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Abstract

This paper reports the first laboratory study of the swing voter’s curse and provides insights
on the larger theoretical and empirical literature on "pivotal voter" models. Our experiment
controls for different information levels of voters, as well as the size of the electorate, the distri-
bution of preferences, and other theoretically relevant parameters. The design varies the share
of partisan voters and the prior belief about a payoff relevant state of the world. Our results
support the equilibrium predictions of the Feddersen-Pesendorfer model. The voters act as if
they are aware of the swing voter’s curse and adjust their behavior to compensate. While the
compensation is not complete and there is some heterogeneity in individual behavior, we find
that aggregate outcomes, such as efficiency, turnout, and margin of victory, closely track the
theoretical predictions.



Voter turnout has traditionally proven difficult to explain. Rational models highlight the

fact that the incentives to participate in an election depend on the probability of being pivotal.

If voting is costly, then significant turnout in large elections is inconsistent with equilibrium

behavior (see Ledyard [1984] and Palfrey and Rosenthal [1983, 1985]). If voting is costless, then

abstention is a dominated choice. However, this is also inconsistent with observed behavior.

Voters often selectively abstain in the same election—Feddersen and Pesendorfer [1996] report

that almost 1 million voters participated in the 1994 Illinois gubernatorial contest but abstained

on the state constitutional amendment listed on the same ballot, even though the amendment

was listed first. Crain, et al. [1987] report that in the 1982 midterm elections turnout levels

averaged 3% higher for the Senate contests in those states with such contests than the House

races that were on the same ballot. In seven of the 219 races they studied, the difference in

turnout was larger than the margin of victory in the House race, suggesting that voters were

abstaining even in close contests.1 Assuming that voting is virtually costless when already in

the ballot booth, this seems irrational.

Feddersen and Pesendorfer [1996] show that these large abstention rates can be explained

even if the cost of voting is zero if there is asymmetric information, thereby rationalizing such

behavior. They draw an analogy between the voters’ problem and the “winner’s curse” observed

among bidders in an auction (see Kagel and Levin [2005] and Thaler [1996]).2 A poorly

informed voter may be better off in equilibrium to leave the decision to informed voters because

his uninformed vote may go against their choice and could decide the outcome in the wrong

direction. The voter, therefore, may rationally “delegate” the decision to more informed voters

1They omitted states with gubernatorial contests to focus on the choice whether to vote in both the Senate
and House races. Wattenberg, et al. [2000] report that in the 1994 California election 8% of those who voted for
governor abstained in state legislative elections and over 35% abstained on state supreme court judicial retention
votes. They note that the pattern of abstention appears independent of ballot order, with the abstention of those
who voted in the governors’ race only 2% on two ballot propositions which were seven ballot positions below the
judicial retention elections.

2By this term, economists refer to the phenomenon in which bidders in a common value auction overbid with
respect to what would be optimal in equilibrium. This occurs because they do not realize that, conditional on
winning, the expected value of the object is lower than ex ante. A bidder wins precisely when his or her estimated
value of the object for sale is inflated relative to other bidders’ estimates, and hence relative to actual value.
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by abstaining even if voting is costless. Feddersen and Pesendorfer [1996] name this phenomenon

the swing voter’s curse.

This theory explains some empirical facts, but it remains—along with rational theories of vot-

ing more generally—highly controversial (see Feddersen [2004] for a recent discussion). Empirical

evidence has been produced both in favor and against rational voter theories, especially when

compared to the assumption that voters act naively and ignore strategic considerations.3 None

of these results, however, are conclusive, partly because field data sets are not rich enough to

identify all the variables that may affect voters’ decisions. This is especially true for tests of

rational theories of voting based on asymmetric information, such as the swing voter’s curse.

To overcome the problems with field data, in this paper reports the first laboratory study of

the swing voter’s curse. The laboratory setting allows us to control and directly observe the level

of information of different voters, as well as preferences, voting costs, and other theoretically

relevant parameters. We find strong support for the theory. In a common value environment

where all voters have the same preferences but are asymmetrically informed, poorly informed

voters always strategically abstain when both outcomes are equally likely, delegating their votes

to more informed voters. When a partisan bias is introduced -i.e., some voters’ preferences favor

a given candidate independently from private information- uninformed voters vote strategically

to balance out the partisans’ votes, thus increasing the probability of voting as partisan bias

increases. The main comparative static predictions of the model are tested: as key parameters

of the environment change, the fraction of voters who vote against the partisan bias tracks very

closely the equilibrium predictions. Even when the partisan-favored outcome is the more ex ante

likely outcome, we find most voters balancing in this way by voting against their prior beliefs.

These results are supported at both the aggregate and individual level and across sessions and

treatment configurations.

3Feddersen [2004] reviews this literature. Matsusaka and Palda [1999], based on an extensive study of turnout
decisions using both survey and aggregate data, contend that strategic theories of voter turnout provide little
explanatory power in explaining voter choices and that turnout decisions appear to be random. Coate, et al.
[2006] propose a simple model of expressive voting, and argue that it explains turnout in local Texas referenda
better than the standard pivotal voting model.
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Our results, however, provide insights on the larger “pivotal-voter” literature.4 Among

other things, we find that turnout and margin of victory both increase with the number of

informed voters and that there is a positive relationship between these two variables, contrary

to the common view that rational models of turnout should predict that closeness and turnout

are positively related. These results suggest that tests using field data of whether turnout is

related to closeness, which are unable to control for information asymmetries, are inadequate or

at best very weak tests of rational voting models.

Although there is a growing literature testing predictions of voting models, our attempt to

test the pivotal voting model of turnout and behavior using laboratory experiments is signifi-

cantly different from previous experiments which have primarily focused on cases where infor-

mation is symmetric and voting is costly.5 Much less experimental work has been done with

models with asymmetric information. Guarnaschelli, McKelvey, and Palfrey [2000] test Fedder-

sen and Pesendorfer Jury’s model (Feddersen and Pesendorfer [1998]) and focus on information

aggregation in small committees. They rule out abstention by assumption, and therefore do

not provide evidence on participation. Battaglini, Morton, and Palfrey [2007] study sequential

voting in a similar model but allow abstention. However, all voters are equally well informed.

A significant non-experimental empirical literature on turnout exists and a number of these

studies attempt to test the pivotal voter model on large elections or a variant of the model

as augmented by group and/or ethical motivations for voting (see, for example, Hansen, et al.

[1987], Filer, et al. [1993], Shachar and Nalebuff [1999], Coate and Conlin [2004], Noury [2004],

4This literature includes the earlier models with symmetric information and costly voting (Ledyard [1984],
Palfrey and Rosenthal [1983]); asymmetric information and costly voting Palfrey and Rosenthal [1985]); and the
broader theoretical literature that focuses on information aggregation in elections with common or private values
and asymmetric information (Austen-Smith and Banks [1996], Battaglini [2005], Feddersen and Pesendorfer [1997,
1999] and others).

5See Schram and Sonnemans [1996], Cason and Mui [2005], Grosser, et al. [2005] who have studied strate-
gic voters participation in laboratory experiments, focusing on environments with symmetric information and
homogeneous costs. One problem with these early works is that, under these assumptions, voting models may
have many equilibria. Levine and Palfrey [2007] have recently conducted expeirments based on a model with
heterogeneous costs which has a unique equilibrium. They find support for the three primary predictions of
the rational model: (1) turnout declines with the size of the electorate (the size effect); (2) turnout is higher in
elections that are expected to be close (the competition effect); and (3) turnout is higher for voters who prefer
the less popular alternative (the underdog effect).
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and Coate, et al. [2006]). None of these studies are able to evaluate the role of asymmetric

information in explaining abstention and test the swing voter’s curse.

A number of researchers have used variations in voter information in field studies to evaluate

the effect of information on the choice to abstain which suggest support for the swing voter’s curse

(see, for example, Palfrey and Poole [1987], Wattenberg, et al. [2000], and Coupe and Noury

[2004]). The main finding is that turnout is positively correlated with voter information levels,

but this work cannot identify the causal relationship since the demand for political information

may be derived from the decision to participate. Recently researchers have examined the

impact on turnout of changes in political information where political information is arguably

an exogenous variable. McDermott [2005] and Klein and Baum [2001] present evidence that

respondents to surveys during elections are more likely to state preferences when information is

provided to them. Gentzkow [2005] shows that decreases in voter information associated with the

advent to television in U.S. counties is correlated with decreasing voter turnout. Lassen [2005]

examined turnout in a Copenhagen election where residents of four of the city’s fifteen districts

were provided with detailed information about the choices in an upcoming referendum. He finds

that voters provided with more information were more likely to participate. Lassen concedes

that there are alternative possible explanations for the relationship between information and

turnout, and field data may not be accurate enough to identify the correct theory: “The natural

experiment used here does not allow for distinguishing between the decision-theoretic and game-

theoretic approaches ....; this may call for careful laboratory experiments, as the predictions of

the models differ in only subtle ways that can be difficult to accommodate in even random social

experiments..” (p. 116). Our controlled laboratory experiment precisely allows us to put under

scrutiny these subtle differences between the swing voter’s curse and other alternative theories.
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I THE MODEL

We consider a game with a set of N voters who deliberate by majority rule. There are two

alternatives A, B and two states of the world: in the first state A is optimal and in the second

state B is optimal. Without loss of generality, we label A the first state and B the second. A

number n ≤ N of the voters are independent voters. These voters have identical preferences

represented by a utility function u(x, θ) that is a function of the state of the world θ ∈ {A,B}

and the action x ∈ {A,B}:

u(A,A) = u(B,B) = 1

u(A,B) = u(B,A) = 0

State A has a prior probability π ≥ 1
2 . The true state of the world is unknown, but each voter

may receive an informative signal. We assume that signals of different agents are conditionally

independent. The signal can take three values a, b, and ∅ with probabilities:

Pr(a |A) = Pr(b |B ) = p and Pr(∅ |A) = Pr(∅ |B ) = 1− p

The agent, therefore, is perfectly informed on the state of the world with probability p (i.e.,

observes a or b) and has no information with probability 1−p (i.e., observes ∅). The remaining

m = N −n voters are partisan voters. We assume that the partisans strictly prefer policy A in

all states. For convenience we assume that m is even, n is odd and m ≤ n− 3.6

After swing voters have seen their private signal, all voters vote or abstain simultaneously.

