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This paper suggests a new procedure for evaluating the fit of a 
dynamic structural economic model. The procedure begins by aug- 
menting the variables in the model with just enough stochastic error 
so that the model can exactly match the second moments of the 
actual data. Measures of fit for the model can then be constructed 
on the basis of the size of this error. The procedure is applied to a 
standard real business cycle model. Over the business cycle frequen- 
cies, the model must be augmented with a substantial error to match 
data for the postwar U.S. economy. Lower bounds on the variance 
of the error range from 40 percent to 60 percent of the variance in 
the actual data. 

I. Introduction 

Economists have long debated appropriate methods for assessing the 
empirical relevance of economic models. The standard econometric 
approach can be traced back to Haavelmo (1944), who argued that 
an economic model should be embedded within a complete probabil- 
ity model and analyzed using statistical methods designed for con- 
ducting inference about unknown probability distributions. In the 
modern literature, this approach is clearly exemplified in work such 
as that of L. Hansen and Sargent (1980) or McFadden (1981). How- 
ever, many economic models do not provide a realistic and complete 
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probability structure for the variables under consideration. To ana- 
lyze these models using standard econometric methods, they must 
first be augmented with additional random components. Inferences 
drawn from these expanded models are meaningful only to the ex- 
tent that the additional random components do not mask or change 
the salient features of the original economic models. 

Another approach, markedly different from the standard econo- 
metric approach, has become increasingly popular for evaluating dy- 
namic macroeconomic models. This approach is clearly articulated in 
the work of Kydland and Prescott (1982) and Prescott (1986). In a 
general sense, the approach asks whether data from a real economy 
share certain characteristics with data generated by the artificial econ- 
omy described by an economic model. There is no claim that the 
model explains all the characteristics of the actual data, nor is there 
any attempt to augment the model with additional random compo- 
nents to more accurately describe the data. On the one hand, the 
results from this approach are easier to interpret than the results 
from the standard econometric approach since the economic model 
is not complicated by additional random elements added solely for 
statistical convenience. On the other hand, since the economic model 
does not provide a complete probability structure, inference proce- 
dures lack statistical foundations and are necessarily ad hoc. For ex- 
ample, a researcher may determine that a model fits the data well 
because it implies moments for the variables under study that are 
"close" to the moments of the actual data, even though the metric 
used to determine the distance between the moments is left unspeci- 
fied. 

This paper is an attempt to put the latter approach on a less ad 
hoc foundation by developing goodness-of-fit measures for the class 
of dynamic econometric models whose endogenous variables follow 
covariance stationary processes. It is not assumed that the model accu- 
rately describes data from the actual economy; the economic model 
is not a null hypothesis in the statistical sense. Rather, the economic 
model is viewed as an approximation to the stochastic processes gen- 
erating the actual data, and goodness-of-fit measures are proposed 
to measure the quality of this approximation. A standard device- 
stochastic error-is used to motivate the goodness-of-fit measures. 
These measures answer the question, How much random error 
would have to be added to the data generated by the model so that 
the autocovariances implied by the model + error match the autoco- 
variances of the observed data? 

The error represents the degree of abstraction of the model from 
the data. Since the error cannot be attributed to a data collection 
procedure or to a forecasting procedure, for instance, it is difficult a 
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priori to say much about its properties. In particular, its covariance 
with the observed data cannot be specified by a priori reasoning. 
Rather than make a specific assumption about the error's covariance 
properties, I construct a representation that minimizes the contribu- 
tion of the error in the complete model. Thus, in this sense, the error 
process is chosen to make the model as close to the data as possible. 

Many of the ideas in this paper are close to, and were motivated 
by, ideas in Altug (1989) and Sargent (1989). Altug (1989) showed 
how a one-shock real business cycle model could be analyzed using 
standard dynamic econometric methods, after first augmenting each 
variable in the model with an idiosyncratic error. This produces a 
restricted version of the dynamic factor analysis or unobserved index 
models developed by Sargent and Sims (1977) and Geweke (1977). 
Sargent (1989) discusses two models of measurement error: in the 
first the measurement error is uncorrelated with the data generated 
by the model, and in the second the measurement error is uncorre- 
lated with the sample data (see also G. Hansen and Sargent 1988). 
While similar in spirit, the approach taken in this paper differs from 
that of Altug and Sargent in two important ways. First, in this paper, 
the error process is not assumed to be uncorrelated with the model's 
artificial data or with the actual data. Rather, the correlation proper- 
ties of the error process are determined by the requirement that the 
variance of the error is as small as possible. Second, the joint data- 
error process is introduced to motivate goodness-of-fit measures; it 
is not introduced to describe a statistical model that can be used to 
test statistical hypotheses, at least in the standard sense. Rather, the 
analysis in this paper is similar to the analysis in Campbell and Shiller 
(1988), Durlauf and Hall (1989), Hansen and Jagannathan (1991), 
and Cochrane (1992). Each of these papers uses a different approach 
to judge the goodness of fit of an economic model by calculating a 
value or an upper bound on the variance of an unobserved "noise" 
or a "marginal rate of substitution" or a "discount factor" in observed 
data. 

The minimum approximation error representation developed in 
this paper motivates two sets of statistics that can be used to evaluate 
the goodness of fit of the economic model. First, like the variance of 
the error in a regression model, the variance of the approximation 
error can be used to form an R2 measure for each variable in the 
model. This provides an overall measure of fit. Moreover, spectral 
methods can be used to calculate this R2 measure for each frequency 
so that the fit can be calculated over the "business cycle," "growth," 
or other specific frequency bands. A second set of statistics can be 
constructed by using the minimum error representation to form fit- 
ted values of the variables in the economic model. These fitted values 
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show how well the model explains specific historical episodes; for 
example, can a real business cycle model simultaneously explain the 
growth in the United States during the 1960s and the 1981-82 reces- 
sion? 

The paper is organized as follows. Section II develops the mini- 
mum approximation error representation and goodness-of-fit mea- 
sures. Section III calculates these goodness-of-fit statistics for a stan- 
dard real business cycle model using postwar U.S. macroeconomic 
data on output, consumption, investment, and employment. Section 
IV concludes the paper by providing a brief discussion of some tan- 
gential issues that arise from the analysis. 

