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Abstract

Practical policies for the monopolistic pricing problem with uncertain

demand are discussed (for discrete time, continuous prices and demand, in a

linear and Gaussian setting). With this model, the introduction of price vari-

ations is rationally justified, to allow for a better estimate of the elasticity

of demand, and increased profits due to better pricing. An approximation

of the dynamic programming solution is introduced, exploiting convex op-

timization methods for computational tractability. Numerical experiments

are described.

• First draft April 1999 (talk at INFORMS Cincinnati, May 1999), second draft June

2003 (talk at INFORMS Revenue Management Conference, Columbia University,

June 2003).



1 Introduction

This paper addresses the problem of monopolistic pricing over multiple time

periods. It is assumed that the firm is a price setter, and can set prices

independently for each period. The demand follows an imprecisely known

curve, which is first assumed constant from period to period.

The overall goal of pricing is to maximize the discounted profit, over a

finite sequence of pricing periods. The selection of a profitable price requires

knowledge of the demand curve. In our setting, this knowledge can only be

obtained by observation of the demand at different prices, in different time

periods. Hence, pricing at each period has two goals: 1) to maximize profit,

and 2) to obtain information about the demand curve in order to increase fu-

ture profits. These goals are usually in conflict, requiring a tradeoff between

the two.

A theoretical implication of this work is that price variations observed

in a market can, in part, be explained by rational learning behavior by

firms. Our main concern, however, is with practical application, and with

computing a high-quality approximate solution to the optimal pricing policy.

The optimal pricing policy is given by the solution to a stochastic dy-

namic program. Computing the exact solution of this dynamic program is,

however, a numerically intractable problem for more than very small num-

ber of periods. Instead, we propose a convex approximation of the true cost

function, along the lines of Lobo and Boyd [LB99]. An approximate solution

to the optimal pricing problem can then be obtained by solving a convex
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optimization program. The practicability of this approach relies on new

methods for convex programming, in particular the very efficient interior-

point methods for semidefinite programming developed in recent years.

The model we consider, although applicable as is to a number of practical

problems, is a simple one. This allows us to develop the basic framework and

to investigate the key ideas, but also gives rise to a number of limitations. We

assume a linear (or linearized) demand function, and all random variables to

have a Gaussian distribution. The accuracy of this model and the tightness

of the approximate solution we propose depend on some degree of locality

in the solution. That is, the optimal solution should not involve large price

variations. This will be the case if the uncertainty about the demand is not

very large. Finally, this approach requires a prior distribution on the demand

parameters that, in practice, may be difficult to provide. Nevertheless, our

model displays all the relevant properties of a problem where the goals of

estimation and of optimization must be balanced, and provides a number of

valuable insights.

This problem is also of imminent practical concern. The lack of knowl-

edge about model parameters is mentioned by revenue management practi-

cioners as a major obstacle to the adoption of theoretical models (including

dynamic pricing models which are not dynamic in this sense). We hope

to contribute some insight into the trade-off between collecting information

and expoiting it, in the context of pricing problems.

This framework can be extended for a wider range of problems with
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practical application. One step in this direction is given by the extension

that allows for a demand that changes stochastically over time, with the

consequence that information ‘ages’ over time. Another important step for

practical application is to consider similar approximation procedures for

other probability distributions, and for nonlinear demand curves. The first

step in this direction is to consider a multiplicative demand function with

log-normal distributions.

Within this framework, it is a straightforward extension to deal with

multiple products, where the substitution or complementarity effects are

also uncertain and need to be estimated (i.e., the elasticity matrix). Another

possible extension is to consider a competitive environment which results in

a joint optimization problem in the prices of each firm. This framework

can only handle a situation in which the products sold by each firm are not

perfect substitutes. The substitution effect can then be modeled as linear

in the price difference between the competing sellers.

There are many connections between the problem addressed here and

the dual-control literature. The approximation we describe is inspired by

Lobo and Boyd [LB99]. Much of the early work on dual-control was done

by Fel’dbaum [Fel65]. Bar-Shalom [BS81] has a body a of work dealing with

its practical application and with the properties of different policies.