Each voter can vote for A, vote for B, or abstain. The policy choice with the majority of

votes cast wins and ties are broken randomly. In any equilibrium, the independent voters who

receive an informative signal always strictly prefer the state that matches their signal; and the

partisans always strictly prefer state A: in any equilibrium, therefore independents would always

vote for the state suggested by their signal, and partisans would always vote for A. We can
6These assumptions are made only to simplify the notation. In Feddersen and Pesendorfer [1996] m is random

variable; however, since they focus the analysis on the limit case in which n→∞, the realized fraction of partisan
voters is constant by the Law of Large Numbers in their model.
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therefore focus on the behavior of the uninformed agents. Let σiA, σ
i
B, and σiφ be respectively

the probability that an uninformed agents votes for A, B and abstains. An equilibrium of this

game is symmetric if agents with the same signal use the same strategy: σi = σ for all i. We

analyze symmetric equilibria in which agents do not use weakly dominated strategies and we

will refer to them simply as equilibria.

II THE VOTING EQUILIBRIUM

In this section we characterize the equilibria of the voting game, and the equilibrium is unique

for the experimental parameters. Contrary to Feddersen and Pesendorfer [1996] and other

previous results in the literature, we do not limit the analysis to asymptotic results that hold

as the size of the electorate grows to infinity, but focus on results that hold even for a finite

number of voters. This allows us to test the model directly with an electorate of a size that can

be managed in a laboratory. Formal proofs of all the results appear in an Appendix.

II.1 No Partisan Bias

We first consider the benchmark case in which all the voters have the same common value, so

m = 0.

Lemma 1 Let m = 0. If π = 1
2 , then σA = σB; if π > 1

2 , then σA ≥ σB.

The intuition of this result is as follows. If the uniformed voters are voting for, say B, with

higher probability, then if pivotal it is more likely that alternative A has attracted more votes

from informed voters. If this is the case, then conditioning on the pivotal event, alternative

A is more attractive to an uninformed independent, and none of them would vote for B, a

contradiction.

Though this result provides testable predictions, it can be made more precise:

Proposition 1 Let m = 0. If π = 1
2 , then σA = σB = 0; if π > 1

2 , then σA ≥ σB = 0.
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This is a particular form of the Swing Voters’ Curse. To see the intuition behind it, suppose

the prior is π = 1
2 . If an uninformed voter were to choose in isolation, he would be indifferent

between the two options A or B. When voting in a group, however, he knows that with positive

probability some other voter is informed. By voting, he risks voting against this more informed

voter. So, since he has the same preferences of this informed voter and he is otherwise indifferent

among the alternatives because he has no private information on the state, he always finds it

optimal to abstain. When the prior is π > 1
2 , the problem of the voter is more complicated.

In this case the swing voter’s curse is mitigated by the fact that the prior favors one of the two

alternatives. As before, the voter does not want to vote against an informed voter. However,

he is not sure that there is an informed voter: and if no informed voter is voting, he strictly

prefers alternative A since this is ex ante more likely. Thus although the voter never finds it

optimal to vote for B, he may find it optimal to vote for A. The higher is π, the higher is the

incentive to vote for A; the higher is p (i.e. the probability that there are other informed voters),

the lower is the incentive to vote. For any p, if π > 1
2 is not too high, the voter abstains.

From Proposition 1 we know that when π ≥ 1
2 a voter would never vote for B if m = 0,

so σB = 0. Given this, the expected utility of an uninformed voter from voting for A, and

therefore σA, can be easily computed. Let uA and uφ be respectively the expected utilities of

voting for A and abstaining for an uniformed voter, expressed as functions of the probabilities

of pivotal events, which in turn depend on σ. Let P0 denote the event when there is a tie among

the other voters between A and B; and let PA denote the event in which policy A is losing to B

by one vote. The difference between the expected utility of voting for A and the expected utility

of abstaining is:

uA − uφ =
1

2
[πPr (P0 |A)− (1− π) Pr (P0 |B )] (1)

+
1

2
[πPr (PA |A)− (1− π) Pr (PA |B )]
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where

πPr (P0 |A)− (1− π) Pr (P0 |B )

= π ((1− p) (1− σA))
n−1

− (1− π)

n−1
2X

j=0

⎛⎝ (n− 1)!³
n−1−2j

2

´
!
³
n−1−2j

2

´
!(2j)!

⎞⎠ ((1− p) (1− σA))
2j p

n−1−2j
2 ((1− p)σA)

n−1−2j
2 ,

and

πPr (PA |A)− (1− π) Pr (PA |B )

= − (1− π)

n−3
2X

j=0

⎛⎝ (n− 1)!³
n−(2j+1)

2

´
!
³
n−2−(2j+1)

2

´
! (2j + 1)!

⎞⎠
· ((1− p) (1− σA))

(2j+1) p
n−(2j+1)

2 ((1− p)σA)
n−2−(2j+1)

2 .

since in this case Pr (PA |A) = 0 (in state A no voter ever votes for B). If uninformed voters

mix between voting for A and abstaning in equilibrium, then the equation that gives us σA is:

uA−uφ = 0. From Proposition 1 we know that σA = 0 when π = 1
2 , so we only need to compute

the equation for the case in which π > 1
2 . Equation (1) can be easily computed for specific

parameters. In the following analysis we chose parameters such that σA = σB = 0 when m = 0

even when π > 1
2 .

II.2 Partisan Bias

Let us now consider an environment in which A has a partisan advantage: m > 0 Assume first

that π = 1
2 . In this case the swing voter’s curse is confounded by the bias introduced by the

partisans. Conditioning on the event in which the two alternatives receive the same number of

votes, the voter realizes that it is more likely that B has received some votes from informative

voters because he knows for sure that some of the votes cast in favor of A, coming from partisans,

are uninformative. Indeed, the voter may be willing to vote for B, because doing so offsets a

partisan vote. As in the previous case with m = 0, the voters’ problem is more complicated

when π > 1
2 . In this case the prior probability favors A, so the incentives to vote for B are
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weaker, and a voter will find it optimal to do so only if there are enough informed voters in the

population. This is summarized in the following result:

Lemma 2 Let m > 0. If π = 1
2 ,then σA ≤ σB; if π > 1

2 , then there is a p such that p > p

implies σA ≤ σB.

In this case too this result can be made more precise by showing that no voter would ever

vote for A:

Proposition 2 Let m > 0. If π = 1
2 , or if π > 1

2 and p is large enough, then σB > σA = 0.

The probability with which the uninformed voters vote for B depends on the parameters

of the model, m, p, n, π. For example, the higher is the bias in favor of A, the higher is the

incentive for uninformed voters to offset it by voting for B. The exact probability σB can

be easily computed for specific parameter values when m > 0.7 From Proposition 1 we know

that we only have one variable to determine, σB; and one equation to respect: in a mixed

strategy equilibrium the agent must be indifferent between abstaining and voting for B. This

indifference condition requires that the net expected utility of voting to be zero. We can write

the equilibrium condition as:

uB − uφ =
1

2
[(1− π) Pr (P0 |B )− πPr (P0 |A)] +

1

2
[(1− π) Pr (PB |B )− πPr (PB |A)] = 0

where uB is the expected utility of voting for B for an uninformed voter; (1− π) Pr (P0 |B ) −

πPr (P0 |A) is equal to:

(1− π)

µ
(n− 1)!

(n− 1−m)!m!

¶
((1− p) (1− σB))

n−1−m (p+ (1− p)σB)
m

−π
n−1−m

2X
j=0

⎛⎝ (n− 1)!³
n−1−2j−m

2

´
!
³
n−1−2j+m

2

´
!(2j)!

⎞⎠ ((1− p) (1− σB))
2j ·

·p
n−1−2j−m

2 ((1− p)σB)
n−1−2j+m

2 ,

7The case with m = 0 is not necessary since from Proposition 1 we know that the uninformed voters never
vote for B.
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and (1− π) Pr (PB |B )− πPr (PB |A) is equal to:

(1− π)

µ
(n− 1)!

(n−m)! (m− 1)!

¶
((1− p) (1− σB))

n−m (p+ (1− p)σB)
m−1

−π
n−3−m

2X
j=0

⎛⎝ (n− 1)!³
n−(2j+1)−m

2

´
!
³
n−2−(2j+1)+m

2

´
! (2j + 1)!

⎞⎠
· ((1− p) (1− σB))

(2j+1) p
n−(2j+1)−m

2 ((1− p)σB)
n−2−(2j+1)+m

2 .

