

arXiv.org > q-fin > arXiv:1104.3583

Alexander M. G. Cox, Jiajie Wang

(Submitted on 18 Apr 2011)

Quantitative Finance > Pricing of Securities

Search or Article-id

(<u>Help</u> | <u>Advance</u> All papers -

Download:

- PDF
- PostScript
- Other formats

Current browse cont q-fin.PR

< prev | next >

new | recent | 1104

Change to browse b

math math.OC math.PR q-fin

References & Citatio

Recent work of Dupire (2005) and Carr & Lee (2010) has highlighted the importance of understanding the Skorokhod embedding originally proposed by Root (1969) for the modelindependent hedging of variance options. Root's work shows that there exists a barrier from which one may define a stopping time which solves the Skorokhod embedding problem. This construction has the remarkable property, proved by Rost (1976), that it minimises the variance of the stopping time among all solutions.

Root's Barrier: Construction, Optimality and

Applications to Variance Options

In this work, we prove a characterisation of Root's barrier in terms of the solution to a variational inequality, and we give an alternative proof of the optimality property which has an important consequence for the construction of subhedging strategies in the financial context.

Comments: 32 pages Subjects: Pricing of Securities (q-fin.PR); Optimization and Control (math.OC); Probability (math.PR) MSC classes: 60G40, 91G20 (Primary), 60J60, 91G80 (Secondary) Cite as: arXiv:1104.3583 [q-fin.PR] (or arXiv:1104.3583v1 [q-fin.PR] for this version)

Submission history

From: Alexander Cox [view email] [v1] Mon, 18 Apr 2011 20:19:34 GMT (31kb)

Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.