The literature on dynamic pricing and the economics of uncertainty is

substantial. Alchian [Alc50] discusses optimal learning by experimentation

with a broad model formulation. A number of authors have looked at the
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infinite-horizon problem with a fixed, deterministic demand function. Roth-

schild [Rot74], with a two-armed bandit model, approaches the problem mo-

tivated by the fundamental question of ”how a perfectly competitive firm

discovers what the market price is,” and how this discovery process may

explain price variability observed in the market.

Aghion et al. [ABHJ91] using a very general mathematical framework,

derive mostly results for deterministic payoff function, and a limited char-

acterization of experimentation strategies. Easley and Kiefer [EK88], oper-

ating in a stochastic framework with infinite horizon, focus on convergence

of policies and limit beliefs which, it is shown, are not necessarily certainty.

Kiefer [Kie89] performs the numerical computation of the value function of

the dynamic program, for a model with finite parameter set. Rustichini

and Wolinsky [RW95] develop a model with discrete action space, with a

unit demand with reservation price. Keller and Rady [KR99], work in con-

tinuous space and continuous time with differential equations, and with a

randomly changing reward function. Depending on the model parameters,

they identify two experimentation regimes, extreme and moderate. Balvers

and Cosimano [BC90] work with a model with continuous parameters sim-

ilar to the one discussed here, and also include a discussion of myopic and

certainty equivalent price. Mirman et al. [MSU93] investigate monopoly

price and quantity experimentation for a 2-period problem. They derive

conditions for when is it optimal for the firm to experiment. Kiefer and

Nyarko 89 [KN89], investigate properties of optimal control policies for a
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linear model with infinite horizon. Wieland [Wie00] investigates the value

of optimal experimentaion in a framework that addresses regression in gen-

eral.

Revenue management has been a very active area in recent years (see

Gallego and van Ryzin [GvR93, GvR97]), and with some recent attention to

dynamic pricing with active learning (see Aviv and Pazcal [AP02]). There

is also a considerable literature on demand models and elasticity estimation

(for a review in the context of the recent revenue management literature,

see Caldentey and Bitran [CB02]).

Our approach is made feasible by relatively recent advances in nonlin-

ear convex optimization, specifically interior-point methods. While interior-

point methods have been discussed for at least thirty years, the current

development was launched in 1984 by Karmarkar [Kar84] with an algorithm

for linear programming that was more efficient than the simplex method.

More recently, Nesterov and Nemirovsky observed that interior-point meth-

ods for linear programming can be extended to handle a very wide variety of

nonlinear convex optimization problems [NN94]. Current algorithms can

solve problems with hundreds of variables and constraints in times mea-

sured in seconds or at most a few minutes, on a personal computer. Far

larger problems can be handled if problem structure, such as sparsity, is

exploited. A large body of literature now exists on interior-point methods

for linear programming, and a number of books have been written (see,

for instance, [BV03] for extensive references). Some specific types of non-
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linear convex optimization problems have recently been the focus of much

research, both in terms of algorithms and applications. These include semi-

definite programming (SDP) [VB96] and second-order cone programming

(SOCP) [LVBL98]. The numerical examples in this paper were solved us-

ing the optimization software sp, by Vandenberge and Boyd [VB94]. Other

software packages that handle SDP problems are now available, such as sdp-

pack by Alizadeh et al. [AHN+97], and sedumi by Sturm [Stu98]. These

recent advances make feasible in practice policies based on online optimiza-

tion, such as the one developed here.

2 Demand model

We assume that the demand qt for time period t, is a function of the price

pt established for that period and of a random independent perturbation.

We consider a linear model, with an additive perturbation:

qt(pt) = g − hpt + et,

where

qt is the demand for period t,

pt is the price for period t,

g, h are the demand function coefficients (intersect and elasticity),

et is the random perturbation.

The perturbations are assumed Gaussian i.i.d.,

et ∼ N (0, σ2
e ).
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Although this model is chosen mainly for mathematical convenience, it is

not far removed from applicability. We discuss extensions and modifications

of this model in later sections.

The n-product problem is obtained with pt, qt, g ∈ Rn, and h ∈ Rn×n.

The treatment and results are analogous to the one-product case. For no-

tational simplicity, we restrict ourselves in this paper to the one-product

problem, except for a numerical example in §13.

