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ABSTRACT

The Propensity Score: A Means to An End”

Propensity score matching is a prominent strategy to reduce imbalance in observational studies.
However, if imbalance is considerable and the control reservoir is small, either one has to match
one control to several treated units or, alternatively, discard many treated persons. The first
strategy tends to increase standard errors of the estimated treatment effects while the second
might produce a matched sample that is not anymore representative of the original one. As an
alternative approach, this paper argues to carefully reconsider the selection equation upon which
the propensity score estimates are based. Often, all available variables that rule the selection
process are included into the selection equation. Yet, it would suffice to concentrate on only
those exhibiting a large impact on the outcome under scrutiny, as well. This would introduce
more stochastic noise making treatment and comparison group more similar. We assess the
advantages and disadvantages of the latter approach in a simulation study.
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1 Introduction

In contrast to a randomized experiment, in an observational study the treatment and
the comparison group usually differ systematically in terms of their observable and un-
observable covariates. Yet, appropriate weighting schemes may provide for a convincing
evaluation strategy. In particular, balancing all observable covariates by the method of
matching allows the identification of the mean effect of treatment if the remaining unob-
servable covariates are irrelevant. Usually, the number of covariates is high, thus making
exact matching — in all likelihood — impossible. ROSENBAUM & RUBIN (1983) suggest
to alternatively balance the one-dimensional propensity score, which is the conditional
probability to participate in treatment given all relevant covariates. They show that this
strategy, on average, achieves overall balance, thus circumventing the curse of dimension-

ality.

However, if treatment and comparison group differ to a considerable extent, i.e. if selec-
tion into treatment is remarkably strong, achieving an acceptable balance will be difficult.
A full matching using all treated and untreated units in the sample might produce many
strata consisting of one control and more than one treated unit. Generally, one would like
to achieve a stratification which is more uniform. Uniform stratifications tend to produce
smaller standard errors of the matching estimates. See, for instance, AUGURZKY (2000a)
and DEHEJIA & WAHBA (1998) whose matching is far from producing a uniform strati-
fication because treated units with high propensity scores hardly find adequate controls.
Alternatively, pair matching tends to discard the majority of treated individuals at the
high end of the propensity score scale. As a result, it restricts evaluation of the treatment
effect to individuals with low and medium propensity scores. If effects are different for

different locations on the propensity score scale pair matching estimates will be biased.

This paper argues to carefully reconsider the selection equation upon which the propen-
sity score estimates are based. It is common practice to include all available variables that
might rule the selection process, with the objective of capturing the selection decision pre-
cisely. Yet, we will argue in this paper that, if selection turns out to be extremely strong,
one should better concentrate on only those variables with a large impact on both the

selection and the outcome under scrutiny. This procedure increases the random part of



the participation process — the whole approach rests on sufficient randomness being re-
tained after deriving individuals’ propensity score. Alas, a consistent estimation of the
propensity score might require including into the selection equation variables which rule
the selection process but which are excluded from or only play a minor role in the outcome

equation.

In contrast to our arguments, current applied research emphasizes the importance of
consistent estimation. For instance, LECHNER (1999, 2000) performs and recommends
several specification tests to examine whether a probit model is adequate for describing
the selection decision. AUGURzKY (2000a) includes into the probit model several variables
that might determine the selection. HECKMAN, ICHIMURA & TopD (1997: section
8) choose predictor variables to maximize the within-sample correct prediction rates.
Although a thorough understanding of the selection process might in itself be an important
contribution, it is not the main objective of propensity score matching for identifying the
mean effect of treatment. At best, it is a side effect. What is to be achieved by propensity
score matching is balance of all relevant covariates as reflected, for example, in DEHEJIA

& WAHBA’s (1998) pragmatic estimation strategy concerning the selection equation.

To put it otherwise, there is a trade-off between a consistent estimation of the selection
equation that probably balances irrelevant variables, too, and a pragmatic — but probably
inconsistent — estimation that concentrates on balancing the relevant variables only. We
assess this trade-off in a simulation study relying on the mean squared error criterion. The
next section discusses matching as an evaluation strategy and, in particular, outlines the
idea behind propensity score matching. Section 3 presents the data generating processes
and the dimensions of the simulation study while section 4 explains the algorithm used for
matching. Section 5 is dedicated to results for some interesting parameter constellations
and the last section summarizes the findings and offers recommendations for applied

research.



