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This paper deals with theoretical and practical pricing of non-life insurance contracts within a

financial option pricing context. The market-based assumption approach of the option context fits

well into the practical nature of non-life insurance pricing and valuation. The fundamental

characteristics of most insurance markets, such as the apparent variation in insurer price offers for

the same risk in the same market, support the need for a market based approach. The paper outlines

insurance and option pricing in a parallel setup. First it takes a complete market approach, focusing

on dynamic hedging, no-arbitrage and risk-neutral martingale valuation principles within insurance

and options. Secondly it takes an incomplete market view by introducing supply and demand effects

via purchasing preferences in the market. Finally the paper discusses market-based insurance price

models, parameter estimation techniques and international best practice of insurance pricing. The

general purpose of the paper is to describe and unite the headlines of the more or less common

insurance and option pricing theory, and hence increase the pragmatic understanding of this theory

from a business point of view.
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1. Introduction

For more than two decades considerable attention has been paid to matching actuarial

and financial valuation and pricing theory. The basic financial notions of arbitrage

dynamics and risk-neutral martingales have given a desired expansion of the traditional

actuarial pricing methods. Martingale premium calculation principles in an arbitrage free

insurance market were introduced by Delbaen and Haezendonck (1989); see Embrechts

(2000) for an exciting and less rigorous overview description. A much later reference is

Wang (2002), who introduced a general, common top-down capital allocation pricing

approach to both financial and insurance risks. Based on this wide history, this paper

presents, discusses and further develops common headlines between insurance and

financial pricing.

The paper has two main purposes. The first one is to open up for a more theoretical-

based, market-oriented pricing in non-life insurance business, in contrast to the narrow
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traditional approach of fair risk and cost valuation. This is done by setting the insurance

pricing problem into the market framework of financial option pricing, and hence

assuming both complete and incomplete insurance markets. The second and more general

purpose is to make the bridge between the actuarial and financial approach to pricing a

bit wider � in particular for practical working actuaries and price analysts in the

insurance business industry. Hence the form and content of the paper is more pragmatic

descriptive than theoretically profound.

The paper is organized as follows. Section 2 addresses some relevant pricing questions

and problems. Section 3 outlines characteristics of insurance contracts within an option

pricing context. Section 4 outlines and discusses dynamic hedging, no-arbitrage and put-

call parities in a parallel option and insurance approach. Section 5 puts the pricing

challenges into a risk-neutral martingale pricing approach. Section 6 discusses effects

generated by incomplete markets and introduces a purchasing preference element to

insurance pricing. Section 7 introduces some market-based insurance price models.

Section 8 discusses relevant parameter estimation techniques within insurance pricing.

Section 9 presents and discusses international best insurance pricing practices. Section 10

gives some concluding remarks.

2. Pricing non-life insurance contracts versus financial options

The basic idea of both financial options and insurance contracts is to transfer an

economic risk from one party to another against a specific payment. To do so the buyer

and the seller of the contract need to agree upon a price before the contract begins to run.

An approach commonly used in the market is to split the pricing into one fair valuation

part and one part purely influenced by supply and demand dynamics. Hence the point is

first to find the technical fair values of the contracts, and then adjust these values to real

sales prices based on purchasing preferences or dispositions in the market. Finn and Lane

(1997) support this view by saying: ‘‘There is no right price of insurance; there is simply

the transacted market price which is high enough to bring forth sellers, and low enough to

induce buyers’’. This statement definitely rules also in the financial derivatives market. To

reiterate, the price of an option or an insurance contract is the premium one pays for it,

while the value is what it is worth. Hence pricing and fair valuation of options and

insurance contracts are not necessarily the same.

The difference between (fair) value and price/premium depends very much on the

market conditions of the option and insurance contracts. We should therefore outline

some main market differences:

Insurance market:

� most often standard one-year contracts;

� most often no real efficient market place for buying and selling contracts;

� not only price, but also product and service quality are important;

� price per contract depends on and varies between the contract buyers.

54 J. Holtan



Financial option market:

� many different types of contracts with no standard time condition;

� most often an efficient market place for buying and selling contracts;

� only price is important to most customers;

� price per contract does not depend on the buyers of the contracts.

The more or less complete market conditions of financial options generate a smaller

difference between value and price/premium than the more incomplete insurance market.

Hence, particularly for insurance contracts the theoretical challenge is to include not only

the valuation part of pricing, but also the supply/demand part into the price models, and

thus expand the traditional fair value approach. Some interesting key questions within

this approach are:

. Why do different insurance players offer different prices for unique risks? � and

under what conditions will more unique market prices for unique risks be generated?

. What is the optimal price per risk in a complete insurance market? � and in an

incomplete market?

In this paper we will stress these questions by first focusing on the valuation part of pricing

in a complete market setup, and then including also the incomplete market based purchasing

preferences. Similar questions are well known and handled within financial option pricing

theory. Hence the market model context of option pricing fits well into the practical nature

of non-life insurance pricing. To comprehend the pricing similarities and differences in the

two markets, let us outline insurance and option pricing in a parallel approach.