3 Demand function coefficients

The uncertain knowledge of the demand function coefficients is handled in

a Bayesian framework. The coefficients are assumed to be random variables

with a known a priori Gaussian distribution. The distribution for the vector

formed by the demand function coefficients is then

 g

h


 = N

( ĝ0

ĥ0


 ,Π−1

0

)
.

The a priori information matrix Π0 is the inverse of the covariance matrix

of the vector of coefficients.

4 Problem objective

The problem objective is to maximize the expected discounted profit

E(
T∑

t=1

δt−1 Rt(pt)) = E(
T∑

t=1

δt−1 (pt − c) qt(pt)),
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where c is the (variable) costs, and δ is the discount factor. Note that this

formulation implies the assumption that there is always sufficient stock to

meet demand, and that the stock holding costs are negligible.

The prices must be selected at each period using only information avail-

able from the demand observed in previous periods, and the a priori knowl-

edge of the distributions. Hence, the maximization is over the set of feasible

policies, where a feasible policy is one in which the prices are functions of

the form

pt = ϕ(ĝ0, ĥ0,Π0, σ
2
e , q1, . . . , qt−1),

that is, pt is a random variable measurable σ(q1, . . . , qt−1). We will also con-

sider randomized feasible policies, where pt is measurable σ(q1, . . . , qt−1, w),

with w some independent random variable introduced to allow for the ran-

domization of the pt.

5 Tails

Note that this model makes two unusual assumptions. The first is that,

since the normal distribution does not have bounded support, the slope of

the demand function may be positive. This might lead to the conclusion

that the optimal price is infinitely large. If there is a positive probability

of demand increasing with price, we might conclude that an infinitely large

price results in an infinitely large expected profit.

The second assumption of note is that linearity extends into negative

demand. That is, if the price is too high, the seller may be forced to buy
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items back at a loss. In terms of the solution, this ensures that very large

prices have very large negative expected profit (assuming ĥ > 0). The opti-

mal solution is then determined by the distribution in the region of interest

of ‘reasonable’ parameter values, rather than by the tail of the distribution.

The simulations described here were run with a truncated tail, to disallow

non-negative slopes (draws in the Monte Carlo simulation with non-negative

slope are thrown out, otherwise the active learning algorithm will usually

quickly find out that this is the case, and the price diverges to arbitrarily

large values). This can be interpreted as a form of model mismatch, where

the ’true’ model is the jointly normal distribution with truncated tails used

in the simulation. The tail truncation is ignored in the model used to derive

our approximation, which can also be thought of as another approximation

step.

6 A posteriori distribution

The a posteriori distribution of the coefficients after t periods is given by

 g

h


 = N

( ĝt

ĥt


 ,Π−1

t

)
,

with

Πt = Π0 + σ−2
e

t∑
k=1


 1 −pk

−pk p2
k


 ,


 ĝt

ĥt


 = Π−1

t


Π0


 ĝ0

ĥ0


+ σ−2

e

t∑
k=1


 1

−pk


 qk


 .
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Note that if price remains constant over all periods, the information matrix

can be ill-conditioned. We will later see that this translates into expected

loss of profit. Equivalent recursive formulas for the a posteriori distribution

are

Πt = Πt−1 + σ−2
e


 1 −pt

−pt p2
t


 ,


 ĝt

ĥt


 =


 ĝt−1

ĥt−1


+ σ−2

e Π−1
t


 1

−pk


(qt − (ĝt−1 − ĥt−1pt)

)
,

which are easily obtained from, say, the Kalman filter equations. XXX

ref? Note that since all distributions are Gaussian, ĝt, ĥt and Πt provide

a complete description of the distributions. They can be interpreted as a

system state, with the stochastic state transition being controlled by the

prices.

7 Static policy

If the prices are decided a priori, that is if pt is not a function of q1, . . . , qt−1,

the expected period t profit is

E (Rt(pt)) = −ĝ0c+ (ĝ0 + cĥ0)pt − ĥ0p
2
t .

The price that maximizes this is

pm
1 =

ĝ0 + cĥ0

2ĥ0

,
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(for the justification of the sub- and superscript see the myopic policy next).