2 The Matching Approach

In this section, the framework and the idea of propensity score matching are briefly
discussed. ROSENBAUM (1995), HECKMAN, LALONDE & SMITH (1999), and SCHMIDT
(1999) provide a thorough overview of estimation strategies via matching. Let R} denote
the potential response of individual 7 under the treatment state and RY the potential
response if ¢ receives no treatment. Furthermore, let D; denote a binary variable indicating
treatment status, thus, R; = D;R} + (1 — D;)RY is the observed outcome. This framework
has become known as the potential outcome approach to causality suggested by ROy
(1951), RUBIN (1974, 1977), and HOLLAND (1986). It requires that the response of an
individual be independent of the decisions of all other individuals. This implies that there
are only two potential outcomes, namely RY and R}, one for the personal state D; = 0,
and one for D; = 1, respectively. There are no further potential outcomes depending on
the assignment of any other individual. This requirement is often referred to as stable

unit treatment value assumption (SUTVA, see RUBIN, 1986).

The individual treatment effect is §; = R} — R? which, however, is not observable since
either R} or RY is missing. Alternatively, one might focus on the mean effect of treatment

on the treated individuals
IE(&|D; = 1) =IE(R;|D; = 1) — IE(RY|D; = 1). (1)

Yet, while the first expectation IE(R}|D; = 1) can be identified in the subsample of the
treatment group, the counterfactual expectation IE(RY|D; = 1) is not identifiable without

invoking further assumptions.

Somehow one has to rely on the untreated units (D; = 0) of the comparison group to
obtain information on the counterfactual outcome of the treated in the no-treatment state.
A simple replacement of IE(R?|D; = 1) by IE(R?|D; = 0) is unlikely to be the appropriate
strategy, though, since treated and untreated units tend to differ considerably in their
characteristics that determine the outcome if they themselves select into treatment. An
ideal randomized experiment solves this problem, see HECKMAN (1996) or SCHMIDT,
BALTUSSEN & SAUERBORN (1999). It generates a treatment and a control group by a

randomization process ensuring exogenous selection into treatment and thus resulting, on



average, in balance of all covariates between treatment and control group, in particular

those determining outcome.

In contrast, in an observational study, where self-selection into treatment is typically
non-negligible, matching tries to mimic ex post a randomized experiment by stratifying
the sample of treated and untreated units with respect to covariates X; that rule both the
selection into treatment and the outcome under study. Such a stratification eliminates
selection bias provided all variables X, are observed and balanced. In this case, each
stratum would represent a separate small randomized experiment and simple differences
between treated and controls would provide an unbiased estimate of the treatment effect.

This technique does not require linearity, parametric, or distributional assumptions.

Formally, assume that the response R is conditionally independent of D; given X;
vielding IE(RY|X;, D; = 1) = IE(RY| X;, D; = 0). Moreover, assume IP(D; = 0|X; = z) >
0 for all  which guarantees that, with positive probability, there are untreated units for
each x. The data generating processes of the simulation presented in the next section are
such that these requirements for matching will be fulfilled. The conditional mean response
of the treated under no treatment for a given X can thus be estimated by the conditional
mean response of the untreated under no treatment. The overall estimated mean effect is
the weighted average over all stratum effects. The stratum weights are proportional to

the number of treated units in the stratum in order to identify IE(6;|D; = 1).

However, in a finite sample balancing X is difficult or even impossible if the vector
of observables is of high dimension. To escape this curse of dimensionality, ROSENBAUM
& RUBIN (1983) suggest to alternatively use the conditional probability to participate
in treatment p(z) = IP(D; = 1|X; = z), the propensity score, for purposes of stratifying
the sample. They show that if R is independent of D; given X;, RY and D; are also
independent given p(X;). Matching treated and untreated units with the same propensity
scores and placing them into one stratum means that the decision whether to participate
or not is random in such a stratum. The probability of participation in this stratum
equals the propensity score. Alas, some disadvantages accompany this strategy. First, the
propensity score itself has to be estimated. Second, since it is a continuous variable exact

matches will hardly be achieved and a certain distance between treated and untreated



units has to be accepted nonetheless. Prominent candidates measuring the distance are

the difference in propensity scores or the Mahalanobis metric (RUBIN, 1980).

The Idea Behind Propensity Score Matching

Let there be three kinds of covariates X, Y, and Z characterizing individuals. Generally,
both potential outcomes and the participation probability depend on all three variables.
For reasons of clarity of the argument further assume that Y and Z are binary and let
all considerations to follow be conditional on X. In sum, R® = R%(Y, Z), R' = R\(Y, Z),
and p = p(Y, Z).