Consider the expected utility of voting for B for an uninformed voter when p = 1
4 , n = 7,

π = 0.5,m = 2. We have a unique symmetric equilibrium since the expected utility of voting

for B equals zero only once in the [0, 1] interval. When m = 2, the equilibrium strategy is

σB = 0.36. Correspondingly, when m = 4, we have σB = 0.76.8

In a similar way we can find the equilibrium in the case in which π > 0.5. We have explicitly

computed the equilibrium when π = 5
9 , and the other parameters are as above. In this case

too we have a unique equilibrium in correspondence of which with m = 2, σB = 0.33, and with

m = 4, σB = 0.73. Hence, a small increase in π has a small effect on the equilibrium strategies

and tends to reduce the probability of voting for B.

II.3 Alternative benchmarks

To evaluate the performance of the Swing Voters’ Curse theory, it is useful to test its predictions

about voter behavior as a function of π and m against alternative models of turnout. A natural

benchmark is the non-strategic decision theoretic model (e.g., Matsusaka’s [1995]). This is the

model chosen by Fedderesen and Pesendorfer [1996] and the leading alternative explanation of

the phenomena motivating their theory. The decision theoretic model assumes that agents are

not strategic and do not form expectations conditioning on being pivotal, but choose actions

rationally on the basis of their available information, as in a "decision theoretic" environment, as

if there were no other voters. In Matsusaka’s model, therefore, we would not expect uninformed

voters to vote for B more often when there is a partisan bias as compared to no bias. If voters

8Unless otherwise noted in the paper, we round off to two decimal places.
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vote on the basis of their prior, the change in π from .5 to .55 should induce them to vote for

A, regardless of the partisan bias. This is also consistent with models of expressive voting used

as a benchmark in Coate, et al. [2006].

The decision theoretic model is appealing because it is simple and intuitive: it postulates that

voters vote sincerely, that is according to their individual preferences (as determined by their

information), without consideration of how other voters may be voting, and therefore requires no

strategic sophistication on the part of the voters. This makes it a polar opposite to the Bayesian

Nash equilbirium model proposed by Feddersen and Pesendorfer (1998). Although the political

science literature has not articulated many other models of behavior to explain the swing voter’s

curse phenonenon, recent work in game theory provides a range of intermediate theories between

these extremes: models of partially bounded rationality that modulate the players’ strategic

sophistication from the extreme of complete naivete to fully rational equilibrium behavior. In

Section IV.2, we focus on four approaches that have received particular attention in recent

work: the Level k theories, the Analogy-Based Expectations and Cursed Equilibria, and finally

the Quantal Response Equilibrium. That section describes in detail the predictions of these

models and compares them with the data and the predictions of the swing voter’s curse model.

III EXPERIMENTAL DESIGN

We use controlled laboratory experiments to evaluate the theoretical predictions. Once a specific

parametrization for n, m, and p is chosen, the model described and solved in the previous section

can be directly tested in the lab without changes. All the laboratory experiments used n = 7

and p = 0.25. We used two different treatments for the state of the world: π = 1/2 and π = 5/9

and three different treatments for partisan bias: m = 0, 2, and 4. Table 1 summarizes the

equilibrium strategies for each treatment as derived in the previous section.

In the last row of Table 1 we contrast our theoretical predictions with a simple decision

theoretic model with sincere (non strategic voting) similar to Matsusaka [1995]. Matsusaka as-
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sumes that voters participate for consumption benefits that are independent of whether they are

pivotal, they vote sincerely for the option they most prefer regardless of strategic considerations.

These consumption benefits then are positively related to voters’ certainty over which choices

yield them the highest utility which depends on their information about the choices, but not

about the strategic consequences of their choices. When voters’ are uninformed and therefore

perceive all options as equally good, a sincere voting, decision-theoretic model predicts that they

will abstain, but that more precise information about the value of an option to the individual

increases the probability that they will vote. Thus, in our experimental design, uninformed

sincere, decision-theoretic voters should abstain when π = 0.5, regardless of the size of the par-

tisan bias since they do not care about pivotality and they believe all options are equally good.

When π = 5/9, uninformed sincere, decision-theoretic voters should have a positive probability

of voting for a since their belief is that a has a higher probability than b of yielding them a

higher utility and a zero probability of voting for b, regardless of the size of the partisan bias

(since they do not vote strategically based on whether their votes are pivotal).

Table 1: Equilibrium Strategies for Uninformed Voters
Probability of State a

Partisan Bias π = 1/2 π = 5/9

m = 0 σB = σA = 0 σA = σB = 0

m = 2 σB = 0.36 > σA = 0 σB = 0.33 > σA = 0

m = 4 σB = 0.76 > σA = 0 σB = 0.73 > σA = 0

Decision-Theoretic, Sincere Voters σB = σA = 0 σA > σB = 0

We acknowledge, however, that most research that assumes sincere, decision-theoretic voting

implicitly also assumes that voters have little information about the strategic consequences of

their votes such as the precise number of partisans in the electorate and that sincere, decision-

theoretic voting is a consequence of that lack of information rather than a response in the face

of information on strategic consequences of a vote. Thus, our analysis cannot reject sincere,

decision-theoretic voting due to a lack of information on strategic consequences in the electorate

at large and can only speak to the predictive power of the decision-theoretic model when such

information is available to voters.
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The experiments were all conducted at the Princeton Laboratory for Experimental Social

Science and used registered students from Princeton University. Each experiment was divided

into three parts, each of which lasted for 10 periods. All three parts used the same value of

π, but used different values of m = 0, 2, and 4. We varied the sequence of m in the different

parts in order to provide some control for learning effects, using a within subjects design. Five

different sequences were conducted. Each subject participated in exactly one sequence.

The experiment was conducted in seven sessions. In five sessions 14 subjects participated;

in two sessions 7 subjects participated for a total of 84 distinct subjects.9 In sessions with 14

participants, subjects were randomly divided into groups of seven for each period. In sessions

with 7 participants, subjects comprised a single voting group for all periods. Table 2 summarizes

the sequences and values of π by session.

Table 2: Sequences and π by Session
Session Sequence π Number
1 m = (2, 4, 0) 1/2 14

2 m = (4, 2, 0) 1/2 14

3 m = (0, 4, 2) 5/9 14

4 m = (0, 2, 4) 5/9 14

5 m = (4, 0, 2) 5/9 14

6 m = (4, 2, 0) 5/9 7

7 m = (4, 2, 0) 5/9 7

Instructions were read aloud and subjects were required to correctly answer all questions on

a short comprehension quiz before the experiment was conducted. Subjects were also provided

a summary sheet about the rules of the experiment which they could consult. A copy of the ex-

perimental instructions is available online at http://www.hss.caltech.edu/~trp/svc-instruction-

appendix.pdf. The experiments were conducted via computers.10 Subjects were told there were

two possible jars, Jar 1 and Jar 2. Jar 1 contained six white balls and two red; jar 2 contained

six white balls and two yellow. The monitor from the experiment randomly chose a jar for each

group in each period by tossing a fair die according to the value of π in the treatment where jar

9Each session included one additional subject who was paid $20 to serve as a monitor.
10The computer program used was similar to Battaglini, et al. [2005] as an extension to the open source

Multistage game software. See http://multistage.ssel.caltech.edu.

13



1 was equivalent to state A in the model and jar 2 was equivalent to state B in the model.11

The balls were then shuffled in random order on each subject’s computer screen, with the ball

colors hidden. Each subject then privately selected one ball by clicking on it with the mouse

revealing the color of the ball to that subject only. The subject then chose whether to vote for

jar 1, vote for jar 2, or abstain. In the treatments without partisan bias, i.e. m = 0, if the

majority of the votes cast by the group were for the correct jar, each group member, regardless

of whether he or she voted, received a payoff of 80 cents. If the majority of the votes cast by

the group were incorrect guesses, each group member, regardless of whether he or she voted,

received a payoff of 5 cents. Ties were broken randomly. In the treatment with partisan bias,

subjects were told that the computer would cast m votes for jar 1 in each election. This was

repeated for 30 periods, with the variations in sequence, and with the group membership shuffled

randomly after each round for sessions with 14 subjects. Each subject was paid the sum of his

or her earnings over all 30 periods in cash at the end of the experiment. Average earnings were

approximately $20, plus a $10 show-up payment, with each session lasting about 60 minutes.

IV EXPERIMENTAL RESULTS

IV.1 Voter Choices

IV.1.1 Informed Voters

Of the 2,520 voting decisions we observed, in 646 cases (25.63%) subjects were informed, that is,

revealed a red or yellow ball. Across all treatments and sequences, only one of these informed

voters chose incorrectly (voting for the wrong option). The remaining 645 informed subjects, if

revealed a red ball, voted for jar 1 (policy a) and if revealed a yellow ball, voted for jar 2 (policy

b). We interpret this as indicating that all subjects had a least a basic comprehension of the

task.
11We used a 10 sided die with numbers 0-9 when π = 5/9, where numbers 1-5 resulted in state A, numbers 6-9

resulted in state B, and if a number 0 was thrown, the die was thrown until 1-9 appeared.
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IV.1.2 Uninformed Voters

Aggregate Choices Table 3 summarizes the aggregate choices of uninformed voters. In all

treatments we find that uninformed voters abstain in large percentages compared to informed

voters and these differences are significant.

When π = 1/2 we find highly significant evidence that the majority of uninformed voters

alter their voting choices as predicted by the swing voter’s curse theory and contrary to the

decision-theoretic sincere voting theory. When π = 1/2 and m = 0, uninformed voters abstain

91% of the time, vote for a less than one percent of the time, and vote for b 8% of the time.