3. Insurance contracts in a financial option context

An option is a contract giving the holder a right to buy or sell an underlying object at a

predefined price during a predefined period of time. An option condition is that the

underlying object has an uncertain stochastic future value. Financial stocks are the most

common option object. However, the claims risk of an insurance customer may be

interpreted as another option object. Hence we may define a non-life insurance contract

as an option. We have the following correspondingly definitions:

Call option on stocks: The holder of a call option gives the right, but not the obligation,

to buy a stock at a predetermined date (maturity time) and price (strike price).

Insurance contract: The holder of an insurance contract gives the right to get covered

all incurred insurance claims within a predetermined date (maturity time) and at a

predetermined price (the deductible or excess point).

Assume two different underlying risk processes S(t) and X(t), where S(t) is the stock price

process up to time t and X(t) is the accumulated insurance claim process up to time t.
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That is, assume X(t)�/Si�1
N(t)Yi, where N(t) is the number of incurred claims up to time t

and the Yi-ies are the claims severities.

Let C be a European call option contract on the stock price process S(t) and Z and Z*

two different insurance contracts on the claims risk process X(t). Assume time t�/0 as the

start time of all contracts and time t�/T as the maturity time. Hence let:

C(T )�/max(S(T )�/K, 0), where C(T ) is the call option payment value at time T, S(T )

is the stock price at time T and K is the strike price.

/Z(T)�aN(T)
i�1 max[Yi�D; 0]; where Z(T ) is the sum insurance payment value

at time T, N(T ) is the number of claims up to time T, Yi is the incurred claim

amount of claim number i up to time T, and D is the deductible for each claim

occurrence.

/Z�(T)�max[X (T)�D�; 0]; where Z*(T ) is the sum insurance payment value at time

T, X(T ) is the accumulated claim sizes at time T, and D* is the deductible or excess

point of X(T ).

Hence Z is an excess-of-loss insurance contract and Z* is a stop-loss insurance contract.

We also observe that Z may be interpreted as a stochastic sum of N single European call

options and Z* as an ordinary European call option. Hence within this context we may

name these insurance contracts as insurance call contracts, and the pricing of them as

insurance option pricing.

The crucial difference between stock option contracts and insurance contracts is

generated by the underlying stochastic processes of the contracts. The future values of a

stock may move up or down from a spot value at time t�/0, while the accumulated

insurance claim values will only increase from a start value equal to zero at time t�/0.

These differences are reflected in the classical stochastic assumptions of the processes

where the variation of S(t) is assumed to follow a geometric Brownian motion process and

X(t) is generally assumed to follow a compound homogeneous Poisson process where the

claim number process N(t) is a homogeneous Poisson process (with claims frequency

parameter l).

The assumption of a geometric Brownian motion process for S(t) � where the running

time increments of the variation of the process follow a log normal distribution function �
is based on the idea that the spot price of a stock at time t already reflects the future

expected value of the stock. Hence all relevant information influencing the future

expected return on the asset is assumed to continuously build into the running value (the

spot price) of the asset. That is, we assume a completely efficient stock market that

generates these characteristics.

Even if the geometric Brownian motion process itself is not very simple, we may argue

that the assumptions of the stock price process model generate quite straightforward

pricing challenges within the financial option markets. The compound homogeneous (or

even more realistic, a mixed (heterogeneous)) Poisson process assumption of the claims

risk makes, on the other hand, more intricate problems to handle within a realistic

insurance market. In any case, the essential purpose of pricing options and insurance
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contracts is to find explicit expressions of the current value of the contracts at the

contractual start time, that is, in this setup at time t�/0. Or even more generally, we may

want to find explicit expressions of the current values of the contracts C, Z and Z* at any

time t (B/T ) before the maturity time T.

4. Dynamic hedging, no-arbitrage and put-call parities

Following the pioneering work by Black and Scholes (1973) and Merton (1973), the

explicit expressions of C, Z and Z* should be based on dynamic hedging of the underlying

stochastic portfolios. The key basis of the Black-Scholes formula of financial option

values is to create risk-free synthetic portfolios by continuously (�/dynamic) buying and

selling (�/hedging) a certain share of the underlying asset and a certain amount of a

riskless bond. The hedging strategy has two key properties: (1) it replicates the payoff of

the option, and (2) it has a fixed and a known total cost. Hence the value of the option at

any time t may be explicitly expressed by the combination of the shares of the asset and

the bond.

The most important assumption behind this dynamic hedging based pricing theory

is the no-arbitrage assumption. That is, we assume no opportunities to make risk-free

profits through buying and selling financial security contracts. This assumption generates

the existence of a put-call parity, that is, a fundamental relationship between the

values of a call option and a put option (the right to sell a security at a strike price).

Let C̃ be an European put option with the same strike K and maturity T as the call

option C:

C̃(T)�max[K�S(T); 0]

where C̃(T) is the put option value at maturity time T, S(T ) is the stock price at time T,

and K is the strike price.Then we have the basic put-call parity known from every basic

option text book:

C(t)�C̃(t)�S(t)�e�rT K ; (1)

where r is the risk-free rate of interest. In words: the value of the call minus the value of

the put is equal to the value of the stock minus the present value of a riskless bond K. Any

deviation from the put-call parity constitutes an arbitrage opportunity because

simultaneously selling and buying the put-call portfolio (left-hand side of (1)) and the

stock-bond portfolio (right-hand side of (1)) yields a riskless profit equal to the difference

between the values of the portfolios. Hence within option price theory the no-arbitrage

assumption is equivalent to the existence of the put-call parity. In fact, a more far-

reaching consequence of the no-arbitrage assumption is that two identical financial risks

must have the same value (the law of one price).

