ( F : ~ ~ ~ ) ( F : ~ ~ I )  ++ Jj,e,rF;Sjr 
Ji~ejfF:ti~. 



1178 

We consider each part in turn. 


S2(a). lim,,, sup, N-' EL,I:, I E(ellejl)1 < m. 


Proof. This is Assumption Ml(a). 


Proof. JiTJjT(F:t1l)(Fl'tjt) = Ern J ~ ~ J j ~ F l f t i ~ .11 l F m ~ t ~ f , m ,and 
we show the required result for each term in the sum: 

where the first line follows from the definition of 5, the next line 
follows from the independence of J and the bound in SO, the next 
line follows from the definition of the sup and the fact that there are t 
terms in the summations involving s and q, and the final line follows 
from M2c. 

S2(c). limN+, sup1 N-I CEl C,N_,IE(Ji7ejrF;trOl < 00. 

Proof. J,,e,, F:[,, =JITe,,1,Frnltil,,, and we show the required 
result for each term in the sum: 

where the first line follows from the definition of 5, the next line 
follows from the independence of J and the bound in SO, the next 
line follows from the definition of the sup and the fact that there are 
tterms in the summations involving s, and the final line follows from 
M2(d). 

S2(d). lim,,, sup, N-' CElCg1 IE(JjTeitFltjl)l < CO. 

Proof. The results is implied by S2(c). 

The error terms a satisfy Ml(c); that is 

lim sup N-' C x I cov(ai,a,,,ajsall)1 < CO. 
N+- 1.5 ,=I 

Proof. aa,lais = eileir + J?T(F:tir)(F,'tis) + J I T e t ~ F ~ t , x+ J i ~ e l x  

F:til, and so cov(aiSa,,, ajsajl) is made of 16 terms, which have 
6 possible forms: 
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We consider each of these terms in turn. 

S3(a). lim,,, sup,,, N-' cL, c:=, c o ~ ( e ~ , e , ~ ,I ejsejl)I < 03. 

Proof. This is Assumption Ml(c). 

Proof. cov(ei,e,,> JJ,(F:tjl)(F,'tjS)) = C,C,, cov(eiseil> JJ7Fll 

~ j l , lFm,~j , ,m) ,and it suffices to show the result for each term in the 
sum: 

where the last line follows from M2(e)(l). 

Proof. cov(eiseir, JITel,Fjtjx) = Crncov(etXetr,JjTelrFn,rt,x,rn), 
and it suffices to show the result for each term in the sum: 

where the last line follows from M2(e)(2). 

S3(d). lim~,, s u ~ ~ , , N - '  ICEIE ~ = Icov(J$(F:t,~)(Fjh), 
J?,(F~tjO(F:tjr))I < w. 

Proof. cov(J;',(F:t,r)(F,15,,), J$(F:tjr)(F,/tjs)) = CIIC12x 
El, El4cov(J,',Fll,ti,, 1, F1,StiS.  l2 ' J/21Fl31tjl, 14)' and it suf-13F14StlS. 
fices to show the result for each term in the sum: 

N N 

supN-' C C I ~,',~l~,t~l.l~~,~~t~~.l~)Icov(~,',~l~lt,l,l,~l,,t,,.l,~ 

1.5 i=l ,=l 

1 , s  
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where the last line follows from M2(e)(3). 

Proof. ~OV(J :~(F~S~, ) (F , '~~~) ,  =JiTejrFiSjx) ClIC1, Ci, x 
COV(J:~FlltSif,llFlzsSrs. and it suffices to show l 2  JjTejfFi3s~js,l,), 
the result for each term in the sum: 

N N 

where the last line follows from M2(e)(5). 
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