

Agricultural Journals

Research i **AGRICULTURA ENGENEERIN**

home page about us contact

	US
Table of	
Contents	
IN PRESS	
RAE 2013	
RAE 2012	
RAE 2011	
RAE 2010	
RAE 2009	
RAE 2008	
RAE 2007	
RAE 2006	
RAE 2005	
RAE 2004	
RAE 2003	
RAE Home	
Editorial	
Board	

For Authors

- Authors
 Declaration
- Instruction to Authors
- Guide for Authors
- Copyright
 Statement
- Submission

For Reviewers

- Guide for Reviewers
- Reviewers
 Login

Subscription

Res. Agr. Eng. Hutla P., Jevič P., Strašil Z., Kočica J.: Impact of different

fusibility of energy grasses

Res. Agr. Eng., 58 (2012): 9-15

Five different energy grass plants (reed canary grass, tall fescue, orchardgrass, tall oatgrass, red top) were identified and studied for the purpose of determining th fuel energy qualities of the plants' mas while focusing on ash fusion temperatures. The plants were cultivated on four different locations and harvested in various times of the year (early summer, autumn and spring of the following year). It was found that the ash fusion temperatures of plants harvested i early summer were substantially lower in comparison with the autumn and spring harvest. The analysis of the composition of the ashes gathered from samples of grass plants harvested in early summer contained a substantially higher level of potassium, higher level of sodium and higher level of anions CI- and $PO_A 3-$. SiO₂ is the most represented component