Turning to the insurance contracts, we may also construct put-call parities for

the excess-of-loss and stop-loss contract. This depends however on the existence of

the so-called insurance put contracts. Hence let Z̃(T) and Z̃�(T) respectively be the
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values at maturity time T of an excess-of-loss put contract and a stop-loss put contract.

We then have:

Z̃(T)�
XN(T)

i�1

max[D�Yi; 0]; (2)

Z̃�(T)�max[D��X (T); 0]: (3)

The practical interpretation of the insurance put contract is that the holder of the contract

gives the right to a payment of D or D* against a self-financing of the claims X(T ) during

the period (0, T ). This is obviously a right the holder of the contract only will use if the

incurred claims are less than D or D*. Hence the owner of a claims risk could, by buying

an insurance call contract and at the same time selling an insurance put contract of the

same underlying risk, gain a risk-free cash flow equal to the deductible D or D*. The

claims occurrence during the contract period will not influence this cash flow.

By use of simple algebra we straightforwardly find the general put-call parity

expressions of the insurance contracts:

Z(T)�Z̃(T)�X (T)�D(T); (4)

where D(T )�/N(T )D.

Z�(T)�Z̃�(T)�X (T)�D�(T); (5)

where D*(T )�/D*. That is, the value of the call minus the value of the put is equal to the

value of the accumulated claim amounts minus the (present) value of D(T ) of each

contract. Hence the structures of the parities are identical to the financial option parity.

Following the same arguments as for option contracts, any deviation from the put-call

parity does constitute an arbitrage opportunity in the insurance market because

simultaneously buying and selling the insurance put-call portfolio (left-hand side of (4)

and (5)) and the claims-bond portfolio (right-hand side of (4) and (5)) yields a riskless

profit equal to the difference between the values of the portfolios. It is however important

to note that these relationships depend on the existence of an insurance put contract Z̃ or

Z̃� and the existence of an efficient market place for buying and selling insurance calls

and puts.

But what about dynamic hedging of insurance contracts? The theoretical existence of

insurance put-call parities and no-arbitrage in an insurance market are important

elements, but not sufficient to replicate a risk-free payoff of an insurance risk by a hedging

strategy. It is well known that the ordinary insurance claims risk process X(t) is difficult to

directly hedge away by dynamic trading, and by so doing follow the classical financial

pricing theory. The main difference between financial options and insurance stems from

the fact that while the intention of options is hedging to remove risk, the objective of an

insurance is managing risk by diversification. Hence the first one does not rely on the law

of large numbers, while the latter one does.

However, Delbaen and Haezendonck (1989) assumed that an insurer at any time t can

sell the remaining claim payments X(T )�/X(t) over the period (t, T ) for some premium

p(T�/t). Hence the value of the portfolio of claims risks at time t is I(t)�/X(t)�/p(T�/t),
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where I(0)�/p(T ) and I(T )�/X(T ). This assumption of dynamic buying and selling

insurance risks during the insurance period opens the possibility for dynamic hedging also

in insurance markets.

By following the Black-Scholes approach, a straightforward description of this riskless

insurance hedge at time t is: the value of the insurance contract at any time t may be

expressed by a combination of a share D1(t) of the underlying claims risk portfolio I(t)

and an amount of a riskless zero-coupon bond B1(t) maturing at time T. Hence the value

of the insurance hedge portfolio at time t is

D1(t)I(t)�e�r(T�t)B1(t): (6)

Hereby the dynamic hedging of I(t) aims to continuously rebalance (as for options we

assume that rebalancing costs do not include transaction costs) the hedge by holding D1(t)

shares of I(t) long and a bond maturing at time T to B1(t) short.

Correspondingly, the value of the option hedge portfolio at time t is

D2(t)S(t)�e�r(T�t)B2(t); (7)

where the share D2(t) � the delta of the option � is the rate of change of the value of the

option with respect to the underlying value of the stock, that is, the relative amount the

option value C(t) will change when S(t) changes. Hence, D2(t) is close to 1 when the option

is ‘‘deep in the money’’ and near expiration (high probability to expire in the money), and

close to 0 if the option is ‘‘deep out of money’’ and near expiration (high probability to

expire out of the money).

We may correspondingly interpret D1(t) of I(t) as the relative amount the insurance

contract value Z(t) will change when I(t) changes. What this interpretation really means is

not obvious. The future values of a stock may increase and decrease with no limits (but

not below zero) from a running spot value at time t. These increases and decreases are

also true for I(t), but there is a lower limit of I(t) which is equal to X(t). That is, at time t

the future value of I(t) cannot be lower than X(t) because I(t)�/X(t)�/p(T�/t) and X(t)

cannot decrease. Hence, as X(t) exceeds the deductible D or D* the insurance contract will

be � and stay � ‘‘in the money’’, that is, Z(T )�/0 or Z*(T )�/0. Because I(t) consists of

both X(t) and p(T�/t), there is � in contrast to the option and S(t) � no one-to-one

relationship between the values of I(t) and Z(t), even if Z(t) will certainly stay ‘‘in the

money’’ the rest of the period (t, T ).