Replacing this in the expression for R, we get

Rt(pm
1 ) = −h

(
ĝ0 + cĥ0

2ĥ0

)2

+ (g − ch)
ĝ0 + cĥ0

2ĥ0

− cg − cet,

the expected value of which is

E (Rt(pm
0 )) =

1
4ĥ0

(
ĝ0 + cĥ0

)2 − cĝ0.

We call this a static (or naive, or dumb) policy in the sense that it does

not make use of new information about the demand function that becomes

available through the observation of qt, so that the prices for all time peri-

ods are determined a priori, before the first period. Note that in the full

information case the static policy is optimal (i.e., if ĝ0 = g and ĥ0 = h,

which can also be stated as Π−1
0 = 0).

8 Myopic policy

The expected period t profit, given the information available up to t − 1, is

E (Rt(pt) | t − 1) = −ĝt−1c+ (ĝt−1 + cĥt−1)pt − ĥt−1p
2
t .

The price that maximizes this is

pm
t =

ĝt−1 + cĥt−1

2ĥt−1

where the superscript stands for myopic. In fact, among all feasible policies,

this is the one that, at each period, maximizes the immediate expected profit.

No attention is paid to the effect of prices on the a posteriori distribution, nor
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to the consequent effects on the expected profits in future periods. Another

way to describe this is to note that, while learning occurs, there is no design

for learning. That is, no effort is made to select prices that are informative

about the demand function coefficients. Using pm
t in the expression for R,

we get

Rt(pm
t ) = −h

(
ĝt−1 + cĥt−1

2ĥt−1

)2

+ (g − ch)
ĝt−1 + cĥt−1

2ĥt−1

− cg − cet,

the expected value of which is

E (Rt(pm
t ) | t − 1) =

1
4ĥt−1

(
ĝt−1 + cĥt−1

)2 − cĝt−1.

In the full information case the myopic policy is optimal, and equal to the

static policy.

9 Myopic policy with dithering

Consider now a simple modification of the myopic policy, which consists

in adding a random perturbation to the price. The motivation behind the

use of such a randomized policy is that price variations will “excite” the

learning process. More specifically, they will make the information matrix

well-conditioned. In fact, as we will see later, it is desirable that the infor-

mation be large in the sense of having a large minimum eigenvalue.

Consider a simple numerical example. The number of products is n = 10,

and the number of pricing periods is T = 20. The expected revenue for a

range of dithering amplitudes was estimated by Monte Carlo simulation.

Figure 1 shows the results, with the log10 of the dithering amplitude on the
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Figure 1: Myopic policy with dithering, profit as a function of the log of the dithering

level.

horizontal axis. The vertical axis shows the expected profit (a large number

of trials was run and error bars are omitted on account of their very small

height).

The upper horizontal line represents the profit that could be expected

if full information about the demand was available (that is, if g and h were

known). The bottom horizontal line represents the expected profit for the

static policy. The curve shows the expected profit for the myopic policy with

dithering. Note that the leftmost end of the curve has close to no dithering at

all, and therefore shows the results for the myopic policy without dithering.
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As the dithering level is increased, the learning is improved, leading to higher

profits. Note the apparently counter-intuitive result: profits are increased

by adding a random, independent term to the prices. If too much dithering

is added, a very accurate knowledge of demand can be obtained, but at the

cost of very unprofitable prices. The critical problem lies in determining

what the best level of dithering is, which may be difficult to do a priori.

The best dithering level, and the increase in profit that can be achieved

by the introduction of dithering, depend in nontrivial ways on the problem

parameters (the prior distributions and the demand noise level). In any

case, the general form of the curve is as shown. The conclusion then, is that

the introduction of price variations, in this framework, is rationally justified

(assuming, of course, that the information processing ability exists in order

to learn from such variations).

Mirman et al. [MSU93] derive conditions for when it is justified to experi-

ment in a 2-period setting (in our next example of Figure 2, this corresponds

to determining when is the maximum not achieved at the myopic price of

0.5).

We next turn to the problem of computing more efficient, nonrandom

perturbations.