However, with partisan bias, uninformed voters reduce abstention and increase their probability

of voting for b. The changes are all statistically significant. In the case of m = 4 the observed

voting choices almost perfectly match the equilibium values; in the m = 2 treatment there is

significantly less abstention than predicted by the theory (51% versus 64%).

Table 3: Uninformed Voter Choices
Partisan Bias Observations a b φ

π = 1/2

m = 0 217 0.00 0.08 0.91

m = 2 221 0.06 0.43 0.51

m = 4 206 0.04 0.77 0.19

π = 5/9

m = 0 404 0.20 0.07 0.73

m = 2 410 0.12 0.35 0.53

m = 4 416 0.16 0.56 0.28

We find some support, however, for the sincere, decision-theoretic model of voting when

π = 5/9 as voting for a by uninformed voters is significantly higher than when π = 0.5 for all

values of m. We find also that when we compare π = 5/9 with π = 1/2, uninformed voters

vote b significantly less when m = 2 and m = 4. The direction of this effect is as predicted, but

the size of the effect is larger than predicted. Furthermore, subjects in the π = 5/9 treatments

abstain significantly less than in the π = 1/2 case when m = 0 and m = 4 (which is contrary

to the prediction). The difference is explained by the significantly positive voting for a (also

unpredicted). These differences as we vary π may also reflect sequence ordering effects and
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learning by subjects. We explore these other explanations for these differences in the next

section.

Nevertheless, when π = 5/9 we again find highly significant evidence that uninformed voters

alter their voting choices with higher values of m as predicted by the swing voter’s curse theory

and contrary to the decision-theoretic theory. With partisan bias, the percent of uninformed

voters choosing b increases with m, from 7% to 35% to 56% for m = 0, 2, 4, respectively. All of

these differences are highly significant.

Individual Profiles Our within subject design enables us to compare how each individual

behaves across different treatments of m; that is, as a function of the number of partisans, and

thus we can control for individual specific effects. In Table 4 below we classify the choices of

individuals by their profiles of behavior across values of m. Specifically, we classify individuals

as to which choices they choose a majority of the time given a particular value of m and the

value of π in their session. That is, a subject represented in the first column of percentages of

subjects abstained more than any other choice for all values of m, while a subject represented in

the second column abstained more than any other choice when m = 0 and m = 2, but voted for

b mostly when m = 4.12 Omitted profiles were not observed. The columns highlighted in bold

represent uninformed voter profiles that are overall consistent with the theoretical comparative

static predictions. As we see, the majority of voter profiles can be classified as overall consistent

(76 percent), although more so when π = 1/2 (89 percent) than when π = 5/9 (70 percent).

Thus, we find that at the individual level, subjects overall voting patterns are consistent with the

observed aggregate voting patterns, which behavior largely consistent with the theory although

less so when π = 5/9.

12 If a subject tied in a classification, we classified him or her as abstaining mostly.
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Table 4: Percentages of Uninformed Voter Profiles
(Omitted Profiles Not Observed, Bold Consistent)

∅ = Mostly Abstain, a = Mostly Vote a, b = Mostly Vote b
m = 0 ∅ a or b
m = 2 ∅ b a ∅ b a

m = 4 ∅ b a ∅ b a ∅ b ∅ b b a b a

π = 1/2 21 32 0 0 36 4 0 0 0 0 0 0 4 0
π = 5/9 18 25 4 2 25 0 4 2 5 2 4 4 0 7
Total 19 27 2 1 29 1 2 1 4 1 4 2 1 5

IV.2 Learning Effects

Each subject participated in exactly one session with three different m-treatments, each in a

sequence of 10 different committees. Our within subjects design allows us to better measure the

effects of varyingm while holding subject specific factors constant, as illustrated in the individual

analysis of the previous section. We also varied the sequences in which subjects experienced

different values of m in order to balance out any learning effects that may arise from experience

with the committee voting task across all 30 committees a subject experienced. These features

of the experimental design enable us to examine three kinds of learning effects. First, we can

examine whether subjects learn within a treatment. That is, are there any systematic trends

toward or away from the equilibrium predictions? Second, we can see whether there is any

significant learning by a subject over the course of the entire set of 30 committees in which they

participated. Third, we can ask whether there are any important cross-treatment effects. That

is, are the findings reported in the previous section robust to the sequencing of treatments in

a session? We address the robustness question first because it is especially relevant given that

different sequences were used for different sessions.13

IV.2.1 Sequencing effects

Are the findings reported in the previous section robust to the sequencing of treatments in a

session? Table 5 displays choice behavior of uninformed voters, broken down by session and

13We are grateful to an anonymous referee of an earlier version for suggesting that that the findings of the study
would be more convincing if they did not depend on the treatment sequence, and if we obtained more data from
different sequences. Two additional sequences for the π = .55 committees ((4,0,2) and (4,2,0)) were added to the
design in response to this concern about robustness.
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treatment.

Table 5: Percentage Uninformed Choices by Sequence
Voting for a is the Omitted Category

m = 0 m = 2 m = 4

Sequence π ∅ b Obs. ∅ b Obs. ∅ b Obs.
(2, 4, 0) 1/2 92 7 111 54 38 112 18 80 99
(4, 2, 0) 1/2 90 9 106 49 48 109 20 75 107
(0, 4, 2) 5/9 67 3 98 59 35 98 30 66 89
(0, 2, 4) 5/9 79 10 105 67 26 107 44 52 117
(4, 0, 2) 5/9 63 16 101 43 39 109 18 47 107
(4, 2, 0) 5/9 81 0 100 43 41 96 19 61 103

Figure 1 display the relative vote choice frequencies for the 6 different treatments broken down

by session for π = .5 and π = .55. Several features of these data are striking. First, all of the

comparative static observations noted in the aggregate analysis of the previous section are also

observed in every single session regardless of sequence. In every session, there are sharp changes

in behavior following a change in partisan bias. Second all these comparative static observations

are consistent with swing voter’s curse theory. If partisanship goes up between two treatments

in a session, then voting for b goes up and abstention goes down. Thus, the obvious conclusion

is that the results are robust to whatever sequencing effects may or may not exist. Any learning

of this sort is minor and has no effect on the conclusions of this study.

We can also ask about the statistical significance of the comparative statics, session by

session. Although this vastly reduces the sample size for each test, we nonetheless still find that

most of these comparative statics tests are still significant.

First, in all sequences there is significantly more voting for b when m = 2 or m = 4 compared

to m = 0.14 Furthermore, there is significantly more voting for b when m = 4 compared to

m = 2 in all but one sequence.15 The one exception is in the sequence when m = (4, 0, 2) and

π = 5/9 where the difference, although positive, is not statistically significant.16 These findings

of significance for nearly all sequences, even with rather small samples, as further support of the

robustness of this phenomenon.17

14All of the comparisons are significant at a p value of less than 1%.
15All of the comparisons are significant at a p value of less than 1%.
16The p value for the conparison is 14%.
17Battaglini, Morton, and Palfrey (2008) demonstrate robustness with respect to group size as well, considering
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Figure 1: Voting behavior by session: pi=.50 and pi=.55.
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Second, by disaggregating by sequence we can compare uninformed voter behavior across

values of π controlling for sequence since we use sequence (4, 2, 0) for both values. As we found

in the aggregate data, uninformed voters in this sequence vote significantly more for a across all

values of m when π = 5/9. We also find that when π = 5/9, voters vote significantly less for b

compared to π = 5/9 when m = 0 and when m = 4 (as theoretically predicted for the case when

m = 4). Thus, the results in the disaggregated data are largely similar to those found in the

aggregate data. Furthermore, we find the pattern of choices by uninformed voters to support

the swing voter’s curse theory for both values of π.

Third, by examining voter behavior by sequence, we find no statistically significant sequence

affects between pairs of sequences. There is a minor difference when we compare the two

sequences used when π = 1/2: we find that uninformed voters in the sequence (4, 2, 0) vote

more for b when m = 2 and less for b when m = 4 than uninformed voters in the sequence

(2, 4, 0). However, these differences in choices are not significant, and in any case may simply

reflect relatively inexperienced behavior in the first 10 periods in both cases.