II. Measures of Fit 

Consider an economic model that describes the evolution of an n X 
1 vector of variables xt. Assume that the variables have been trans- 
formed, say by first-differencing or forming ratios, so that xt is covari- 
ance stationary. As a notational device, it is useful to introduce the 
autocovariance generating function (ACGF) of xt, Ax(z). This func- 
tion completely summarizes the unconditional second-moment prop- 
erties of the process. In what follows, "economic model" and "Ax(z)" 
will be used interchangeably; that is, the analysis considers only the 
unconditional second-moment implications of the model. Nonlineari- 
ties and variation in conditional second and higher moments are ig- 
nored to help keep the problem tractable. The analysis will also ig- 
nore the unconditional first moments of x,; modifying the measures 
of fit for differences in the means of the variables is straightforward. 

The empirical counterparts of xt are denoted Yt. These variables 
differ from xt in an important way. The variables making up xt corre- 
spond to the variables appearing in the theorist's simplification of 
reality; in a macroeconomic model they are variables such as "out- 
put," "money," and the "interest rate." The variables making up Yt 
are functions of raw data collected in a real economy; they are vari- 
ables such as "per capita gross domestic product in the United States 
in 1987 dollars" or "U.S. M2" or "the yield on 3-month U.S. Treasury 
bills." 

The question of interest is whether the model generates data with 
characteristics similar to those of the data generated by the real econ- 
omy. Below, goodness-of-fit measures are proposed to help answer 
this question. Before I introduce these new measures, it is useful to 
review standard statistical goodness-of-fit measures to highlight their 
deficiencies for answering the question at hand. 

Standard statistical goodness-of-fit measures use the size of sam- 
pling error to judge the coherence of the model with the data. They 
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are based on the following: First, Ay(z), the population ACGF for yt, 
is unknown but can be estimated from sample data. Discrepancies 
between the estimator Ay(z) and Ay(z) arise solely from sampling error 
in Ay(z), and the likely size of the error can be deduced from the 
stochastic process that generated the sample. Now, if Ay(z) = Ax(z) 
sampling error also accounts for the differences between Ay(z) and 
Ax(z). Standard goodness-of-fit measures show how likely it is that 
Ay(z) = Ax(z), on the basis of the probability that differences between 
Ay(z) and Ax(z) arise solely from sampling error. If the differences 
between Ay(z) and Ax(z) are so large as to be unlikely, standard mea- 
sures of fit suggest that the model fits the data poorly, and vice versa 
if the differences between Ay(z) and Ax(z) are not so large as to be 
unlikely. The key point is that the differences between Ay(z) and Ax(z) 
are judged by how informative the sample is about the population 
moments of Yt, This is a sensible procedure for judging the coherence 
of a null hypothesis, Ay(z) = Ax(z), with the data. It is arguably less 
sensible when this null hypothesis is known to be false. 

Rather than rely on sampling error, the measures of fit that are 
developed here are based on the size of the stochastic error required 
to reconcile the autocovariances of xt with those of Yt. In particular, 
let ut denote an n x 1 error vector; then the importance of a differ- 
ence between Ax(z) and Ay(z) will be determined by asking, How much 
error would have to be added to xt so that the autocovariances of 
xt + u, are equal to the autocovariances of yt? If the variance of the 
required error is large, then the discrepancy between Ax(z) and Ay(z) 
is large, and conversely if the variance of ut is small. The vector ut 
is the approximation error in the economic model interpreted as a 
stochastic process. It captures the second-moment characteristics of 
the observed data that are not captured by the model. Loosely speak- 
ing, it is analogous to the error term in a regression in which the set 
of regressors is interpreted as the economic model. The economic 
model might be deemed a good approximation to the data if the 
error term is small (i.e., the R2 of the regression is large) and might 
be deemed a poor approximation if the error term is large (i.e., the 
R2 of the regression is small). 

To be more precise, assume that xt and Yt are jointly covariance 
stationary, and define the error ut by the equation 

ut = Yt - Xt, (1) 

so that 

AU(z) = Ay(z) + AX(z) - Axy(z) - AyX(z), (2) 

where Au(z) is the ACGF of ut, A.y(z) is the cross ACGF between xt 
and yt, and so forth. From the right-hand side of (2), three terms are 
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needed to calculate Au(z). The first, Ay(z), can be consistently esti- 
mated from sample data; the second, Ax(z), is completely determined 
by the model; but the third, A.Y(z), is not determined by the model, 
and it cannot be estimated from the data (since this would require a 
sample drawn from the joint (xt, Yt) process). To proceed, an assump- 
tion is necessary. 

A common assumption used in econometric analysis is that A.Y(z) 
- Ax(z) so that xt and ut are uncorrelated at all leads and lags. Equa- 
tion (1) can then be interpreted as the dynamic analogue of the classi- 
cal errors-in-variables model. Sargent (1989) discusses this assump- 
tion and an alternative assumption, A.Y(z) = Ay(z). He points out that 
under this latter assumption, ut can be interpreted as signal extraction 
error, with Yt an optimal estimate of the unobserved "signal" xt.1 In 
many applications, these covariance restrictions follow from the way 
the data were collected or the way expectations are formed. For ex- 
ample, if xt represented the true value of the U.S. unemployment 
rate and Yt the value published by the U.S. Department of Labor, 
then yt would differ from xt because of the sampling error inherent 
in the monthly Current Population Survey from which Yt is derived. 
The sample design underlying the survey implies that the error term, 
up, is statistically independent of x. Similarly, if yt denoted a rational 
expectation of xt, then the error would be uncorrelated with Yt. Nei- 
ther of these assumptions seems appropriate in the present context. 
The error is not the result of imprecise measurement. It is not a 
forecast or signal extraction error. Rather, it represents approxima- 
tion or abstraction error in the economic model. Any restriction used 
to identify A, (z), and hence Au(z), is arbitrary.2 

It is possible, however, to calculate a lower bound for the variance 
of ut without imposing any restrictions on A.Y(z). When this lower 
bound on the variance of ut is large, then under any assumption on 
Axy(z), the model fits the data poorly. If the lower bound on the 
variance of ut is small, then there are possible assumptions about 
AXY(z) that imply that the model fits the data well. Thus the bound is 
potentially useful for rejecting models on the basis of their empirical 

1 The reader familiar with work on data revisions will recognize these two sets of 
assumptions as the ones underlying the "news" and "noise" models of Mankiw, Runkle, 
and Shapiro (1984) and Mankiw and Shapiro (1986). 