10 A two period example

Consider an example with one product and two time periods. The optimal

price for the second (and last) period is, of course, the myopic price. With
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Figure 2: Two period example, expected profit as function of first-period price.

the second-period price selected in this manner, Figure 2 plots the total

expected revenue as a function of the first-period price.

In this example, the myopic first-period price is 0.5. It is clearly seen that

the myopic price is not optimal for the first period. In fact, a small deviation

in either direction generates information about the demand slope, without a

significant reduction in the first period profit. This extra information pays

off, on average, allowing for more accurate pricing in the second-period, and

increased profit.

The shape of the curve depends on the available a priori information. In

this example, we assume that accurate information exists about the value

of the demand at the myopic price level, but that the slope of the demand
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function around this point is more uncertain. This is a likely scenario if the

information about the demand function has been obtained from a number

of previous pricing periods where the price was kept (nearly) constant. The

curve in Figure 2 was obtained by Monte Carlo simulation (error bars are

omitted on account of their very small height).

11 Dynamic program

The exact solution to the optimal pricing problem is given by the following

dynamic program, of which we omit the derivation:

Vt (p1, . . . , pt−1) = inf
pt

E( (pt − c) (g − hpt + et) + δ Vt+1 (p1, . . . , pt) | t − 1 ),

for t = 1, . . . , T , and VT+1 = 0. The expectation conditioned on t−1 denotes
conditioning on q1, . . . , qt−1 (recall that pt is restricted to be measurable

σ(q1, . . . , qt−1)). Note that, in general, Vt is a very complicated function of

p1, . . . , pt−1. In fact, the conditional expectation depends on the a posteriori

distribution of g and h, which depends on all the previous prices. The

optimal objective is V1, and the optimal prices are given by

p∗t = arginf
pt

E( (pt − c) (g − hpt + et) + δ Vt+1 (p1, . . . , pt) | t − 1 ).

The general procedure for the derivation of the dynamic program for a simi-

lar problem is described in more detail in Lobo and Boyd [LB99], which also

discusses in more detail how a convex approximation of the type presented

next relates to the dynamic program.
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While this problem can be solved by traditional stochastic programming

methods, for more than very few time periods (or for multiple products,)

such an approach quiclkly becomes numerically intractable. Several ap-

proximate dynamic programming procedures are available. We will however

derive a specific approximation for this problem. This is in part motivated

by the desire better to understand the structure of the problem. Further,

fast and effective methods will be required if we wish to be able to eventually

solve large practical problem,

12 Convex approximation

We now propose a computationally tractable convex approximation of the

dynamic program. Without loss of generality, we simplify notation by as-

suming the current time period to be t = 1, and the horizon to be T . That

is, we only seek to approximate p∗1. Note that, for Gaussian distributions,

ĝ1, ĥ1, and Π1 are sufficient statistics for the demand function coefficients.

They can be interpreted as the state of a Markov system, so that at time

period t = 2 we do not need to know p1 nor q1 to determine the optimal

price p∗2. Therefore, the problem at time t = 2 can be solved by changing

the time index to t′ = t− 1 (so that the current time is t′ = 1), by reducing

the horizon to T ′ = T − 1, and by using as the a priori distribution ĝ′0 = ĝ1,

ĥ′
0 = ĥ1, and Π′

0 = Π1.

We consider an alternative, more convenient formulation of the problem.

Instead of maximizing the expected profit, we minimize the expected profit
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loss relative to the full information case. That is, we wish to minimize

E
( T∑

t=1

δt−1
(
Rt(pf)− Rt(pt)

) )
,

where the full-information optimal price is

pf =
g + ch

2h
,

and, as before, the minimization is over the set of feasible policies. Note that

E
(
Rt

(
pf
))
is a constant. Using the expected profit under full information

in this manner as a reference point provides for simpler and more elegant

formulas.

Now, divide the profit loss into two terms:

Rt(pf)− Rt(pt) =
(
Rt(pf)− Rt(pm

t )
)

︸ ︷︷ ︸
1

+(Rt(pm
t )− Rt(pt))︸ ︷︷ ︸

2

,

where pm
t is the myopic price, as described in §8. We consider each of these

terms in turn.