Finally, we check for robustness of individual voter profiles with respect to treatment se-

quencing. In Table 6 we disaggregate the voter classification analysis of Table 5 above by

sequence. Note that we again find that disaggregated by sequence, the majority of uninformed

subjects make choices that are overall consistent with the comparative static predictions of the

theory. We do find some variation in the choices of profiles that are inconsistent when π = 5/9;

in particular subjects who experience the m = 4 treatment first are more likely to err by voting

instead of abstaining when m = 0 or to vote specifically for a when m = 2 or m = 4, than

subjects who experience the m = 0 treatment first. However, our results above show that even

accounting for these sequencing effects, the comparative static predictions of the theory hold.

committees two or three times the size of the committees studied in this article.
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Table 6: Percentages of Uninformed Voter Profiles
(Omitted Profiles Not Observed, Bold Consistent with Pred.)
∅ = Mostly Abstain, a = Mostly Vote a, b = Mostly Vote b

m = 0 ∅ a or b
m = 2 ∅ b a ∅ b a

m = 4 ∅ b a ∅ b a ∅ b ∅ b b a b a

Seq. π

(2, 4, 0) 1/2 21 36 0 0 36 0 0 0 0 0 0 0 7 0
(4, 2, 0) 1/2 21 29 0 0 36 7 0 0 0 0 7 0 0 0
(0, 4, 2) 5/9 7 21 0 0 43 0 7 0 14 7 0 0 0 0
(0, 2, 4) 5/9 36 29 0 0 21 0 0 0 7 0 0 0 0 7
(4, 0, 2) 5/9 14 21 14 0 14 0 0 0 0 0 14 7 0 14
(4, 2, 0) 5/9 14 29 0 7 21 0 7 7 0 0 0 7 0 7

IV.2.2 Learning effects within a treatment

Given that we have established that our comparative static predictions are robust to sequencing

effects, we now examine whether the data demonstrates learning effects. We first examine

learning within a treatment (in this subsection) and then learning within a session (in the next

subsection). If learning is occurring within a treatment we would expect that observed voter

choices would converge to the choice frequencies predicted in equilibrium. We measure whether

this convergence is occurring by examining the effect of time on the Euclidean distance between

aggregate observed voters choices in a period with the predicted voter choice frequencies in that

period given π and m. That is, assume that this Euclidean Distance, labeled ED, is a function

of the period in a given treatment, t, such that the overall voting frequencies converge to the

predicted frequencies with time as follows [where Obsjt represents the observed frequency of

choice j in t, σjt represents the Bayesian Nash equilibrium predicted probability of choice j in

t, and μ has a mean of zero and a constant variance]:

ED =

q
(Obs∅t − σ∅t)

2 + (Obsat − σat)
2 + (Obsbt − σbt)

2 =
β1
t
+

β2
t2
+

β3
t3
+ μ

Then, limt→∞E(ED|t) = 0.

We estimate this equation using simple OLS with the constant term suppressed for the data

pooled across treatments which we report in Table 7a below and also disaggregated by π and
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m which we report in Table 7b below. Figure 2 graphs the predicted estimates of Euclidean

Distance versus the observed values by π and m.

Table 7a: Regression Estimations of Euclidean Distance
As Functions of Period in Treatment (Constant Suppressed)
Independent Variable Coefficient Robust Std. Err. t Pr > |t|

All Data Pooled, R2 = 0.69, Obs. = 180
Period Inverse 2.22 0.18 12.13 0.00

Period Squared Inverse −4.93 0.74 −6.64 0.00

Period Cubed Inverse 3.04 0.58 5.21 0.00

Table 7b: Regression Estimations of Euclidean Distance
As Functions of Period in Treatment (Constant Suppressed)
Independent Variable Coefficient Robust Std. Err. t Pr > |t|

π = 1/2,m = 0, R2 = 0.75, Obs. = 20
Period Inverse 1.06 0.20 5.34 0.00

Period Squared Inverse −2.26 0.96 −2.35 0.03

Period Cubed Inverse 1.34 0.81 1.66 0.12

π = 1/2,m = 2, Adj. R2 = 0.76, Obs. = 20
Period Inverse 2.15 0.43 5.03 0.00

Period Squared Inverse −5.44 1.41 −3.87 0.00

Period Cubed Inverse 3.48 1.01 3.45 0.00

π = 1/2,m = 4, Adj. R2 = 0.64, Obs. = 20
Period Inverse 1.00 0.35 2.87 0.01

Period Squared Inverse −1.74 1.25 −1.39 0.18

Period Cubed Inverse 0.86 0.92 0.95 0.36

π = 5/9,m = 0, Adj. R2 = 0.85, Obs. = 40
Period Inverse 3.18 0.38 8.30 0.00

Period Squared Inverse −7.41 1.48 −4.99 0.00

Period Cubed Inverse 4.81 1.14 4.23 0.00

π = 5/9,m = 2, Adj. R2 = 0.76, Obs. = 40
Period Inverse 2.11 0.36 5.82 0.00

Period Squared Inverse −4.60 1.56 −2.96 0.01

Period Cubed Inverse 2.78 1.22 2.28 0.03

π = 5/9,m = 4, Adj. R2 = 0.73, Obs. = 40
Period Inverse 2.60 0.43 6.05 0.00

Period Squared Inverse −5.44 1.83 −2.98 0.01

Period Cubed Inverse 3.25 1.47 2.21 0.03

Our results suggest that there is significant learning within all of the treatments, although

subjects in the treatments with π = 1/2 demonstrate less learning than those in the treatments

with π = 5/9, which is primarily explained by the fact that subjects in the treatments with

π = 5/9 generally made choices more at variance with the predicted frequencies in early periods

in a treatment than those in the treatments with π = 1/2.
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Figure 2: Predicted versus actual euclidean distance.

IV.2.3 Experience effects within a session

We also estimate possible learning across an entire 30 committee session, which would be at-

tributable to task learning. The simplest way to determine if there is overall task learning is to

look at how the frequency of voting for a changes over time. In the Bayesian Nash equilibrium,

voting for b to vary with m, theoretically subjects should not vote for a regardless of the value

of m. Evidence that subjects decrease their voting for a over time would demonstrate learning,

in the sense of convergence to the Bayesian Nash equilibrium.

In order to determine whether such learning occurs, we estimated two pooled probit equations

for each value of π for voting for a as a function of the period in a sequence, clustered by subject.

The results of these estimations is summarized in Table 7 below.18 We find that voting for a

declines with the number of periods in all the sequences, however, it is insignificant for sequences

(0, 4, 2) and (4, 2, 0) when π = 5/9 and significant only at the 10% level for sequence (4, 2, 0)

when π = 1/2. Although more “learning” occurs in some sequences than others, there does

18We also estimated equations where the period variables enter nonlinearly with comparable results.
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not to be a particular pattern that is advantaged. Moreover, significant learning requires that

subjects make poorer choices at the begining of the sequence than at the end, so significant

effects may simple reflect sequences where subjects made poorer choices in the first treatments.

Finally, we conducted tests whether the marginal effects were significantly different by sequence.

We could not reject the null hypothesis that the marginal effects were equal across sequences.

Table 7: Probit Estimations of Uninformed a Votes
As Functions of Period in Sequence (Clustered by Subject)

Ind. Var. Marg. Eff. Robust Std. Err. z Pr > |z|
π = 1/2

Period in (2, 4, 0) -0.003 0.002 -4.11 0.00
Period in (4, 2, 0) -0.002 0.002 -1.81 0.07
Log Pseudolikelihood = -89.08, Pseudo R2 = 0.07, Obs. = 644

π = 5/9

Period in (0, 4, 2) -0.004 0.004 -1.14 0.25
Period in (0, 2, 4) -0.01 0.003 -3.29 0.00
Period in (4, 0, 2) -0.01 0.005 -2.16 0.03
Period in (4, 2, 0) -0.003 .003 -0.93 0.35
Log Pseudolikelihood = -501.83, Pseudo R2 = 0.06, Obs. = 1230

In summary, we find that there are some differences in uninformed voter behavior related to

the different sequences used. Nevertheless, despite these differences we find, as noted above, that

the comparative static predictions of the swing voter’s curse theory hold within each sequence.

We interpret this as strong support for the theory.

IV.3 Alternative Models with Bounded Rationality

So far we have adopted Nash equilibrium behavior as the leading benchmark to explain the

data. As discussed above, in our voting environment the predictions of the Nash equilibrium

provide a good fit. Can alternative behavioral models provide a similar or better fit? As

we said, the data unequivocally reject decision theoretic models that postulate no strategic

sophistication. The literature, however, provides a wide range of alternative models of bounded

strategic sophistication. It would be impossible to discuss all of them here, so we focus on

three approaches that have received particular attention in recent work: first, the so called Level

k theories; second, the Analogy-Based Expectations and Cursed Equilibria; finally the Quantal
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Response Equilibrium.

IV.3.1 Bounded rationality I: Strategic Sophistication

One recent approach to bounded rationality in games is to relax the assumption that players

have perfectly accurate beliefs about how the other players in the game are making their choices.

The models proposed by Nagel [1995], Stahl and Wilson [1995], and Camerer, Ho, and Chong

[2004] posit diversity in the population with respect to levels of strategic sophistication. These

“Level-k” models are anchored by the lowest level types, or “Level-0 players”, who are completely

naive. In the specific context of the swing voter’s curse, the obvious way to define level 0 players

is that they do not condition on being pivotal, and simply vote their posterior belief of the state,

as in the decision theoretic model. Higher types are more sophisticated, but have imperfect

beliefs about how others will be playing the game. In the model by Stahl and Wilson [1995] and

Crawford and Irriberri [2006], that we adopt here as a benchmark, Level-k players are assumed

to optimize relative to beliefs that they face a world of only level-(k − 1) players. The number

of levels is in principle unbounded.19

It is easy to characterize the predictions of this model in our specific voting environment.

Informed voters have a dominant strategy: so, as in the Nash equilibrium and in the data, they

always vote for their signal, regardless of their degree of sophistication. The behavior of the

uniformed voters would depend on the treatment. Consider first the case where m = 0 and

π = 1/2. A level 0 voter would either abstain or choose A or B with the same probabilities.