2 It is interesting to note that it is possible to determine whether the dynamic errors- 
in-variables model or the signal extraction error model is consistent with the model 
and the data. The dynamic errors-in-variables model implies that AY(z) - Ax(z) 2 0 
for Iz = 1, so that the spectrum of yt lies everywhere above the spectrum of x,; the 
signal extraction error model implies the converse. If the spectrum of x, lies anywhere 
above the spectrum of yt, the errors-in-variables model is inappropriate; if the spec- 
trum of yt lies anywhere above the spectrum of x1, the signal extraction model is 
inappropriate. If the spectra of xt and yt cross, neither model is appropriate. 
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fit. Needless to say, models that appear to fit the data well using this 
bound require further scrutiny. 

The bound is calculated by choosing A.Y(z) to minimize the variance 
of u, subject to the constraint that the implied joint ACGF for x, 
and Yt is positive semidefinite. Equivalently, since the spectrum is 
proportional to the ACGF evaluated at z = CM, the cross spectrum 
between x and yt, (2'rr)- 'A.Y(e-), must be chosen so that the spectral 
density matrix of (x' y')' is positive semidefinite at all frequencies. 

Since the measures of fit proposed in this paper are based on the 
solution to this minimization problem, it is useful to discuss the prob- 
lem and its solution in detail. Rather than move directly to the solu- 
tion of the general problem, we shall first solve two simpler problems. 
This helps develop intuition for the general solution. In the first 
problem, xt and yt are serially uncorrelated scalars, and the represen- 
tation follows by inspection. In the second problem, xt and Yt are 
serially uncorrelated n x 1 vectors, and the solution is slightly more 
difficult to derive. Finally, in the last problem, xt and Yt are allowed 
to be serially correlated. 

Model 1 

Suppose that xt, Yt, and ut are scalar serially uncorrelated random 
variables. The problem is to choose uxy to minimize the variance of 
Up CU2 = U2 + U2 - 2ux , subject to the constraint that the covariance 
matrix of xt and yt remains positive semidefinite, that is, ICrx < (crCy. 
By inspection, the solution sets crxy = crxcry and yields csu = (Crx - Cry)2 
as the minimum. Since aXY= CrxcJy xt and yt are perfectly correlated 
with 

Xt= YYt, (3) 

where -y = ax/cry. Equation (3) is important because it shows how to 
calculate fitted values of xt, given data on Yt. Variants of equation (3) 
will hold for all the models considered. In each model, the minimum 
approximation error representation makes {xt} perfectly correlated 
with {yt}. In each model, the analogue of (3) provides a formula for 
calculating the fitted values of the variables in the model, given data 
from the actual economy. 

Model 2 

Now suppose that xt and Yt are serially uncorrelated random vectors 
with covariance matrices 1. and ly, respectively. Let lu = 1. + ly 
- IXY - YX denote the covariance matrix of ut. Since lu is a matrix, 
there is not a unique way to judge how "small" it is. A convenient 
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measure of the size of ut is the trace of J, tr(lu) = En= 1 lui where 

Yowij denotes the ijth element of I, While convenient, this measure 
is not always ideal since it weights all variables equally. Below, we 
shall find a representation that minimizes tr(Wlu), where W is a 
prespecified n X n matrix. When all variables are equally important, 
W = In, and unequal weighting can be implemented by making W 
diagonal with the desired weights as the diagonal elements. The ma- 
trix W can also be used to focus attention on specific linear combina- 
tions of the variables that may be particularly interesting. For exam- 
ple, let G denote an n X n matrix and suppose that the researcher is 
primarily interested in the variables Gxt and Gyt. Then since 
tr(GMuG') = tr(G'Glu), W can be chosen as G'G. 

The problem then is to choose 1iy to minimize tr(Wlu) subject to 
the constraint that the covariance matrix of (x' y')' is positive semi- 
definite. The solution is given below for the case in which 1. has 
rank k ' n. This occurs, for example, in economic models in which 
the number of variables exceeds the number of shocks. The solution 
is summarized in the following proposition. 

PROPOSITION. Assume (i) rank(^.) = k s n, (ii) rank(WlIW') = 

rank(zl), and (iii) rank(ly) = n. Let Cy denote an arbitrary n X n 
matrix square root of ,ly (i.e., ly = CYC,) and let C. denote an 
arbitrary n x k matrix square root of 1, (i.e., 1, = CXC,). Let USV' 
denote the singular value decomposition of C WCX, where U is an 
n x k orthogonal matrix (U'U = Ik), S is a k x k diagonal matrix, 
and V is a k x k orthonormal matrix. Then lY = C VU'C' is the 
unique matrix that minimizes tr(Wlu) subject to the constraint that 
the covariance matrix of (x' y')' is positive semidefinite. 

The proof is given in the Appendix. 
One important implication of this solution is that, like the scalar 

example, the joint covariance matrix (x' y')' is singular and xt can 
be represented as 

Xt= Fyti (4) 

where F = C'VU'C,7'. (Since U'U = VV' = Ik, this simplifies to the 
scalar result when xt and yt are scalars.) 

Model 3 

This same approach can be used in a dynamic multivariate model 
with slight modifications; when ut is serially correlated, the weighted 
trace of the spectral density matrix rather than the covariance matrix 
can be minimized. 

To motivate the approach, it is useful to use the Cramer represen- 
tations for xt, Yt, and ut (see, e.g., Brillinger 1981, sec. 4.6). Assume 
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that xt, Yt, and ut are jointly covariance stationary with mean zero; 
the Cramer representation can be written as 

2iTT 

Xt = eiotdz.(W) 

r2, 

Yt = f eiWtdzy(W), (5) 

u = | ettdzu(), 

where dz(w) = (dz.(w)' dzy(w)' dzu(w)')' is a complex valued vector of 
orthogonal increments, with E(dz(w)dz(X)') = 8(w - X)S(w)dwdX, 
where 8( - A) is the dirac delta and S(w) is the spectral density 
matrix of (x' y' u')' at frequency It. Equation (5) represents xt, Yt, 
and ut as the integral (sum) of increments dzx(o), dz (o), and dzj(o), 
which are uncorrelated across frequencies and have variances and 
covariances given by the spectra and cross spectra of xt, Yt, and ut. 
Since the spectra are proportional to the ACGFs evaluated at z = 

e-&i, E(dz.(w)dz.(Q))') is proportional to Ax(e- w), E(dz.(w)dzY(W)') is 
proportional to A (Y(e6 i) and so forth. 

Now consider the problem of choosing A.Y(z) to minimize the vari- 
ance of ut. Since ut can be written as the integral of the uncorrelated 
increments dzu(w), the variance of ut can be minimized by minimizing 
the variance of dzu(w) for each w. Since the increments are uncorre- 
lated across frequency, the minimization problems can be solved inde- 
pendently for each frequency. Thus the analysis carried out for 
model 2 carries over directly, with spectral density matrices replacing 
covariance matrices. The minimum trace problem for model 2 is now 
solved frequency by frequency using the spectral density matrix. 