Correspondingly to Black-Scholes, the value of the insurance hedge portfolio is in fact

equal to the value of the insurance contract. Particularly we have

Z(0) �Value of insurance contract at time t�0

�Value of insurance hedge portfolio at time t�0

�D1(0)I(0)�e�rT B1(0)�D1(0)p(T)�e�rT B1(0):
(8)

That is, the value of the insurance contract at time t�/0 is equal to a linear function D1 of

the premium p(T ) of the risk period (0, T ) minus the present value of the bond B1 (which

should be interpreted as the amount needed to pay deductibles in (0, T )). The most

efficient mathematical machinery to find more explicit expressions of D1 and B1, and
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hence value expressions of Z and Z*, is to use the now classical martingale approach

under the risk-neutral valuation principle.

5. Risk-neutral martingale pricing

The dynamic hedging strategy and the no-arbitrage assumption are closely related to the

risk-neutral valuation principle. This principle states that in a risk-neutral world all assets

have an expected rate of return equal to the risk-free rate of return. In the real world we have

to consider the relationship between risk (volatility) and reward (expected return) to price

an asset. In a risk-neutral world, reward has been normalized through the no-arbitrage

mechanisms, that is, all relevant market information is assumed known and built into the

pricing models so that no investors will expect a higher reward than the risk-free rate of

return. This information transaction is technically given by tuning the classical real world

probability measure P into an equivalent probability measure Q (by use of the so-called

Girsanov transformation) on the probability space (V, F, (Ft)t]0) where Ft can be viewed as

the market information in a broad sense available at time t. Hence we make expected value

calculations based on Q instead of P. This information transaction is assumed valid at every

time t, and hence the underlying risk process (with respect to measure Q) turns out to be a

martingale where at each time t the expected next value direction of the process is zero

(corrected for the risk-free rate of return). In practice this implies that it is impossible to

earn (riskless) money by studying the history of a stock, that is, all relevant and available

information about the stock and the market are assumed to be fully integrated in the

running spot price of the stock. The technical link � called the Fundamental Theorem of

Asset Pricing � between the no-arbitrage assumption and the martingale process was the

key discovery made by Harrison and Kreps (1979) and further developed by Harrison and

Pliska (1981) and generalized by Delbaen and Schachermayer (1994).

The setup by Delbaen and Haezendonck (1989) of the insurance claim risk portfolio

I(t)�/X(t)�/p(T�/t) with efficient dynamic hedging opportunities generates an arbitrage-

free insurance market. Hence we make expected value calculations on the portfolio value

process I(t) by using the measure Q instead of directly on the risk process X(t) by using the

measure P. The portfolio value process I(t) is hence called a Q-martingale, i.e., at each

time t the expected next value direction of the process I(t) is zero (corrected for the risk-

free rate of return). Within this model a practical interpretation is that it is impossible to

earn money by studying the claims history of (0, t) of the insurance portfolio I(t) because

all relevant information about the insurance risks are assumed to be fully reflected in the

running risk premium p(T�/t) at time t.

To sum up, while the assumption of the geometrical Brownian motion of the variation

of the stock value S(t) directly generates the martingale process of S(t), we have to

transform the accumulated Poisson claims risk process X(t) into a claims risk portfolio

I(t) consisting of both historical claims and premium for future claims to generate a

martingale process indirectly. Embrechts et al. (1999) gives a thorough introduction to this

link between stochastic processes in insurance and finance.
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Still following the approach of Delbaen and Haezendonck (1989) and given our claims

risk process assumptions in Section 3, the fair values at time t of the excess-of-loss

contract Z and the stop-loss contract Z* become the following conditional expectations

with respect to available market information Ft at time t:

Z(t)�EQ[e�r(T�t)Z(T)jFt];

where Q is the adjusted risk-neutral probability measure, and

Z�(t)�EQ�[e
�r(T�t)Z�(T)jFt];

where Q* is the adjusted risk-neutral probability measure, while the correspondingly fair

value at time t of the call contract becomes

C(t)�EQ��[e
�r(T�t)C(T)jFt];

where Q** is the adjusted risk-neutral probability measure.

Hence the fair values of the contracts at time t�/0 are

Z(0)�EQ[e�rT Z(T)jF0] (9)

Z�(0) �EQ�[e
�rT Z�(T)jF0]�e�rT [EQ�(X (T)jF0)�EQ�(DjF0)]

�e�rT [EQ�(N(T)jF0)EQ�(Y jF0)�EQ�(DjF0)]
(10)

C(0)�EQ��[e
�rT C(T)jF0]�e�rT [EQ��(S(T)jF0)�EQ��(KjF0)] (11)

Correspondingly, the straightforward derivation of the Black-Scholes formula of C(t) can

be stated as

C(t)�N(d1(t))S(t)�e�r(T�t)KN(d2(t)); (12)

where N( �/) is the cumulative normal distribution function and d1(t) and d2(t) are given in

most basic text books of option theory and of course in Black and Scholes (1973). Hence

D2(t)�/N(d1(t)) and B2(t)�/KN(d2(t)). We also observe that the martingale filtered

measure Q** of (11) given the market information Ft reflects the values of D2(t) and

B2(t) in (12), that is,

EQ��(S(T)jFt)�N(d1(t))S(t)�D2(t)S(t);

and

EQ��(K jFt)�N(d2(t))K�B2(t):

Hence N(d1(t)) is the rate of change at time t of the value of the call with respect to

changes in stock price S(t), while N(d2(t)) should be interpreted as the probability that

C(t) at the maturity time T will be ‘‘in the money’’.