Given this, it can be shown that for level k > 0, uniformed voters would always abstain,which is

in line with the Nash equilibrium and with the empirical findings.20 In all the other treatments,

however, the predictions of the Level k model sharply diverges from the Nash equilibrium and

the data. Consider m = 0 and π > 1/2. In this case uninformed level-0 types would vote for

19Camerer, Ho and Chong [2004] propose an alternative model in which each level k players believes that other
players’ types are distributed between 0 and k − 1 according to a Poisson with mean τ .
20Since the informed voters vote their signal sincerely, conditional on being pivotal, it would be more likely that

a level 1 voter votes against the vote of an informed voter than in favor, so he would prefer to abstain. Similarly,
if level k-1 voters abstain, then the same reasoning is true for level k voters.
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A, while level k > 0 uninformed voters would vote for A if k is even and B if k is odd. The

intuition is the following: given that all level k−1 are voting for the same policy, say A, the level

k’s would realize that event B is more likely in the pivotal event, since it can occur only if all

the informed voters voted B, so they would choose to vote for B. Independently of the choice of

distribution of types, therefore the model would predict zero abstention.21 The remaining cases

are similar. When m > 0 and π = 1/2, level 0 would randomly vote for A,B or abstain with

equal probability. Level 1 would vote for B for the same reason as above: in the pivotal event

the bias introduced by the partisans would make B more likely. Level 2 would then react by

always voting A (given the experimental parameters): this because the vote of the uninformed

voters overcompensates the bias of the partisans. Level 3 would then vote for B with probability

one, and so forth: even types k > 0 vote B and odd types vote A. Finally, consider the case

m > 0 and π > 1/2. Level 0 votes A, since the prior favors this option. Level 1 then reacts

by all voting B. As above, level 2 would then vote A, etc.: odd types vote A; even types vote

B. Such behavior is completely inconsistent with our data. First it fails to explain abstention

in the treatment m > 0, π > 1/2. Second, it misses the key comparative statics in treatment

m > 0, π = 1/2: abstention is decreasing in m. However, the level k model implies abstention

rates that are constant in m, since it would depend only on the fraction of level 0 voters. In the

light of this evidence, we conclude that the level k model does not provide a good explanation

of the data, and it is dominated by Nash equilibrium.

IV.3.2 The Cursed and Analogy-Based Expectation Equilibria

We now discuss two equilibrium concepts that give similar predictions for the swing voter’s curse:

Eyster and Rabin’s [2005] Cursed equilibrium and Jehiel and Koessler’s [2006] Analogy-Based

21The distribution of types is irrelevant because a type k believes that all other types are of type k − 1. It is
easy to see that assuming that beliefs on other types follow a Poisson distribution with mean τ as in Camerer,
Ho and Chong [2004] would not solve the problems of the k−level models. Regardless of assumption on beliefs,
types 0 and 1 would always vote, and always vote for either a or b. As it can be easily seen from Table 7, the
fraction of voters that vote in this way is 0 in our experiment. Given that we have 84 distinct subjects, assuming
(for example) a Poisson distribution of types, the event in which there are no type 0 or 1 in our experiment would
have a significant probability only if τ is very large. Camerer et al. [2003], however estimate a value between 0
and 2.
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Expectation equilibrium.

The idea of the cursed equilibrium was introduced by Eyster and Rabin [2005]. It postulates

that players correctly anticipate the marginal distribution of the choices (i.e., votes for A, votes

for B, and abstentions) of the other players in the game, but make mistakes in updating their

beliefs in the pivotal event: specifically, by failing to account for the correlation between the

other players’ information and their decisions. In our voting environment, the equilibrium logic

requires players to understand that informed voters will vote their information, i.e., there is a

strong correlation, while in the “cursed” equilibrium, voters would not take this correlation into

account when deciding how to vote. This would lead all voters, both informed and uninformed,

to simply vote their prior (or posterior) belief, and hence the predictions correspond exactly

with the decision theoretic model.

There is also a “partially cursed” equilibrium, which makes more subtle predictions about

behavior, and is a realistic hybrid of fully cursed and fully rational behavior. In a partially

cursed equilibrium, players form beliefs that partially takes account of the correlation, so for our

game the predictions would generally lie somewhere between the fully rational Nash equilibrium

and decision theoretic model. Formally, in an X-cursed equilibrium, the equilibrium strategy is

derived based on beliefs that voter vote naively with probability X and vote according to the

equilibrium strategy with probability 1 − X. When X = 1 (“fully cursed”) voters follow the

decision theoretic model; when X = 0, they play Nash equilibrium model. This is therefore an

extension of the Nash equilibrium, and as such can not do worse than it: by adding an additional

free parameter (X) this model can therefore fine tune the prediction of the Nash equilibrium.

The cursed equilibrium can be seen as a special case of a more general equilibrium concept

introduced by Jehiel and Koessler [2006]: the Analogy-Based Expectation equilibrium (hence-

forth ABEE). According to this equilibrium concept players are boundedly rational because

they bundle states of nature in which opponents may be in "analogy classes" and play best
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response to the opponents’ average strategies in these analogy classes.22

What are the predictions of the cursed equilibrium in the voting model described above?

Consider the cursed equilibrium first. The case with m = 0, π = 1/2 is relatively straightfor-

ward. Informed voters would vote their signal. The uniformed voters would always abstain,

regardless of the level of X. So voters would behave in a cursed equilibrium exactly as in a

Nash equilibrium. The cases of the remaining treatments are more complicated and depend on

the choice of parameters. Consider the case m = 0, π > 1/2. If X is high, than the posterior

probability that the state is A for an uninformed voter would be larger than 1/2, and the voter

would vote for A. So if we want to explain abstention, we need to assume X sufficiently small,

which implies a behavior close to a Nash equilibrium. In this particular treatment, however, we

observe in the data a significant fraction of votes cast for A. The cursed equilibrium may con-

tribute in explaining this phenomenon if we assume that the population is composed by agents

with different degrees of cursedness. This indeed may be supported by the individual behavior

analysis discussed in the next to last section of the paper, where we show that a significant frac-

tion of agents is composed of agents who vote A with probability one when m = 0 and π > 1/2.

The cases with m > 0 and π > 1/2 are similar: here too the cursed equilibrium may explain why

agents vote for A, though this is a much less frequent phenomenon than with m = 0. Finally

consider the case with m > 0 and π = 1/2, here the cursedness of the equilibrium would tend

to reduce the incentives to vote for B, so it would skew downward the fraction of votes for B.

We do not observe this phenomenon in the data: in fact the fraction of votes for B is almost

exactly equal to the Nash prediction.

In summary the Cursed Equilibrium can explain the data if we assume, respectively, suf-

ficiently low level of cursedness. The bias introduced by the degree of cursedness, however,

22To see the relationship with the cursed equilibrium, assume that agent i believes that a subset ni of the set of
players N will use the same strategy no matter what their signal is, but they anticipate their strategy consistently
with their correct average equilibrium strategies. If ni = N − i the agent would not update beliefs conditioning
on the pivotal event, and so he would behave naively according to his private information as in a fully cursed
equilibrium. On the contrary, when ∀i ni = ∅ voters would fully condition their expectations on the pivotal
event, and we have a Nash equilibrium. For intermediate cases, we can have different forms of partially cursed
equilibria.
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sometimes pushes the model in the wrong direction and performs worse than a simple Nash

equilibrium (if we assume that the degree of cursedness is positive). On the other hand, by

adding an additional degree of freedom in fitting the data it may contribute in explaining the

votes cast for A in treatments with π > 1/2 that can not be explained by the Nash equilibrium.

IV.3.3 Quantal Response Equilibrium

Quantal response equilibrium (henceforth QRE) applies stochastic choice theory to strategic

games, and is motivated by the idea that a decision maker may take a suboptimal action. In a

QRE, the probability of choosing a strategy is a continuous increasing function of the expected

payoff of using that strategy, and strategies with higher payoffs are used with higher probability

than strategies with lower payoffs. Since expected utilities depend on players’ strategies, this

defines a quantal response stochastic choice function that maps the strategy space to itself.

A quantal response equilibrium is then a fixed point of the quantal response stochastic choice

function (see McKelvey and Palfrey [1995, 1998]). In a logit equilibrium, for any two strategies,

the stochastic choice function is given by logit function, described below, with free parameter λ

that indexes responsiveness of choices to payoffs (or the slope of the logit curve).23 That is:

σij =
eλUij(σ)P

k∈Si e
λUik(σ)

for all i, j ∈ Si

where σij is the probability i chooses strategy j and Uij (σ) is the equilibrium expected payoff

to i if i chooses decision j and the players’ strategy profile is σ. These expected payoffs are of

course also conditioned on any information that i might have. Note that a higher λ reflects a

"more precise" response to the payoffs. The extreme cases λ = 0 and λ → +∞ correspond to

the pure noise (completely random behavior) and Nash equilibrium, respectively. Therefore, as

with the Cursed equilibrium, by adding a free paramether (λ), logit QRE has more flexibility

than the Nash equilibrium to fit the data.

It is straightforward to apply this to the swing voters curse game. The strategies that voters

23The free parameter can also be interpreted as the inverse of the variance of the players’ estimates of the
expected payoffs of different strategies.
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choose stochastically are A, B, and φ, and the quantal response equilibrium choice probabilities

of uninformed voters for a given value of λ, {σλA, σλB, σλφ} depend on the utility differences uA−uB,

uA − uφ, and uB − uφ, expressions for which are derived in the appendix.24

We use maximum likelihood to estimate a single value of λ for the pooled dataset consisting

of all observations of uninformed voter decisions in all 6 treatments. The results are in Table 8.