The first term is the difference in period profit, between full information

and partial information under myopic pricing. It is a lower bound on the

period profit loss due to incomplete information. With the appropriate

substitutions, we find this term to be:

Rt(pf)− Rt(pm
t ) =

=
(
1
4h
(g + ch)2 − cg − cet

)
−

−h

(
ĝt−1 + cĥt−1

2ĥt−1

)2

+ (g − ch)
ĝt−1 + cĥt−1

2ĥt−1

− cg − cet




=
h

4

(
g + ch

h
− ĝt−1 + cĥt−1

ĥt−1

)2

=
h

4

(
g

h
− ĝt−1

ĥt−1

)2

.
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Expanding (g/h − ĝt−1/ĥt−1)2 in Taylor series to second order around ĝt−1

and ĥt−1, we get:

Rt(pf)−Rt(pm
t ) ≈ h

4

(
1

ĥ2
t−1

(g − ĝt−1)2 +
ĝ2
t−1

ĥ4
t−1

(h − ĥt−1)2 − 2 ĝt−1

ĥ3
t−1

(g − ĝt−1)(h − ĥt−1)

)
.

And it is easily seen that the conditional expectation of this expression,

given the information available up to period t − 1, is equal to:

E
(
Rt(pf)− Rt(pm

t )
∣∣∣ t − 1) ≈ 1

4ĥt−1

[
1 −ĝt−1/ĥt−1

]
Π−1

t−1


 1

−ĝt−1/ĥt−1


 .

We may call this term the cost of ignorance. Note that a large minimum

eigenvalue of Πt−1 guarantees this term to be small. While the expression

may seem complicated, once we linearize Πt−1 in the prices, it becomes

convex. The information matrix Πt is approximated by a matrix Pt linear

in the prices, which is given by

Pt = Pt−1 + σ−2
e


 1 −pt

−pt 2pr
tpt − (pr

t)
2




for t = 1, . . . , T , and P0 = Π0. The pr
t are a sequence of reference prices,

around which the linearization is performed. If only relatively small price

deviations are introduced for the purpose of improving the learning process,

the approximation can be expected to be accurate.

With this procedure, the cost of ignorance is approximated by a con-

vex matrix-fractional expression. Naturally, the question arises as to why

should the information matrix be linearized, and not, say, the whole expres-

sion. Or why not use a second order expansion of the whole expression?
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In practice, the approximation given here is observed to be accurate over a

much larger set. This can be understood by noting that its structure is more

closely related to the original function than is the case for the alternative

approximations, but more analysis work needs to be done in this direction.

Consider now the second term. Writing pt = pm
t + pd

t , its conditional

expectation is

E (Rt(pm
t )− Rt(pt)| t − 1) = E

(
Rt(pm

t )− Rt(pm
t + pd

t )
∣∣∣ t − 1)

= −(ĝt−1 + cĥt−1)pd
t + ĥt−1

(
2pm

t pd
t + (p

d
t )

2
)

= −(ĝt−1 + cĥt−1)pd
t + ĥt−1

(
ĝt−1 + cĥt−1

ĥt−1

pd
t + (p

d
t )

2

)

= ĥt−1

(
pd

t

)2

= ĥt−1 (pt − pm
t )

2 .

This is convex quadratic in the price and can be called the cost of experi-

mentation, since it penalizes the deviations from the myopic price which are

introduced to improve learning.

The total expected profit loss is approximated by:

E
(
Rt(pf)− Rt(pt)

∣∣∣ t − 1) ≈ 1
4ĥt−1

[
1 − ĝt−1/ĥt−1

]
P−1

t−1


 1

−ĝt−1/ĥt−1




︸ ︷︷ ︸
1

+ ĥt−1 (pt − pm
t )

2︸ ︷︷ ︸
2

,

where Pt is as above (linear in pt). The two terms in the expected profit

loss are: 1) the cost of ignorance, and 2) the cost of experimentation. The

approximation can be expected to be tight for Πt−1 large, and for the pt

close to the reference price sequence pr
t and close to the myopic prices pm

t .
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Now, by the tower property of conditional expectation,

E
(
Rt(pf)− Rt(pt)

)
= E

(
E
(
Rt(pf)− Rt(pt)

∣∣∣ t − 1)) .