When studying (9), (10) and (11) we observe the structural similarities between the fair

value expression of the insurances Z and Z* and the option C. In fact the values are linear

functions defined on a set of marketable assets. In general, we have:

Financial call option Insurance contract

The value at time t increases. . . The value at time t increases. . .
� the longer time to maturity, � the longer time to maturity,
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� the lower the strike price is, � the lower the deductible is,

� the higher the spot price is*, � the higher the claims have been*,

� the higher the risk free rate is, � the higher the risk-free rate is,

� the higher the stock volatility is. � the higher the claims risk is.

Four out of five parameters are easy to understand and find for both types of contracts.

However, one *-comment on the spot price versus the claims value at time t is needed. At

any time t the spot value of a stock is a positive value, while the insurance claims have a

zero start value at time t�/0 and possibly a positive value at any time t�/0. Hence the

expression ‘‘the higher the claims have been’’ is related to the claims that have occurred up

to time t.

The great practical usefulness of the Black-Scholes option formula stems from the fact

that only the stock volatility is unknown as a valuation parameter at the valuation time.

Option dealers are hence often just called volatility dealers, where implied volatility or

profound market knowledge is often used as the parameter estimation technique of the

volatility. The fact that the value of an option depends on the volatility of the underlying

but not on its expected return (which is in accordance with ‘‘risk-neutrality’’), can be

considered as one of the great insights from the Black-Scholes formula. For a more

detailed � but not too technical � introduction to financial options and option pricing,

see e.g., Criss (1997).

As for options, the claims risk is � so far and within the above setup � the most

stochastic-based parameter to estimate for insurance contracts. However, to generate

more specific expressions of (9) and (10) we have to deal with the filtered probability

measure Q. Delbaen and Haezendonck (1989) � see also Embrechts (2000) � outlines that

certain assumptions and conditions of the Q-measure lead to well known premium

principles identical to the expected value principle; the variance principle and the Esscher

principle, all generating different safety loading factors in addition to the pure expected

claims risk up to time T based on the classical probability measure P. Hence the choice of

the technical properties of Q turns out to be the essential part of the valuation of Z and

Z*, or in other words, it all depends on what relevant extra information Ft we put into the

measure Q at time t. The three premium principles are, for instance, based on the a priori

choice of safety loading as the (only) critical information bias. The safety loading is

essential. It reflects the insurer’s need for safety and the expected utility arising from the

customer’s willingness to pay a higher premium than the pure risk premium. However,

other highly relevant information to include a priori in the price models and hence

affecting the Q-measure are e.g., information about the administration and reassurance

expenses and the demand for investment return on the insurance portfolio, that is, an

allocation of the cost of capital to different lines of business and individual contracts.

Technically this expanded information input will be handled by an expanded price model

combined with an augment at time t of the information filtration Ft on Q. Wang (2002)

takes this capital allocation approach, and introduces the so-called Wang transformation

as the key general method to calculate probability filtered fair values of both financial

derivatives and insurance liabilities.

In a complete market setup, with perfectly efficient buying and selling of insurance

contracts, we conclude that pure risk and cost based premiums are the sufficient pricing
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tasks to be carried out by an insurance company. Hence there is no difference between fair

values and true market prices. In such a market, where the market and price equilibrium

rules, the winners of the market will be those companies that are able to deliver the best

unbiased and positive risk selected prices, the lowest administration expenses and the

most efficient cost of capital allocation. However, as we will discuss further on in Sections

6 and 7, true market information like purchasing preferences and the insurers’ price

position in the market will be crucial information to take into account in an incomplete

market setup.

6. Incomplete market effects and purchasing preferences

The triangle assumptions of dynamic hedging, no-arbitrage and market completeness are

mathematically very pleasant to assume when developing asset pricing models and

formulas. Even if there are many offences on these idealistic assumptions, the relative

realism and robustness of them in the financial markets seem nevertheless to be one of the

main reasons for the revolution of financial mathematics in the last decades. The markets

for financial derivatives and insurance contracts are, however, quite different. The

insurance markets are most often characterized by higher transaction costs, higher and

differentiated risk aversion, less price rationality and sensitivity, less or no dynamic

hedging, less decision speed and fewer players than in the financial markets. In addition

the insurance market may be divided into a direct insurance market and a reinsurance

market, where the above incomplete characteristics are more common in the direct market

than in the reinsurance market.

Mathematical assumptions of incomplete markets generate much heavier theoretical

models. A precise definition � given in Harrison and Pliska (1983) � states that a market

is complete if and only if there is only one equivalent martingale measure of the underlying

stochastic process S(t) (the stock market), or in our case, I(t) (the insurance market). The

practical interpretation of this definition should be that in complete markets there exists a

unique price for each unique contractual risk � independent of the insurance players �
and that each contract can be perfectly hedged or replicated in the market. Market

assumptions that do not satisfy the price uniqueness per risk contract generate incomplete

markets. Typically assumptions � see Embrechts and Meister (1997) � that generate

incomplete markets are e.g., jumps in the underlying stochastic process with random size

occurrence; stochastic volatility models, that is, assumptions of underlying stochastic

processes with variable volatility along the time axis; and markets with transaction costs

and/or investment constraints (so-called friction).