Like models 1-2, the solution yields 

dz.(w) = F(w)dzy(w), (6) 

where r(w) is the complex analogue of F from (4). Equation (6) im- 
plies 

Axy(e-i@) = F(w)Ay(e-w) (7) 

and 

Au(e ) = A.(e6i@) + AY(e-6W) - Axy(e-W) - Axy(ezw)'. (8) 

The autocovariances of ut follow directly from (8). Moreover, since 
dzx(w) and dzy(w) are perfectly correlated from (7), xt can be repre- 
sented as a function of leads and lags of Yt: 

Xt = (L)yt, (9) 
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where 3(L) = 1% cili, with Pj = fa F(w)ezwJdw. Thus fitted values 
of xt can be calculated from leads and lags of Yt, 

An Example 

The model considered in the next section describes the dynamic 
properties of output, consumption, investment, and employment as 
functions of a single productivity shock. To demonstrate the mechan- 
ics of the minimum approximation error representation for that 
model, assume that xt and Yt are n x 1 vectors and that xt is driven 
by a single iid(O, 1) shock Et: 

Xt= Ot(L)Et, (10) 

where ot(L) is an n x 1 matrix polynomial in the lag operator, L. 
Assume that the Wold representation for the data is given by 

Yt = O(L)et, (11) 

where @(L) is an n X n matrix polynomial in L, and et is an n X 1 
serially uncorrelated vector with mean zero and identity covariance 
matrix. 

The minimum error representation can then be computed directly 
from the matrix expressions given in the proposition. From (10), Ax(z) 
= 0x(z)a(z-')' and, from (1 1), Ay(z) = 0(z)0(z-')'. Suppose that the 
weighting matrix is W = In, so that the trace of the spectral density 
of ut is to be minimized for each frequency. In terms of the matrices 
in the proposition, C.(w) = ao(e-iw) and Cy(w) = 0(e-iw). Thus the 
cross spectrum/cross ACGF for xt and Yt is chosen as Axy(e-w) = 

o(e-"')V(w)U(w)'0(ezw)', where U(w)S(w)V(w)' is the singular value 
decomposition of O(ew)'ax(e-zw). (Since U(o) and V(X) are complex 
matrices, V(X)' and U(w)' denote the transpose conjugates of V(X) 
and U(w), respectively.) The ACGF for u, follows from Au(e-tW) = 

Ax(e i) + Ay(e- AXY(e"@)- Ayx(e-w). Finally, to compute fitted 
values of xt from the Yt realization, note that dz.(w) = F(w)dzy(w), 
where F(Q) = o(e -t)V(w)U(o) O(ez-t)- 

Relative Mean Square Approximation Error 

A bound on the relative mean square approximation error for the 
economic model can be calculated directly from (8). The bound- 
analogous to a lower bound on 1 - R2 from a regression-is 

[A,(z)]/( 
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where [A.(z)]jj and [Ay(z)]jj are the jth diagonal elements of Au(z) and 
AY(z), respectively. Thus rj(w) is the variance of the jth component of 
dzu(w) relative to the jth component of dzy(w), that is, the variance of 
the error relative to the variance of the data for each frequency. A 
plot of rj(w) against frequency shows how well the economic model 
fits the data over different frequencies. Integrating the numerator 
and denominator of rj(w) provides an overall measure of fit. (Note 
that since ut and xt are correlated, r-(w) can be larger than one; i.e., 
the R2 of the model can be negative.)3 

One advantage of rj(w) is that it is unaffected by time-invariant 
linear filters applied to the variables. Filtering merely multiplies both 
the numerator and denominator of rj(w) by the same constant, the 
squared gain of the filter. So, for example, rj(w) is invariant to "Hod- 
rick-Prescott" filtering (see Hodrick and Prescott 1980; King and 
Rebelo 1993) or standard linear seasonal adjustment filters.4 The in- 
tegrated version of the relative mean square approximation error is 
not invariant to filtering since it is a ratio of averages of both the 
numerator and denominator across frequencies. When the data are 
filtered, the integrated version of rj(w) changes because the weights 
implicit in the averaging change. Frequencies for which the filter has 
a large gain are weighted more heavily than frequencies with a small 
gain. 

III. Measures of Fit for a Real Business Cycle 
Model 

In this section, a standard real business cycle model is evaluated using 
the measures of fit developed in the last section. The model, which 
derives from Kydland and Prescott (1982), is the "baseline" model of 
King, Plosser, and Rebelo (1 988b). It is a one-sector neoclassical 
growth model driven by an exogenous stochastic trend in tech- 
nology.5 

3The measure rj (w) is not technically a metric since it does not satisfy the triangle 
inequality. 

4 Standard seasonal adjustment filters such as the linear approximation to Census 
X- 11 have zeros at the seasonal frequencies, so that rj (w) is undefined at these frequen- 
cies for the filtered data. 

5This model is broadly similar to the model analyzed in Kydland and Prescott (1982). 
While the baseline model does not include the complications of time to build, invento- 
ries, time-nonseparable utility, and a transitory component to technology contained in 
the original Kydland and Prescott model, these complications have been shown to be 
reasonably unimportant for the empirical predictions of the model (see Hansen 1985). 
Moreover, the King, Plosser, and Rebelo baseline model appears to fit the data better 
at the very low frequencies than the original Kydland and Prescott model since it 
incorporates a stochastic trend rather than the deterministic trend present in the Kyd- 
land and Prescott formulation. 
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This baseline model is analyzed, rather than a more complicated 
variant, for several reasons. First, the calibration/simulation exercises 
reported in King, Plosser, and Rebelo suggest that the model explains 
the relative variability of aggregate output, consumption, and invest- 
ment, and it produces series with serial correlation properties broadly 
similar to the serial correlation properties of postwar U.S. data. Sec- 
ond, King, Plosser, Stock, and Watson (1991) show that the low- 
frequency/cointegration implications of the model are broadly consis- 
tent with similar postwar U.S. data. Finally, an understanding of 
where this baseline model fits the data and where it does not fit may 
suggest how the model should be modified. 