Table 8: Quantal Response Analysis
QRE Frequencies Obs. Frequencies

π m A B φ A B φ lnL #obs

0.5 0 0.21 0.21 0.58 0.00 0.08 0.91 −138.96 217

5/9 0 0.24 0.19 0.57 0.20 0.07 0.73 −329.62 404

0.5 2 0.07 0.42 0.51 0.06 0.43 0.51 −193.08 221

5/9 2 0.09 0.40 0.51 0.12 0.35 0.53 −393.67 410

0.5 4 0.01 0.70 0.29 0.04 0.77 0.19 −143.60 206

5/9 4 0.02 0.67 0.32 0.16 0.56 0.28 −504.12 416

Columns 3-5 of the table present the QRE-predicted values of choice frequencies, evaluated at

the estimated bλ = 31. The next three columns give the observed choice frequencies in the data.
Column 9 reports the value of the log likelihood function restricted to the observations in the

specific treatment, and the last column gives the number of observations in that treatment. A

scatter diagram of the QRE-predicted frequencies and the observed choice frequencies is shown

in Figure 3. The observed and predicted values are highly correlated: the regression line through

this collection of points has a slope equal to 0.71, an intercept of 0.09, and R2 > 0.80. There is

no obvious pattern of overprediction or under prediction.

It is useful to compare this with cursed equilibrium. As explained above, both cursed

equilibrium and QRE, cannot do worse at fitting data than Nash equilibrium, because both

subsume the Nash equilibrium as a special case and each has a free parameter that regulates

how far away the model is from Nash equilibrium. The free parameters, however, play different

roles in the two models. In the cursed equilibrium, a higher X leads to a distinct monotonic

bias on the outcome in favor of "naive behavior". When π > 1/2, this helps to fit the data,

24With our experimental parameters, the logit equilibria are unique. To simplify the computational problem of
numerically finding solutions for the logit equilbrium, we do not model the choices of informed voters as stochastic,
and simply assume they always vote their signal (as, in fact, they did).
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Figure 3: QRE-predicted frequencies compared to the observed choice frequencies.

which is indeed characterized by the same type of bias; but when m > 0 and π = 1/2, this bias

against strategic behavior makes the Cursed equilibrium underestimate the probability that

uninformed independents vote against the partisans. The QRE does not add a systematic bias

for naive behavior because it does not require an ex ante assumption on how beliefs are updated:

λ regulates the intensity of the noise that is added in a player’s decision, but it does not affect

the Bayesian process by which beliefs are updated given the other players’ strategies.

An additional feature of the data, which is captured in the QRE model is that the probability

an uninformed voter chooses A is higher when π = 5/9 than when π = 1/2, and this relationship

holds for every value of λ. This is quite intuitive, because the naive strategy of voting with your

prior is obviously not as bad if the prior is further from 1/2, since, a priori, by doing so you

will vote correctly more often than not. Of course it is still not optimal because of the pivot

calculations and the swing voter’s curse, but as π becomes further from .5, the swing voter’s

curse diminshes. In our data, we do find significantly more voting for A when π = 5/9 than

π = 1/2, for all three values of m. Another prediction of QRE is that the frequency of voting
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for A should be decreasing in m. The data show no systematic relationship between m and the

frequency of voting for A.

IV.4 Committee Decisions

Efficiency of Committee Choices

In the previous subsection we averaged across all committees within a treatment or focused on

individual voter choices. We now turn to an analysis of committee decisions. First we examine

the efficiency of committee choices as defined by the percentage of times committees make the

correct choice. We find not surprisingly that committees make correct decisions is highest when

there were zero computer voters (97% when π = 1/2 and 94% when π = 5/9).25 Efficiency

declines when there were two computer voters (77% when π = 1/2 and 91% when π = 5/9)

which is significantly lower than the case with zero computer voters at the 2% level when π = 1/2

and insignificantly different when π = 5/9.26 Efficiency is lowest when there were four computer

voters (66% when π = 1/2 and 71% when π = 5/9) which is insignificantly different with two

computer voters when π = 1/2 but significantly different when π = 5/9.27 Although when

computer voters are introduced efficiency is lower when π = 1/2 compared to the case when

π = 5/9, these differences are not significant at conventional levels.28

In Table 9 below we summarize the mean efficiency results by the state of the world and

treatment (with ties coded as 0.5) compared to the mean predicted efficiencies given the number

25We code tie elections which were randomly decided as a 50% correct decision.
26The t statistics are 2.5 and 0.74 for π = 1/2 and π = 5/9, respectively.
27The t statistics are 1.03 and 2.38 for π = 1/2 and π = 5/9, respectively.
28The t statistics of the comparison of π = 1/2 and π = 5/9 are 0.55, 1.52, and 0.49 for m = 0, 2, 4, respectively.
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of informed voters in each period and predicted voting behavior.

Table 9: Mean Efficiency By Treatment
Treatment True State Cases Actual Predicted
π m

0.5 0 State A 9 0.94 1
State B 8 1 1

5/9 0 State A 28 1 1
State B 19 0.87 1

0.5 2 State A 15 0.53 0.98
State B 16 1 0.99

5/9 2 State A 20 0.83 0.99
State B 17 1 0.98

0.5 4 State A 15 0.30 0.93
State B 16 1 0.98

5/9 4 State A 25 0.46 0.84
State B 22 1 0.98

Information, Turnout, and Closeness

Theoretically, we expect that as the number of informed voters increases, the turnout level will

increase from σB to 1. That is, in equilibrium informed voters vote 100% of the time, while

uninformed voters cast votes with probability σB. We find that this is indeed in our data. Since

informed voters participated 100% of the time, while uninformed voters participate much less,

as the number of informed voters increases, turnout in the committees mechanically increases.

Furthermore, as the number of informed voters in a committee increases, turnout increases,

it also increases the margin of victory for the winning outcome. This follows because informed

voters, 99% of the time, voted for the same policy (the correct jar) while uninformed voters

abstained more and also sometimes voted for the incorrect option. Hence, as the number of

informed voters increases, the margin of victory increases mechanically as well.

These two relationships have an interesting implication. A common perceived prediction of

the rational model of voting based on voting costs is that turnout should be positively related to

the expected closeness of an election since when elections are expected to be close, votes are more

likely to be pivotal, and thus the investment benefits from voting are greater (see for example

Filer, et al. [1993]). However, in our analysis, closeness and turnout are negatively related since
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increasing the number of informed voters increases the margin of victory (decreasing closeness)

while it increases turnout. These results imply that simple tests of the effect of closeness on

turnout decisions or aggregate turnout are not nuanced enough to determine if voters are making

participation decisions rationally.

The cost of voting may be a factor affecting the exact relationship between participation

and the margin of victory, but one could easily have a positive correlation between turnout and

participation even if the cost of voting is positive.29 The key determinant in the relationship

between closeness and turnout with small voting costs is whether there is sufficient heterogeneity

in preferences and information. The informed nonpartisan voters always vote with higher

probability than the uninformed voters, and always vote for the candidate most preferred by

nonpartisans. If the cost of voting is not too high, uninformed voters vote only to offset the

bias introduced by the partisans. If therefore participation of the uninformed voters is high

enough to offset the partisans, an increase in informed voters implies an increase in participation

and of the margin of victory as well. This positive relationship may be weakened if the cost

of voting is high enough to prevent the uninformed nonpartisans from voting with sufficiently

high probability, and therefore one can have situations in which participation and the margin of

victory are not positively related. The sign of the relationship, however, depends more on the

details of the environment (heterogeneity in information, cost of voting, number of partisans)

rather than on the rationality or strategic savvy of the players. The key point is that, when

confronting field data, there is no reason a priori to expect one effect to dominate another, and

therefore the relationship between turnout and margin of victory could go in either direction

and still be consistent with a rational choice theory of voting.

29To see this, consider the case in which the cost of voting is small enough that both uninformed and informed
voters find it optimal to vote. Since uninformed nonpartisan voters have a strictly dominant strategy to vote
informatively when the cost of voting c is 0, by continuity they would still continue to vote in the same way
when c is sufficiently small. In addition to this, from the equilibrium conditions discussed in Section II.1 and
II.2, it is easy to see that the behavior of uninformed non partisans is continuous in the cost of voting (conditions
uA − uφ = 0 and uB − uφ = 0 would become uA − uφ = c and uB − uφ = c). So having a small positive cost of
voting would reduce the equilibrium value of participation, but it would not change the comparative statics and
it would have only a small effect on behavior.
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V CONCLUDING REMARKS

Significant evidence exists that voters often choose to abstain when voting is apparently cost-

less and the standard rational model of voting would predict participation. Empirical analysis

suggests that such abstention may be related to differences in voter information. The swing

voter’s curse theory provides a complicated game theoretic explanation for why uninformed vot-

ers would be willing to abstain and delegate decision making to more informed voters. Hence,

it may be seen as an unlikely candidate explanation for the empirical evidence that lower in-

formation elections have lower turnout. In this paper we have provided the first experimental

test of the theory, where we control for key parameters of the model, which are difficult to

measure precisely or control for in naturally occuring data. We find strong support for the

theory. Uninformed voters behave strategically: they strategically abstain when uninformed

and both outcomes are equally likely, delegating their votes to more informed voters. With

partisan bias, they vote strategically to balance out the votes of partisans, at probabilities close

to equilibrium, increasing the probability of voting as partisan bias increases. Even when the

partisan-favored outcome is the more likely outcome we find most voters balancing in this way.

These results are supported at both the aggregate and individual level and across sessions and

treatment configurations.

We also find that turnout and margin of victory both increase with the number of informed

voters and that there is a positive relationship between these two variables, contrary to the

common view that rational models of turnout predict that closeness and turnout should be

positively related. These results suggest that tests using field data of whether turnout is related

to closeness, which are unable to control for information asymmetries, are inadequate or at best

very weak tests of rational voting models.
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VI APPENDIX

VI.1 Proof of Lemma 1

Let uθ for θ = A,B be the expected utility of an uninformed swing voter of voting for policy θ.