The intuitive mathematical reason for the incompleteness of the above market

assumptions is that in each case there are typically many different combinations of model

parameters which influence the expanded model setup of the martingale process. Hence this

property generates many different probability measures that turn the underlying process

into many different so-called local martingales. A pragmatic consequence is that each

financial or insurance contract (where each one of them is based on one unique financial or
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insurance risk) turns out to be valuable unique for each combination of buyers and sellers of

the contract. We may hence conclude that the more incomplete an insurance market is, the

more the prices of equivalent risks tend to vary in the market (the law of one price turned

upside down). Notably, this connected statement assumes a deregulated competitive

insurance market with no price cooperation between the insurer players in the market.

Another important characteristic that generates incomplete markets, at least within

direct insurance, is to assume positive product, service and/or brand preferences of the

buyers in addition to the price preference. That is, the buyers of the contracts have other

‘‘soft’’ purchasing preferences in addition to price when they act in the market. This is a

clear characteristic in most (or all) direct insurance markets. This particular market

condition calls for the introduction of purchasing rate as an important parameter within

the price models. A definition of purchasing rate may be the likeability in the market to

buy (or re-buy) a predefined insurance contract. This parameter varies typically

individually between the insurance customers (just like their claims risks) and should

normally be a function of the price sensitivity, the price position of the insurer and the

more ‘‘softer’’ preferences like product, service and brand preferences. Hence, we say that

buyers with less price sensitivity have ‘‘softer’’ preferences than other buyers, and vice

versa. We conclude that this approach of individually purchasing rates � or probabilities

� matches the local martingale interpretation of price uniqueness for each combination of

insurance buyer and seller.

To sum up the main answers to the questions we stressed in Section 2: different

insurance players offer different prices for unique risks mainly because each combination

of buyers and sellers in incomplete markets generates individual, unique contractual

values. More unique market prices for unique risks will be generated in more complete

markets with higher price sensitivity. Optimal price per risk in a complete insurance

market is pure risk and cost price based, that is the traditional fair insurance value, while

the price in incomplete markets should, in addition, be market adjusted.

7. Market-based insurance price models

Corresponding to the individual martingale theory in Section 6, we may put forward the

following pragmatic market-based price model approach of net insurance sales prices in

the incomplete case:

Net sales price�pure risk price�internal expense price adjustments

�external market price adjustments:

Mathematically we may express the model as:

Net sales price of risk contract i at time t�0 for the insurance period (0; T)�

pi(T)�Zi(T jFr
0)�Ci(T jFe

0 )�Mi(T jFm
0 ) (13)

where pi(T ) is the net premium of risk contract i for period (0, T ); Zi(T ½F 0
r) is the risk

price of risk contract i for period (0, T ) given the relevant claims risk information F 0
r at
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time 0; Ci(T ½F 0
c) is the expense price adjustment of risk contract i for period (0, T ) given

the relevant expense information F 0
e at time 0; and Mi(T ½F 0

m) is the market price

adjustment of risk contract i for period (0, T ) given the relevant market information F 0
m

at time 0.

The expense price adjustment C( �/) in (13) is typically generated by administrative

expense allocations and capital allocations from a dynamic financial analysis (DFA)

approach. In practice this is usually materialized through financial targets, like risk ratio

targets (incurred claims as a percent of earned premiums) and combined ratio targets (risk

ratio�/expense ratio (expenses as a percent of earned premium)) for each relevant line of

business. The risk ratio and combined ratio targets are hence based on calculations of risk

loadings, expenses, financial income, reassurance and demand for investment return, all

elements specifically broken down to each line of business.

The external market price adjustment M( �/) in (13) is to some extent more difficult and

more sophisticated to deal with than the pure risk and expense price elements. A possible

definition of this price adjustment could be: all kinds of price deviation from the

theoretical best known risk and expense based prices. This definition supports the

statement by Finn and Lane (1997) that there is no right price of insurance, but simply

the transacted market price which is high enough to bring forth sellers, and low enough to

induce buyers (see Section 2). Also see our discussion in Section 6 where we model the

market price adjustment by including and modelling the purchasing rate of the customers/

market in a competitive open-market setup. A well known setup is hereby to structure pi( �/)
in (13) by using the net present valuation approach of the insurance contracts. That is, to

tune the premium pi( �/) in a way that the net present values of the contracts and the

portfolio are optimized under some financial conditions (typically predefined financial

and cost allocation targets). This approach takes care of what insurance business steering

is all about, that is, to find the optimal operational balance between running profitability

and market shares.

In addition to the claims risk process Z(t), we assume the stochastic process of the

purchasing rate R(t) at time t. Let Zi(t) and Ri(t) denote the claims risk and the

purchasing rate for contract number i, and let Vi(T ) be the net present value of contract i

over the time period (0, T ). Hence we have:

Vi(T)�g
T

0

e�rt[pi(t)�Zi(t)�ci(t)]Ri(t)dt; (14)

where Ri(0) is the hit sales rate of contract i at time t�/0, and

Ri(t)t�0�1�R̃i(t)t�0;

where Ri(t)t�0 is the renewal rate of contract i at time t and R̃i(t)t�0 is the cancellation

rate of contract i at time t. The practical interpretation of these definitions is that

insurance customers are continuous purchasers through their decisions about contractual

renewals.