Only a brief sketch of the model is presented; a thorough discus- 
sion is contained in King, Plosser, and Rebelo (1988a, 1988b). The 
details of the model are as follows: 

00 

preferences: Et E IBtu(Cp, Lt), with u(Ct, Lt) = log(Ct) + 0 log (Lt); 
t=O 

technology: Qt = K' (AtNt) , 

log(A) at = Ya + at-, + Et, Etiid(O,cr2), 

Kt= ( -)Kt- + It; 

constraints: Qt = Ct + Its 

1 = Nt + Lt9 

where Ct denotes consumption, Lt is leisure, Qt is output, Kt is capital, 
Nt is employment, It is investment, and At is the stock of technology, 
with log(At) assumed to follow a random walk with drift Ya and inno- 
vation Et. 

To analyze the model's empirical predictions, the equilibrium of 
the model must be calculated as a function of the parameters 13, 0, a, 
Ya' 2, and B. This equilibrium implies a stochastic process for the 
variables Ct, Lt. Nt, Kt, It, and Qtq and these stochastic processes can 
then be compared to the stochastic processes characterizing U.S. post- 
war data. As is well known, the equilibrium can be calculated by 
maximizing the representative agent's utility function subject to the 
technology and the resource constraints. In general, a closed-form 
expression for the equilibrium does not exist, and numerical methods 
must be used to calculate the stochastic process for the variables corre- 
sponding to the equilibrium. A variety of numerical approximations 
have been proposed (see Taylor and Uhlig [1990] for a survey); here 
I use the log linearization of the Euler equations proposed by King, 
Plosser, and Rebelo (1987). A formal justification for approximating 
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the equilibrium of this stochastic nonlinear model near its determinis- 
tic steady state using linear methods is provided in Woodford (1986, 
theorem 2). 

The approximate solution yields a vector autoregression (VAR) for 
the logarithms of Qt. Ct, Kt, It, and Nt. (As in the standard convention, 
these logarithms will be denoted by lowercase letters.) All of the vari- 
ables except nt are nonstationary but can be represented as stationary 
deviations about at, the logarithm of the stock of technology, which 
by assumption follows an integrated process. Thus qt, ct. it, and kt are 
cointegrated with a single common trend, at. Indeed, not only are the 
variables in the VAR cointegrated, they are singular; the singularity 
follows since Et is the only shock to the system. The coefficients in the 
VAR are complicated functions of the structural parameters PI 0, at, 
Ya, U2, and B. Values for these parameters are the same as those used 
by King, Plosser, and Rebelo (1988b): when the variables are mea- 
sured quarterly, the parameter values are a = .58, 8 = .025, ya = 

.004, ae = .010, and IB = .988, and 0 is chosen so that the steady-state 
value of N is .20. These parameter values were chosen so that the 
model's steady-state behavior matches postwar U.S. data.6 With these 
values for the parameters, the VAR describing the equilibrium can 
be calculated and the ACGF of x, = (Aqt Act Ai, nt)' follows directly.7 

These autocovariances will be compared to the autocovariances of 
postwar data for the United States. The data used here are the same 
data used by King, Plosser, Stock, and Watson (1991). The output 
measure is total real private GNP, defined as total real GNP less 
government purchases of goods and services. The measure of con- 
sumption is total real consumption expenditures, and the measure of 
investment is total real fixed investment. The measure of employment 
is total labor hours in private nonagricultural establishments. All vari- 
ables are expressed in per capita terms using the total civilian nonin- 
stitutional population over the age of 16.8 Let qt denote the logarithm 

6 The choice of parameter values is described in King, Plosser, and Rebelo (1988a). 
The value of a was chosen to equal the average value of labor's share of gross national 
product over 1948-86. The value Of Ya was chosen as the common average quarterly 
rate of growth of per capita values of real GNP, consumption of nondurables and 
services, and gross fixed investment. The depreciation rate was chosen to yield a gross 
investment share of GNP of approximately 30 percent. The parameter 0 was chosen 
so that the model's steady-state value of N matched the average workweek as a fraction 
of total hours over 1948-86. The discount rate 3 was chosen so that the model's 
steady-state annual interest rate matched the average rate of return on equity over 
1948-81. The value of r = .01 appears to have been chosen as a convenient normal- 
ization. This value is used here because it does a remarkably good job matching the 
very low frequency movements in output, consumption, and investment. 

7Of course, this not the only possible definition of x,. The only restriction on x, is 
covariance stationarity, so, e.g., ct - qt and it - qt could be included as elements. 

8All data are taken from Citibase. With the Citibase labels, the precise variables used 
were gnp82 - gge82 for output, gc82 for consumption, and gif82 for investment. The 
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of per capita private output, 4, the logarithm of per capita consump- 
tion expenditures, and so forth. Then the data used in the analysis 
can be written as Yt = (Aqt A, Ai, fi)'. 

The analysis presented in the last section assumed that the ACGF/ 
spectrum of Yt was known. In practice, of course, this is not the case, 
and the spectrum must be estimated. In this work, the spectrum of Yt 
was estimated in two different ways. First, an autoregressive spectral 
estimator was used, calculated by first estimating a VAR for the vari- 
ables and then forming the implied spectral density matrix. As in 
King, Plosser, Stock, and Watson (1991), the VAR was estimated im- 
posing a cointegration constraint between output, consumption, and 
investment. Thus the VAR was specified as the regression of w, = 

(A4t, qt - et, qt - it, 't)' onto a constant and six lags of wt. The 
parameters of the VAR were estimated using data for 1950-88. (Val- 
ues before 1950 were used as lags in the regression for the initial 
observations.) Second, a standard nonparametric spectral estimator 
was also calculated. The spectrum was estimated by a simple average 
of 10 periodogram ordinates after prewhitening employment with 
the filter 1 - .95L. These two estimators yielded similar values for 
the measures of fit, and to conserve space only the results for the 
autoregressive spectral estimator are reported. 

For each variable, figure 1 presents the spectrum implied by the 
model, the spectrum of the data, and the spectrum of the error re- 
quired to reconcile the model with the data.9 The error process was 
chosen to minimize the unweighted trace of the error spectral density 
matrix, subject to the positive semidefiniteness constraint discussed in 
the last section. Thus the objective function weighted all the variables 
equally. For output, consumption, and investment, the model and 
data spectra differ little for very low frequencies (periods greater 
than 50 quarters) and for output and investment at high frequencies 
(periods less than five quarters). There are significant differences 
between the model and data spectra for periods typically associated 
with the business cycle; the largest differences occur at a frequency 
corresponding to approximately 20 quarters. The spectra of Ant and 
Aint are quite different. In addition to large differences at business 
cycle frequencies, the spectra are also very different at low frequen- 
cies. The model implies that employment is stationary so that its 

measure of total labor hours was constructed as total employment in nonagricultural 
establishments (ihem) less total government employment (lpgov) multiplied by average 
weekly hours (lhch). The population series was P16. 