Note that ĝt−1, ĥt−1, and pm
t are random variables whose distributions de-

pend non-trivially on the prices p1, . . . , pt−1. We now make a key approx-

imation that permits the crucial simplification of the dynamic program:

ĝt−1 = ĝ0 and ĥt−1 = ĥ0, (and, therefore, pm
t = pm

1 ). The informal jus-

tification for this approximation is as follows: we assume that changes in

the information matrix are more important in determining the expected

loss of profit in future periods than are the eventual changes in the esti-

mates of the demand coefficients. Or, similarly: we assume that changes in

the coefficient estimates will not significantly affect the future value of the

information collected now. These arguments are supported by numerical

experiments described later in this paper, and to some extent by analysis,

and are further discussed in Lobo and Boyd [LB99].

The overal objective is then

E
( T∑

t=1

δt−1
(
Rt(pf)− Rt(pt)

) )
≈

≈
T∑

t=1

δt−1


 1
4ĥ0

[
1 − ĝ0/ĥ0

]
P−1

t−1


 1

−ĝ0/ĥ0


+ ĥ0 (pt − pm

1 )
2


 ,

which is to be minimized over the set of feasible policies. We may write this

as a dynamic program, as in §11. However, given the last approximation,
we are now able to drop the conditional expectations and group all the inf
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operators:

pa
1 = arginf

p1

inf
p2

· · · inf
pT

T∑
t=1

δt−1


 1
4ĥ0

[
1 − ĝ0/ĥ0

]
P−1

t−1


 1

−ĝ0/ĥ0


+ ĥ0 (pt − pm

1 )
2


 .

Using Schur complements, we see that the optimal price for the approxi-

mation can be obtained from the solution of the semidefinite and quadratic

program:

minimize
∑T

t=1 δt−1 (αt + βt)

subject to


4 ĥ0 αt 1 −ĝ0/ĥ0

1 Π1,1
0 + σ−2

e (t − 1) Π1,2
0 − σ−2

e

∑t−1
k=1 pk

−ĝ0/ĥ0 Π2,1
0 − σ−2

e

∑t−1
k=1 pk Π2,2

0 + σ−2
e

∑t−1
k=1

(
2pr

kpk − (pr
k)

2
)



	 0, t = 1, . . . , T

ĥ0 (pt − pm
1 )

2 ≤ βt, t = 1, . . . , T.

The auxiliary variables α1, . . . , αT ∈ R and β1, . . . , βT ∈ R upper bound the

matrix-fractional and quadratic terms, respectively. This convex program

can be solved globally and efficiently.

In practice, most of the approximation error arises from the linearization

of the information matrix. This can be remediated by a simple iterative pro-

cedure, as follows. After solving the program, the optimal sequence obtained

is used as a new reference sequence. The linearization is then be repeated,

and the program resolved. This is repeated until the optimal/reference

sequence converges. In our numerical experiments, convergence always oc-

cured after a small number of iterations. The minimum found, of course, is

not guaranteed to be global.
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A final question concerns the selection of the initial reference sequence

pr
t. The most obvious pick is the myopic price pm

1 . This turns out to be a bad

choice in most circumstances, since it corresponds to an unstable equilibrium

point in the iterative relinearization procedure. In the examples that follow,

we used the myopic price with the addition of a random perturbation. This

is similar to the prices generated by a myopic policy with dithering, and was

quite effective in our numerical experiments. In fact, another interpretation

is that we are adjusting a dithering policy, to make it as efficient as possible,

and to obtain the right balance between informativeness and immediate

revenue.

13 Simulation results

We consider the pricing of one product, over T = 10 periods. As in the

previous examples, the a priori distribution was selected such that accurate

information exists about the value of the demand at the myopic price level,

and such that the slope of the demand function around this point is more

uncertain.

Figure 3, compares the expected profit under different policies, obtained

by Monte Carlo simulation, with the corresponding error range. Bar S is the

result for the static policy, and bar M for the myopic policy with learning.