In (14) it is also worth noting the assumed known constant parameters of r�/discount

rate, and ci(t)�/the total cost rate of contract i at time t.
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Hence the net present value V(T ) of the portfolio of all insurance contracts over the

time period (0, T ) is

V (T)�
XI

i�1

Vi(T):g
I

0

g
T

0

e�rt[pi(t)�Zi(t)�ci(t)]Ri(t)dtdi: (15)

Algebraic � or more realistic, numerical � optimum solutions of (14) and (15) with

respect to the net premium pi( �/) and preferable under some financial constraints, will

implicitly generate the structure of the price model (13). The external market adjustments

M in (13) is hereby materialized through the stochastic purchasing variable R in (14) and

(15), which further on should be modelled by using the customer explanation parameters

of, for instance, price sensitivity, price position in the market and soft preferences of

product, service and/or branding; see earlier discussions. Maybe also the distribution

power of the insurer, which really has purchasing effect in most markets, should be

included as an explanation variable. Hence, dependent on the purchasing preferences in

the market, too high prices or too low prices both will generate lower net present values

Vi(T ) and V(T ) than middle path price values. We should anyhow demand EV(T )�/0

and EVi(T )�/0 for all i�/1,. . .,I. That is, we should, as a minimum, have net sales prices

that generate positive expected net present values for all insurance customers and

contracts.

One last comment before we finally end the insurance pricing approach by dealing with

the parameter estimation. Sometimes the EQN and EQY in (10) in the complete market

case in Section 5 are interpreted as the market price of claims frequency and market price

of claims severity. This interpretation may be correct in a specific theoretical sense of view,

but not necessarily in a general practical one. Within practical insurance pricing it is most

often operationally suitable to treat the classical pure risk premium on the physical risk

measure P apart from the other effects or elements of the pricing structure generated by

some (individual) filtered measure Q. Hence in an operational setup we should split up,

estimate and follow-up the real claims frequency and the real claims severity, instead of

enveloping them in some kind of imprecise and misleading market interpretation. Hence,

all or most of the other effects of the insurance premium will turn out to be either the cost

adjustment or the market adjustment of the risk price in (13), and thus they are easier to

focus on and control explicitly.

8. Parameter estimation�/real insurance pricing methodology

The parameter estimation of the pricing models represents the real heart of insurance

pricing. Compared to financial derivatives, the parameter estimation within non-life

insurance is more complex. The main difference between the derivatives and the insurance

contracts are hereby that derivatives are rather technical in their contractual considera-

tion but quite simple in their parameter valuation, while the insurance contracts have the

opposite characteristics. On one hand the volatility parameter of an option is most often
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estimated by practical market knowledge or implied real market volatility. On the other

hand, the pure risk price per risk in (13) is usually split into expected claim frequency and

expected claim severity and hence estimated separately by using the data application

machinery of classical statistical models like generalized linear (or additive) regression

(mixed) models (GLM, GAM or GLMM) or empirical Bayes credibility models on large

data sets of risk exposure and reported claims.

In Section 3 we assumed the underlying claims number process N(t) to follow a

homogeneous Poisson process with constant frequency parameter l, and hereby the

claims risk process X(t) to be a compound Poisson process. A far more common and

realistic model is however to allow stochastic variation of the claims frequency from its

expected value l. Hence if l follows a Gamma distribution, then N(t) becomes a

negative binomial process. This setup matches very well our desire to make a risk

differentiated premium tariff that reflects risk variances (both claims frequency and

claims severities) between customers/objects in the insurance portfolio and market.

Hence, this also matches the standardized GLM setup with Poisson/Gamma-assump-

tions. Important practical elements to handle within-risk pricing are choice of

explanation risk variables (tariff factors), estimation levels (product, coverage or claims

type level), categorization of variables, correlations between variables, use of subjective

experience/knowledge, follow-up and maintenance. There are many references to pure

risk pricing estimation techniques; an ‘‘old’’ classic is Brockman and Wright (1992), a

newer reference of applied GLM is Fahrmeir and Tutz (2000), while a comparison of

Bayesian hierarchical models and GLM is to be found in Dimakos and Rattalma

(2002).

The purchasing rate R(t) in (15) may also be modelled by using GLM. A well known

and a well used model entails assuming the purchasing rate as a binary variable (the

customer either purchases/renews the contract at a discrete time, or he/she does not), and

hence we assume a logistic regression model with explanatory variables based on the

individual purchasing preferences of the customers, i.e., pure customer characteristics,

premium increase(s) last year(s) and the insurers price and distribution position in the

market. Understanding the purchasing rates (both sales hit rates and renewal rates) for

different customer segments � preferably by use of some stochastic models � should be a

basic part of the model applications within pragmatic insurance pricing in incomplete

markets.