9 Figure 1 is reminiscent of figures in Howrey (1971, 1972), who calculated the 
spectra implied by the Klein-Goldberger and Wharton models. A similar exercise is 
carried out in Soderlind (1993), who compares the spectra of variables in the Kydland- 
Prescott model to the spectra of postwar U.S. data. 
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growth rate has a spectrum that vanishes at frequency zero. In con- 
trast, the data suggest significant low-frequency variation in postwar 
U.S. employment.'0 

The figure shows that relatively little error is needed to reconcile 
the model and the data for output, consumption, and investment over 
the very low frequencies. On the other hand, error with a variance on 
the order of 40-50 percent of the magnitude of the variance of the 
series is necessary for the components of output, consumption, and 
investment with periods in the 6-32-quarter range. At higher fre- 
quencies, the model is able to match the stochastic process describing 
investment, but not the processes describing the other series. 

Table 1 provides a summary of the relative mean square approxi- 
mation error (RMSAE) for a variety of weighting functions and fil- 
ters. Each panel shows the RMSAE for the variables for five different 
minimum error representations. Column 1 presents results for the 
representation that obtains when the unweighted trace of the spec- 
trum is minimized; this is the representation used to construct the 
error spectra shown in figure 1. Column 2 summarizes the results 
for the representation that minimizes the output error, with no 
weight placed on the other variables. Column 3 summarizes results 
for the representation that minimizes the consumption error, and so 
forth. Panel A presents the results for the differences of the data 
integrated across all frequencies, panel B shows results for the levels 
of the series detrended by the Hodrick-Prescott filter integrated 
across all frequencies, and panel C presents results for the levels of 
the series integrated over business cycle frequencies (6-32 quarters). 
The trade-off inherent in the different representations is evident in 
all panels. For example, in panel A, with the minimum output error 
representation, the RMSAE for output is 26 percent, and the RMSAE 
for consumption is 78 percent; when the minimum consumption 
error representation is chosen, the RMSAE for consumption falls to 
21 percent but the RMSAE for output rises to 75 percent. When all 
the variables are equally weighted, the RMSAE is 52 percent for out- 
put and 66 percent for consumption. Panel C shows that most of this 
trade-off occurs at the high frequencies, at least for output, consump- 
tion, and investment; over the business cycle frequencies their 
RMSAEs are in the 40-60 percent range. 

As explained in Section II, fitted values of the model's variables 
can be constructed using the minimum error representation together 

10 The figures do not include standard errors for the spectra estimated from these 
data. These standard errors are large-approximately one-third the size of the esti- 
mated spectra. The standard errors for the RMSAE, averaged across frequencies, are 
considerably smaller. These are included in tables 1 and 2 below. 
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with the observed data. Since the measurement error model repre- 
sents Yt as xt plus error, the standard signal extraction formula can be 
used to extract {xt} from {Yt}. In general, of course, signal extraction 
methods will yield an estimate of xt, say xt, that is not exact in the- 
sense that E[(xt - xt)2] $ 0. In the present context, the estimate will 
be exact since the measurement error process is chosen so that dzx(W) 
and dzy(w) are perfectly correlated for all w.1 Figure 2 shows the 
realizations of the data and the realizations of the variables in the 
model calculated from the data using the equally weighted minimum 
output error representation.'2 

In figure 2a, which shows the results for output, the model seems 
capable of capturing the long swings in the postwar U.S. data but not 
capable of capturing the cyclical variability in the data. Private per 
capita GNP fell by 8.4 percent from the cyclical peak in 1973 to the 
trough in 1975 and by 6.8 percent from the peak in 1979 to the 
trough in 1982. In contrast, the corresponding drops in Qt-output 
in the model-were 3.1 percent and 3.0 percent, respectively. The 
dampened cyclical swings in consumption and investment, shown in 
figure 2b and c, are even more dramatic. Finally, figure 2d shows that 
the model predicts changes in employment that have little to do with 
the changes observed in the United States during the postwar 
period. 13 

One possible explanation for the relatively poor fit of the model is 
that the "calibrated" values of the parameters are wrong. In particu- 
lar, Christiano and Eichenbaum (1990) show that the model's predic- 
tions change in an important way when the technology process 
changes from a random walk to a stationary AR(1). Table 2 shows 
how the model fares for a range of values of the AR(1) coefficient 
for technology, denoted by Pa. Panel A of the table shows the results 
for first differences of the variables across all frequencies, panel B 
presents results for the Hodrick-Prescott detrended levels of the se- 
ries, and panel C shows the results for the levels of the series over 
the "business cycle" frequencies. From panel A, the value of Pa has 

11 More precisely, the estimate is exact in the sense that Proj(xtlyt1_y, . y1, Yo, 
Y1 . Yt+j) converges in mean square to x, as i o. 

12 As shown in eq. (9), x, can be calculated as I3(L)y,, where 1(L) is the inverse Fourier 
transform of F(w). To calculate the estimates shown in the figure, F(W) was calculated 
at 128 equally spaced frequencies between zero and a. Since 1(L) is two-sided, pre- 
and postsample values of Yt are required to form 13(L)x1. These pre- and postsample 
values were replaced with the sample means of the yt data. The first differences, x, 
and yt, were then accumulated to form the levels series shown in the figure. 

13 The calculations required to construct figs. 1 and 2 and the results in table 1 are 
easily carried out. For this example, the model spectrum, data spectrum, RMSAEs, 
and fitted values were calculated in less than a minute on a standard desktop computer. 
A GAUSS program for these calculations is available from the author. 
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TABLE 2 

RELATIVE MEAN SQUARE APPROXIMATION ERROR AS A FUNCTION OF THE AR(1) 
COEFFICIENT FOR TECHNOLOGY 

Pa 

1.0 .98 .95 .90 
VARIABLE (1) (2) (3) (4) 

A. First Differences: All Frequencies 

Output .52 (.04) .52 (.04) .53 (.05) .54 (.06) 
Consumption .66 (.06) .69 (.06) .71 (.05) .74 (.05) 
Investment .29 (.06) .21 (.05) .18 (.05) .20 (.04) 
Employment .78 (.04) .74 (.05) .73 (.07) .75 (.09) 

B. Hodrick-Prescott Detrended Levels: All Frequencies 

Output .43 (.05) .40 (.05) .37 (.05) .36 (.05) 
Consumption .53 (.04) .58 (.04) .63 (.04) .67 (.04) 
Investment .40 (.08) .29 (.08) .21 (.08) .17 (.08) 
Employment .73 (.03) .64 (.04) .58 (.04) .55 (.04) 