BarsD1 toD7 are the results for the dithering policy, with different dithering

levels (starting at 0.01, with factor increments of 101/4). Note that while

dithering can significantly improve results, an excessive amount of dithering
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Figure 3: Comparison of different policies by Monte Carlo simulation, expected revenue.

quickly becomes very costly. Bar A is the result for the approximation

of the dynamic program. (The expected profit under full informattion is

approximately 1.285).

The amount of gain to be had from using a policy more sophisticated

than the myopic policy depends in a nontrivial way on the problem data:

the a priori distribution of the demand function coefficients, the variance

σ2
e of the random demand perturbations, the horizon T , and the discount

factor δ.

Figure 4 shows an example of the optimal price sequence obtained by the

approximation procedure described in §12. The horizon was T = 20, and

the vertical axis is the deviation from the myopic price. Note that, except

24



0 5 10 15 20 25
−0.035

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

t

p
d t

Figure 4: Optimal reference price sequence at t = 1 (deviation from myopic price).

for the first price, these are not the actual prices set in each period, but

only the reference sequence obtained by the optimization procedure in the

first period. The prices in future periods (as well as the reference sequence)

will be adjusted to account for the information obtained from the demand

observed in each period.

Figure 5, shows the first-period price deviation from the myopic price

as a function of σ2
e (the variance of the “demand noise”). This curve has a

quite intuitive explanation. For a large noise, the optimal deviation is zero

because learning is then very difficult. Any significant learning could only be

achieved at the cost of very high deviations, and the consequent immediate

loss of profit would not be warranted. Below a certain noise level, it starts
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Figure 5: Effect of demand noise variance σ2
e (results from convex approximation). Top:

Optimal first-period price, deviation from myopic price. Bottom: Expected profit loss,

relative to pricing under full information.

to pay off to introduce price deviations, to improve the knowledge of the

demand and increase future profits. For medium noise, large deviations in

the price are needed to obtain significant information, while with small noise,

smaller deviations suffice. Of course, this analysis assumes other factors held

constant.
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14 Extensions and conclusion

Several extensions merit consideration:

• Competition. The model can be extended to an oligopoly setting, with

optimization problem solved jointly for n firms. Such a demand model

can account for a linear substitution effect, but cannot handle perfect

substitutes.

• The n-product problem. As mentioned before, the n-product problem

is a trivial extension, with the model accounting for substitution and

complementarity effects. The price elasticity of demand is now an n-

by-n matrix, which can be assumed positive definite. If this matrix

is not diagonal dominant (i.e., if there are significant complementary

and substitution effects), the expected percentual revenue loss due to

innacurate estimation of the elasticity can be shown to be much greater

than for the 1-product case. That is, the scope for gain by using

policies with active learning greatly increases when a larger number of

products is considered jointly.

• Time-varying demand function. The model can be extended by letting

the demand function coefficients change in a random walk-like fashion

(or any other linear stochastic dynamics). Change in slope can be

interpreted as a change in preferences, and a change in the intersect

as a change in market size. (Competition is another source for such

“external shocks”; questions of strategic interaction, however, are not
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considered in this framework.) The resulting expression for the infor-

mation matrix Πt can be linearized as before, and the same policies

considered. As expected, a stochastic drift reduces the future value

of information obtained now. Hence, the effect of a randomly chang-

ing demand on the optimal policy is similar to the effect of reducing

the horizon considered in the static demand case (i.e., the number of

pricing periods).

• Non-linear demand models. A commonly used model is that of a mul-

tiplicative demand function, where the exponents are the estimated

parameters. If we consider multiplicative log-normal perturbations,

we can work with the logarithms of price and demand to obtain the

analogous policies for such models. A significant literature on aggre-

gate demand models exists that can be drawn upon.

• Marketing and quality variables. Marketing and quality variables can

be added to the model (assuming, as for the prices, that they are

observable).

Price variations observed in a market can, in part, be explained by ra-

tional learning behavior by firms. We have explored some properties of

the optimal learning behavior with a simple model. A goal of this work

has been to develop approximate solutions to the optimal pricing policy

that can be computed in reasonable time by exploiting convex optimization

methods. The availability of efficient optimization algorithms for large-scale

non-linear convex problems makes practicable a class of policies based on

28



online optimization. The framework used to develop these approximations

can be extended for a wider range of problems with practical application.
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