To evaluate uA−uB there are only three relevant events: P0, the event when there is a tie among

the other voters between A and B; and Pθ for θ = A,B, which is the event in which policy θ is

losing by one vote. The expected net utility of voting for A rather than B conditional on event

Pi is

E (uA − uB |Pi ) =
½
Pr(A |Pi )− 0.5 i = A,B
2Pr(A |Pi )− 1 i = 0

We can therefore write:

uA − uB = [πPr (P0 |A)− (1− π) Pr (P0 |B )] +
1

2

X
i=A,B

Pr(Pi) (2Pr(A |Pi )− 1) (2)

= [πPr (P0 |A)− (1− π) Pr (P0 |B )] +
1

2

∙
πPr (PB |A)− (1− π) Pr (PB |B )
+πPr (PA |A)− (1− π) Pr (PA |B )

(̧3)

=

µ
Λ0 +

1

2
Λ1

¶
(4)

where Λ0 = [πPr (P0 |A)− (1− π) Pr (P0 |B )] and

Λ1 = πPr (PB |A)− (1− π) Pr (PB |B ) + πPr (PA |A)− (1− π) Pr (PA |B )

Consider Λ1 first. Since n is odd, we can write:

Λ1 =

n−3
2X

j=0

⎛⎝ (n− 1)!³
n−(2j+1)

2

´
!
³
n−2−(2j+1)

2

´
! (2j + 1)!

⎞⎠ [(1− p)σφ]
(2j+1)

· [p+ (1− p) (1− σφ)] ·

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
π

∙
p (1− p)σB

+(1− p)2 σAσB

¸n−(2j+1)−2
2

− (1− π)

∙
p (1− p)σA

+(1− p)2 σAσB

¸n−(2j+1)−2
2

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
Consider now Λ0. We can write:

Λ0 =

n−1
2X

j=0

⎛⎝ (n− 1)!³
n−1−2j

2

´
!
³
n−1−2j

2

´
! (2j)!

⎞⎠ [(1− p)σφ]
2j

·

⎧⎪⎨⎪⎩ π
h
p (1− p)σB + (1− p)2 σAσB

in−1−2j
2

− (1− π)
h
p (1− p)σA + (1− p)2 σAσB

in−1−2j
2

⎫⎪⎬⎪⎭ > 0
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Assume by contradiction that σB > σA. Since π ≥ 1
2 , we conclude that Λ1 > 0 and Λ0 > 0. So

uA−uB > 0, which implies that σB ≤ σA, a contradiction. We conclude that σA ≥ σB. When

π = 1
2 we can make the symmetric argument and prove σB ≥ σA. Hence π = 1

2 ⇒ σB = σA.

¥

VI.2 Proof of Proposition 1

If σB > 0, then the voter must be indifferent between the two alternatives since σA ≥ σB

∀π ≥ 1
2 . Assume this is the case, then:

0 = uA − uB = Pr [P0] · [2 Pr(A |P0 )− 1]

+
1

2
Pr [PA] · [2 Pr(A |PA )− 1] v +

1

2
Pr [PB] · [2 Pr(A |PB )− 1]

This equation implies:

[πPr (P0 |A)− (1− π) Pr (P0 |B )] (5)

=
1

2
[(1− π) Pr (PB |B )− πPr (PB |A)] +

1

2
[(1− π) Pr (PA |B ) + πPr (PA |A)]

Moreover, we have:

uA − uφ =
1

2
[πPr (P0 |A)− (1− π) Pr (P0 |B )] +

1

2
[πPr (PA |A)− (1− π) Pr (PA |B )] (6)

Substituting (5) in (6), we obtain:

uA − uφ =
1

4
π [Pr (PA |A)− Pr (PB |A)] +

1

4
(1− π) [Pr (PB |B )− Pr (PA |B )]

We can compute:

Pr (PB |B ) =
n−3
2X

j=0

Φ(j)

h
p(1− p)σA + (1− p)2 σAσB

i
p+ (1− p)σB

n−(2j+1)
2

Pr (PB |A) =
n−3
2X

j=0

Φ(j)

h
p(1− p)σB + (1− p)2 σAσB

i
(1− p)σB

n−(2j+1)
2
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and

Pr (PA |A) =
n−3
2X

j=0

Φ(j)

h
p(1− p)σB + (1− p)2 σAσB

i
p+ (1− p)σA

n−(2j+1)
2

Pr (PA |B ) =
n−3
2X

j=0

Φ(j)

h
p(1− p)σA + (1− p)2 σAσB

i
(1− p)σA

n−(2j+1)
2

where: Φ(j) =

Ã
(n−1)!

n−(2j+1)
2

!
n−2−(2j+1)

2
!(2j+1)!

!
[(1− p)σφ]

(2j+1). From these expressions is

evident that [Pr (PA |A)− Pr (PB |A)] < 0 and [Pr (PB |B )− Pr (PA |B )] < 0, which implies

that uA − uφ < 0, and therefore σA = 0. So σB ≤ σA = 0, a contradiction. Using Lemma 1,

we conclude that π = 1
2 implies σA = σB = 0; and π > 1

2 implies σA ≥ σB = 0, as stated in the

proposition. ¥

Proof of Lemma 2

Assume by contradiction that m > 0 and σA ≥ σB. The expected utility of voting for A net of

the utility of voting for B can be expressed as in (2) and 3. In this case:

Λ1 =

n−3−m
2X

j=0

⎛⎝ (n− 1)!³
n−(2j+1)−m

2

´
!
³
n−2−(2j+1)+m

2

´
! (2j + 1)!

⎞⎠ [(1− p)σφ]
(2j+1)

· [p+ (1− p) (1− σφ)]

·

⎧⎪⎨⎪⎩ π
h
(1−p)σB

p+(1−p)σA

im
2
h
p (1− p)σB + (1− p)2 σAσB

in−(2j+1)−2
2

− (1− π)
h
p+(1−p)σB
(1−p)σA

im
2
h
p (1− p)σA + (1− p)2 σAσB

in−(2j+1)−2
2

⎫⎪⎬⎪⎭
Consider now Λ0. We can write:

Λ0 =

n−1−m
2X

j=0

⎛⎝ (n− 1)!³
n−1−2j−m

2

´
!
³
n−1−2j+m

2

´
(2j)!

⎞⎠ [(1− p)σφ]
2j

·

⎧⎪⎨⎪⎩ π
h
(1−p)σB

p+(1−p)σA

im
2
h
p (1− p)σB + (1− p)2 σAσB

in−2j−1
2

− (1− π)
h
p+(1−p)σB
(1−p)σA

im
2
h
p (1− p)σA + (1− p)2 σAσB

in−2j−1
2

⎫⎪⎬⎪⎭ < 0

Consider first the case in which π = 1
2 , and assume by contradiction that σA > σB. Since

(1−p)σ(B)
p+(1−p)σ(A) <

p+(1−p)σ(B)
(1−p)σ(A) we have Λ0 < 0 and Λ1 < 0: so < 0, which implies that σB ≥ σA, a

contradiction. Consider now the case in which π > 1
2 . There is a p such that π

h
(1−p)σB

p+(1−p)σA

im
2
<
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(1− π)
h
p+(1−p)σB
(1−p)σA

im
2
for any p > p. Assume by contradiction that σA > σB and p ≥ p. In this

case too Λ0 < 0 and Λ1 < 0: so again uA−uφ < 0, which implies that σB ≥ σA, a contradiction.

¥

VI.3 Proof of Proposition 2

Assume that σA > 0, then since σB ≥ σA, it must be that uA − uB = 0. Proceeding as in

Proposition 1 we can obtain:

uA − uφ =
1

4
π [Pr (PA |A)− Pr (PB |A)] +

1

4
(1− π) [Pr (PB |B )− Pr (PA |B )]

We can compute:

Pr (PB |B ) =
n−3
2X

j=0

Φ(j)

h
p(1− p)σA + (1− p)2 σAσB

i
p+ (1− p)σB

n−(2j+1)−m
2

Pr (PB |A) =
n−3
2X

j=0

Φ(j)

h
p(1− p)σB + (1− p)2 σAσB

i
(1− p)σB

n−(2j+1)−m
2

and

Pr (PA |A) =
n−3
2X

j=0

Φ(j)

h
p(1− p)σB + (1− p)2 σAσB

i
p+ (1− p)σA

n−(2j+1)−m
2

Pr (PA |B ) =
n−3
2X

j=0

Φ(j)

h
p(1− p)σA + (1− p)2 σAσB

i
(1− p)σA

n−(2j+1)−m
2

where: Φ(j) =

Ã
(n−1)!

n−(2j+1)−m
2

! n−2−(2j+1)+m
2

!(2j+1)!

!
((1− p) (1− σ))(2j+1). From these expres-

sions is evident that [Pr (PA |A)− Pr (PB |A)] < 0 and [Pr (PA |B )− Pr (PB |B )] < 0, which

implies that uA − uφ < 0: and therefore σA = 0, a contradiction.

We now prove that σB > 0. If this is not the case, the only other possibility is that

σB = σA = 0: we now show that this is impossible. We can write:

uB − uφ =
1

2
(1− π) Pr (P0 |B )− πPr (P0 |A) +

1

2
[(1− π) Pr (PB |B )− πPr (PB |A)]

Since when σB = σA = 0 we have Pr (P0 |A) = Pr (PB |A) = 0, and Pr (P0 |B ) > 0, Pr (PB |B ),

we have uB − uφ > 0, which implies σB > 0. ¥
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