C. Levels: 6-32 Quarters 

Output .43 (.06) .38 (.06) .35 (.06) .33 (.06) 
Consumption .51 (.05) .56 (.05) .61 (.05) .66 (.05) 
Investment .42 (.08) .30 (.09) .22 (.09) .17 (.09) 
Employment .72 (.03) .63 (.04) .56 (.05) .52 (.05) 

NOTE.-Relative mean square approximation error is the lower bound of the variance of the approximation 
error divided by the variance of the series. Each column represents the relative mean square approximation error 
of the row variable constructed from the representation that minimizes the weighted trace of the error spectrum. 
The column headings represent the AR(1) coefficient for the process of the logarithm of productivity in the model. 
For example, col. 1 represents results for the model with random walk technological progress. The numbers in 
parentheses are standard errors based on the sampling error in the estimated VAR coefficients used to estimate 
the data spectrum. 

little effect on the fit of the model averaged across all frequencies. In 
particular, as Pa falls from 1.0 to .90, the RMSAE increases slightly 
for consumption, falls for investment, and changes little for output 
and employment. In contrast, the value of Pa has a significant effect 
on the fit of the model over business cycle frequencies. For example, 
panel C shows that as Pa falls from 1.0 to .90, the RMSAE falls for 
output (.43 to .33), for investment (.42 to .17), and for employment 
(.72 to .52); it increases for consumption (.52 to .66). 

The source of the changes in the RMSAEs can be seen in figure 3, 
which plots the spectra of the variables in models with Pa = 1 and 
Pa = .90. The largest difference between the spectra of the models 
is the increase in variance in output, investment, and employment as 
Pa falls from 1.0 to .90. The economic mechanism behind this in- 
creased variance is the increase in intertemporal substitution in re- 
sponse to a technology shock. When Pa = .90, technology shocks are 
transitory, and they can be exploited only by large transitory increases 
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in employment and investment. It is interesting to note that while this 
mechanism increases the variance of the growth rates in employment, 
investment, and output, it has little effect on their autocorrelations. 
That is, as Pa changes from 1.0 to .90, the shape of the spectra changes 
little. 

Before we leave this section, six additional points deserve mention. 
First, the fitted values in figure 2 are quantitatively and conceptually 
similar to figures presented in Christiano (1988) and Plosser (1989). 
They calculated the Solow residual from actual data and then simu- 
lated the economic model using this residual as the forcing process. 
Implicitly, they assumed that the model and data were the same in 
the terms of their Solow residual, and then asked whether the model 
and data were similar in other dimensions. Figure 2 is constructed 
by making the model and data as close as possible in one dimension 
(in this case the trace of the variance of the implied approximation 
error) and then asking whether the model and data are similar in 
other dimensions. The difference between the two approaches can 
be highlighted by considering the circumstances in which they would 
produce exactly the same figure. If the Solow residual computed 
from the actual data followed exactly the same stochastic process as 
the change in productivity in the model, and if the approximation 
error representation was constructed by minimizing the variance of 
the difference between the Solow residual in the data and productiv- 
ity growth in the model, then the two figures would be identical. Thus 
the figures will differ if the stochastic process for the empirical Solow 
residual is not the same as assumed in the model, or the approxima- 
tion error representation is chosen to make the model and data close 
in some dimension other than productivity growth. 

Second, the inability of the model to capture the business cycle 
properties of the data is not an artifact of the minimum measurement 
error representation used to form the projection of x, onto yT, T = 
1, . . . , n. Rather, it follows directly from a comparison of the spectra 
of xt and Yt. The fitted values are constrained to have an ACGF/ 
spectra given by the economic model. Figure 1 shows that, for all the 
variables, the spectral power over the business cycle frequencies is 
significantly less for the model than for the data. Therefore, fitted 
values from the model are constrained to have less cyclical variability 
than the data. 

Third, the ability of the model to mimic the behavior of the data 
depends critically on the size of the variance of the technology shock. 
The value of ot used in the analysis is two and one-half times larger 
than the drift in the series. Thus if the et were approximately nor- 
mally distributed, the stock of technology At would fall in one out of 
three quarters on average. Reducing the standard deviation of the 
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technology shock so that it equals the average growth in a, drastically 
increases the size of the measurement error necessary to reconcile 
the model with the data. For example, integrated across all frequen- 
cies, the RMSAE for output increases from 52 percent to 74 percent. 

Fourth, there is nothing inherent in the structure of the model that 
precludes the use of classical statistical procedures. Altug (1989) used 
maximum likelihood methods to study a version of the model that 
is augmented with serially correlated classical measurement errors. 
Singleton (1988) and Christiano and Eichenbaum (1992) pointed out 
that generalized method of moments procedures can be used to ana- 
lyze moment implications of models like the one presented above. In 
the empirical work of Christiano and Eichenbaum the singularity in 
the probability density function of the data that is implied by the 
model was finessed in two ways. First, limited information estimation 
and testing methods were used, and second, the authors assumed 
that their data on employment were measured with error. 

Fifth, many if not all of the empirical shortcomings of this model 
have been noted by other researchers. King, Plosser, and Rebelo 
clearly show that the model is not capable of explaining the variation 
in employment that is observed in the actual data. The implausibility 
of the large technology shocks is discussed in detail in Summers 
(1986), Mankiw (1989), and McCallum (1989). 

Finally, the analysis above has concentrated on the ability of the 
model to explain the variability in output, consumption, investment, 
and employment across different frequencies. While it is possible to 
analyze the covariation of these series using the cross spectrum of the 
measurement error, such an analysis has not been carried out here. 
This is a particularly important omission since this is the dimension 
in which the baseline real business cycle model is typically thought to 
fail. For example, Christiano and Eichenbaum (1992) and Rotemberg 
and Woodford (1992) use the model's counterfactual implication of 
a high correlation between average productivity and output growth 
as starting points for their analysis, and the empirical literature on 
the intertemporal capital asset pricing model beginning with Hansen 
and Singleton (1982) suggests that the asset pricing implications of 
the model are inconsistent with the data. It would be useful to derive 
simple summary statistics based on the cross spectra of the measure- 
ment error and the data to highlight the ability of the model to ex- 
plain covariation among the series. 