Finally we stress the importance of forecasting the claims risk inflation or trend level. A

sufficient prediction of the future trend level of the claims risk process X(t) is extremely

important within financial target steering of a P&C company. The most pragmatic setup

is to let the forecasting models be stand-alone models apart from the GLM risk

differentiation models, and hence influence only the premium levels of the premium

tariffs. However, using GLM-based leading indicators integrated with autoregressive

integrated or moving average (ARIMA) models often gives an efficient modelling of the

claims risk inflation.
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9. International best practice of insurance pricing

A standard term of the pricing quality of the best insurance players in a market is best

market practice or � when the pricing quality is among the best in the world � world class

practice. The current international trend entails moving from an internal cost-based price

focus to a market-oriented view on pricing, just like the wide approach in this paper. An

increased number of consultants offer their knowledge and service to help the companies

to reach a best practice level of pricing. Key elements of a best practice market-oriented

view on pricing are:

. Outstanding quality of the insurance claims risk selection and underwriting

processes and their time-dependent risk level changes. This quality is fundamental

for profitable market-based pricing.

. Outstanding knowledge of customer behaviour in terms of customer segments,

products/service standards and price preferences, including own price and product/

service positions relative to competitors in the market.

Hence not only the traditional actuarial pricing approach of risk and cost pricing, but

also the business elements of customer relationship management (CRM) including

product and service standards should be important parts of the final premium tariff prices

of insurance products and contracts. An example of a mix of these elements is treated e.g.

in Holtan (2001), with focus on customer purchasing rationality of individual insurance

bonus-malus contracts. This wide business approach definitely demands a dynamic pricing

approach, that is, processes which continuously or regularly

� adjust the price levels to reach risk ratio and combined ratio targets,

� innovate, update and re-estimate risk price models and parameters,

� track competitors’ price rates and product/service value propositions,

� test market price adjustments to learn optimal price adjustments,

� implement champion-challenger price adjustments, and

� cooperate with distribution departments to optimize the sales forces.

This generates and assumes an active role of the analysts (actuaries) in the product and

price departments of the insurance companies, with focus on dynamic processes as an

overall operational key factor to succeed.

The methodology of risk and cost pricing � see Section 8 � is quite familiar to most

insurance companies and markets. The methodology of market pricing is, however, far

less familiar. It is important to recognize that there are no fixed rules or final answers to

market price challenges and questions. A dynamic data-driven (and less static theoretical

model driven) working approach with flexible and short time-to-market IT price

calculation systems seems, however, to be some kind of a common element of the best

market price practising insurance companies. Modelling the expected purchasing rate and

the expected customer profitability in a net present value context are hereby some key

issues to handle.
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References to best practice insurance pricing are by their nature quite scarce and

difficult to put forward. The practice of Direct Line Insurance Ltd in UK � and their

explosive way to reach 15�20% market share of the UK motor insurance market in the

1990s with satisfactory profitability � is often mentioned as an example. Other best

players � that is, players with extremely good profitability in combination with stable or

growing markets shares over a significant period of time � are of course also good

references. A pure business approach to best risk/cost underwriting practice is however

McKinsey (2004), which is a revision of an old � but still readable � McKinsey paper

from the mid 1990s.

10. Summary and concluding remarks

A fundamental difference between financial option valuation techniques and the classical

actuarial valuation principles is that the option valuation is formulated within a market

framework which includes the possibility of trading and hedging. This a priori model

approach � which is very much consistent with the derivatives market realities � generates

in most cases complete market conditions without arbitration possibilities. This proactive

market model approach has traditionally been absent from the classical actuarial pricing

principles, whereas most of the principles have only been based on more or less ad hoc

statistical considerations involving the law of large numbers. There is however a strong

theoretical trend to involve the financial market model approach in the insurance pricing

problems. Within such a framework, it seems to be easier to expand the insurance price

models by including components like purchasing preferences in incomplete market setups,

and consequently including not only the valuation part of pricing, but also the supply/

demand dimension in the price models. A brief overview of the pricing elements of

insurance versus finance versus theory versus practice may be presented as follows:

Risk and cost differentiated prices Still complete and efficient markets

Data-driven GLM parameter estimation Extreme contractual complexity

Practise Incomplete and non-efficient markets Different contractual objects

Purchasing/price-sensitive preferences Computer formula based valuation

Data-driven market-adjusted net prices Implied volatility and market knowledge

Insurance claims as underlying risk Stocks/securities as underlying risk

Implicit complete markets Explicit complete and efficient markets

Theory No hedging or arbitrage focus Dynamic hedging with no arbitrage

Homo/heterogeneous Poisson processes Geometric Brownian motion processes

Risk valuation with safety loadings Volatility valuation and pricing

Insurance Finance

The whole area of bringing together elements from financial and actuarial valuation

and pricing techniques is still very much under construction. We should still expect

considerable progress with effects for insurance pricing in the years to come. Some future

insurance challenges in the 21st century with opposite directions are (a) optimal pricing in
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incomplete friction markets with less price sensitivity (which is still the case for many or

most traditional markets/customer segments) and (b) optimal pricing in efficient and

complete insurance markets with continuous insurance trading and hedging possibilities

(future efficient internet- and broker-based markets; see Finnegan and Moffat (2000) for a

pragmatic view on this issue). In the latter case the bridge to option pricing is very short.

In both cases the pricing optimality should have a balanced short- and long-term trade-

off focus on both profitability and market share of the (direct) insurance portfolio.
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