IV. Discussion 

The discussion thus far has assumed that the parameter values of 
the economic model are known. A natural question is whether the 
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measures of fit discussed in this paper can form the basis for estima- 
tors of these parameters. Does it make sense, for example, to estimate 
unknown parameters by minimizing some function of the relative 
mean square error, rj(o) given in equation (12)? This certainly seems 
sensible. For example, a researcher may want to "calibrate" his model 
with a value of Pa = .90 rather than 1.0, because this value produces 
spectra closer to the estimated spectra of data over the business cycle 
frequencies. Yet dropping the standard statistical assumption that the 
economic model is correctly specified raises a number of important 
issues. Foremost among these is the meaning of the parameters. If 
the model does not necessarily describe the data, then what do the 
parameters measure? Presumably, the model is meant to describe 
certain characteristics of the data's stochastic process (the business 
cycle or the growth properties, for example), while ignoring other 
characteristics. It then makes sense to define the model's parameters 
as those that minimize the differences between the model and the 
data's stochastic process in dimensions that the model is attempting 
to explain. So, for example, it seems sensible to define the parameters 
of a growth model as those that minimize rj (w) over very low frequen- 
cies, or to define the parameters of a business cycle model as those 
that minimize rj(o) over business cycle frequencies. Given this defini- 
tion of the parameters, constructing an analog estimator (see Manski 
1988) by minimizing r (x) corresponds to a standard statistical 
practice. 

Of course, the parameters may also be defined using other charac- 
teristics of the model and the stochastic process describing the data. 
For example, in standard "calibration" estimation exercises, many of 
the parameters are implicitly defined in terms of first moments of 
the data. Parameters are chosen so that the first moments of the 
variables in the model's steady state match the first moments of the 
data. 

Two final points deserve mention. First, since the measures of fit 
developed in this paper are based on a representation that minimizes 
the discrepancy between the model and the data, they serve only as 
a bound on the fit of the model. Models with large RMSAEs do not 
fit the data well. Models with small RMSAEs fit the data well given 
certain assumptions about the correlation properties of the noise that 
separates the model and the data, but may fit the data poorly given 
other assumptions about the noise. 

Finally, while this paper has concentrated on measures of fit moti- 
vated by a model of measurement error, other measures are certainly 
possible. For example, one measure, which like the measures in this 
paper uses only the autocovariances implied by the model and the 
data, is the expected log likelihood ratio using the normal probability 
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density function (pdf) of the data and the model. More precisely, if 
g(x) denotes the normal pdf constructed from the autocovariances of 
the data,f(x) denotes the normal pdf constructed for the autocovari- 
ances implied by the model, and Eg is the expectation operator taken 
with respect to g(x), the expected log likelihood ratio I(g, f) = 
Eg{log[g(x)/f(x)]} can be used to measure the distance between the 
densitiesfQ() and g(Q); I(g,f) is the Kullback-Leibler information crite- 
rion (KLIC), which plays an important role in the statistical literature 
on model selection (e.g., Akaike 1973) and quasi-maximum likeli- 
hood estimation (White 1982). Unfortunately, the KLIC will not be 
defined when f(x) is singular and g(x) is not; the KLIC distance be- 
tween the two densities is infinite. Thus, for example, it would add 
no additional information on the fit of the real business cycle model 
analyzed in Section III beyond pointing out the singularity. 

Arguably, one of the most informative diagnostics presented in this 
paper is the plot of the model and data spectra. For example, figures 
1 and 2 show that the data spectra have mass concentrated around 
the business cycle frequencies, but the model spectra do not. Any 
metric comparing the data and model spectra may serve as a useful 
measure of fit. The RMSAE proposed here has the advantage that it 
can be interpreted like 1 - R2 from a regression, but any summary 
statistic discards potentially useful information contained in plots 
such as figures 1 and 2. Some practical advice, therefore, is to present 
both model and data spectra as a convenient way of comparing their 
complete set of second moments. 

Appendix 

To prove the proposition, first parameterize Y.,, xy, and Xy as 

Y. X= C Cs (Al) 

Y. = GG' + , (A2) 

Xxy= CXG, (A3) 
where CX is n X k with full column rank, G is n X k, and Z is positive 
semidefinite. Since X. = Xx + Y.- Xx- ZYxg minimizing tr(WZ.) with 
Z, and Xy given is equivalent to maximizing tr(Wlxy) = tr(WCxG'). Given 
an arbitrary factorization of Xx of the form (Al), the problem is to find the 
n x k matrix G to maximize tr(WCxG') subject to the constraint that I - 
GG' = Z is positive semidefinite. 

Let =C -'G. Then Z - GG' is positive semidefinite if and only if Y Y 
In - t' is positive semidefinite, which in turn is true if and only if all the 
eigenvalues of 4t' are less than or equal to one. Since the eigenvalues 
of ' are the same as those of 6'6, the problem can be written as 

maxtr[6'(C'WCx)] subject to Xi(6'6) c 1, i = 1, ... . k, (A4) 
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where Xi(6'6) denotes the ith eigenvalue of 6'6, and I have used the fact 
that tr(AB) = tr(BA) for conformable matrices A and B. 

Let QDR' denote the singular value decomposition of 6, where Q is an n 
x k orthogonal matrix, R is a k x k orthonormal matrix, and D is a k x k 
diagonal matrix with elements di1. Since tr[6'(C'WC,)] = tr[RDQ'(C'WC,)] 
= tr[DQ'(C WC.)R], and since Xi(6'6) = d', the solution to (A4) is seen to 
require that Xi(6'6) = 1, i = 1. k. This implies that 6'6 = I. Write 
the singular value decomposition of C'WCx as USV'; then tr[t'(CWC)] = 
tr(6'USV') = tr(V'6'US) = tr(G'lrJS), where G = tV. Since G'G = 
V'6'6V = I*, the maximization problem can be written as 

max tr(G'US) subject to G'G = Ik (A5) 
U 

Assumptions i-iii of the proposition imply that C'WCx has full column rank 
so that S is a diagonal matrix with strictly positive diagonal elements. Thus 
since U'U = I*, the maximization is achieved by G = U. Working backward, 
we see that G = C UV', so that I = CXG' = CXVU'C . 

Uniqueness follows since this choice of XXY does not depend on the (arbi- 
trary) choice of the matrix square roots, Cx and C . To see this, let ty and 
:, denote other matrix square roots of I and IV ihen t, = C R and (: 

= CxR1, where RY and Rx are orthonormal matrices. From the anal- 
ysis above, this yields fY = X4 'tY, where (JAV' is the singular value 
decompbosithionofelWs Bx ,,X decomposition of YWtx. By inspection, = R'U, A = S, and V = RV, 
so that Ioxy Yxy 
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