There are four cells

=0 Z=1
Y=0]| noo no1
Y=1| nup ni1

each comprising n;, individuals, j,k € {0,1}. For the sake of notational convenience,

abbreviate cell-wise expectations as follows

R, = IE(R'Y =3j,Z=kD=1)
R, = IER|)Y =4,Z=kD=1)=IER)Y =;2Z=FkD=0),

Aji = le-k — R?k, and p;; denotes the propensity score in the corresponding cell. As a
result, the mean effect A (conditional on X') can be written

1
A= o (Ago Poo oo + Ao1 Po1 no1 + Ao Pro o + Ag1 prina) (2)
t

n: denotes the total number of treated individuals, ny = > pjxnjx.

Selection on Z only. If the propensity score merely depends on Z, poy = pio = po
and pgp; = p11 = p.1. This implies that Y can be expected to be already balanced and
that cells with the same value of Z can be combined. Defining n = ngx + nix and the
effect in the combined cell A = (Agg nox + A1k n1x) /N k, equation (2) reduces to

1
A=—(Agpono+Aiping). (3)

ny



The combination of cells that share the same propensity score is the very advantage of
propensity score matching with regard to exact covariate matching. On the one hand,
this means that individuals with different characteristics might be matched, here with
different values of Y. As a result, in finite samples where Y may still be unbalanced the
combined-cell-specific estimates of the treatment effect may deviate from the true value.
On the other hand, combination of cells avoids that cells comprising only treated or only
untreated units have to be dropped. This would give rise to both larger variance of the
estimates and possibly a bias if the treatment effect is heterogeneous and the loss of cells

is systematic.

ANGRIST & HAHN (1999) assess this bias-variance trade-off both theoretically and
by means of a simulation study. They argue that the very virtue of propensity score
estimation emerges when cells are finite. If cell sizes themselves increased beyond all

bounds propensity score matching would not be advantageous to exact matching, see

HAHN (1998).

Exclusion Restriction of 7. A symmetric special case arises if the outcome does
not but the selection does vary with Z. Consequently, cells with the same value of Z
could be combined even though they are subject to a different selection process, i.e.
their propensity score differs. Analogously to above, it follows that Agy = Agr = Ao,
and Ajg = A1; = A, implying that imbalance of Z has no effect on the estimation of
the outcome and that cells with the same value of Y can be combined without loss of
information. Let ny = ngg + ng1 and pr. = (Pronko + Prifr1) /M., equation (2) can be

reduced to

1
A= —(Ag.po.10. + Arprm). (4)

Uz

If both cases are fulfilled, i.e. the outcome depends on Y and the selection process
is ruled by Z only, all four cells can be combined to one and A is just the difference
between the unconditional responses of treated and untreated persons in the combined
cell (merely defined by X). This point reflects the fact that solely covariates which rule
both the outcome and the selection into treatment need to be balanced by matching.
Consequently, the question is raised whether the propensity score depending on X and Z

is the right measure to match upon or whether it might be better replaced by the marginal



propensity score depending solely on X. Matching on the latter would not unnecessarily
balance 7. Therefore, one could concentrate on the balance of X. This would probably
result in a more uniform stratification of the sample. That is, one control would not be

matched to an overwhelmingly large number of treated persons.

In other words, omitting irrelevant variables increases randomness of the selection
process and diminishes its deterministic part. For example, if selection were completely
determined by certain known variables the propensity score of treated units would be 1
and that of untreated 0. Consequently, no reasonable strategy whatsoever would be able to
match controls to any given treated person. In contrast, the more variables determining
the selection process can be regarded as stochastic noise because their impact on the
outcome variable is negligible, the more randomness will enter the process and the easier
treated individuals will find adequate controls. One might equate the Pseudo R* of a

probit model as reflecting the degree of the selection determination.

3 The Data Generating Processes

As above, let R; denote the outcome of individual i, ¢ = 1,...,n, and D; the binary
treatment indicator. On average, there will be 150 treated individuals and between 300
and 900 comparison units. The latter number is variable such that finding adequate
controls is more or less difficult. The outcome is a linear function of confounding covari-
ates, (X1, X9, Y1,Ys, 71, Z5), an individual treatment effect d;, and normally distributed

stochastic noise g; ~ N (0, 9)

R; = Bo + B1X1i + B2 Xoi + B3Y1i + BaYai + B5 21 + BsZ2i + 0:Di + €. (5)
The selection equation depends on the same covariates

D; = 1{ag + on Xq; + 0 Xo; + asYy; + cuYo; + a5 Zy; + agZa; +1; > 0 (6)

where 1, the indicator function, is 1 if its argument holds and zero otherwise, and n ~

N(0,1) is standard normal.

The coefficients of the Z-variables (5, s in the outcome equation (5) are comparatively

small and, likewise, the same is assumed for those of the Y-variables in the selection equa-



tion (6), as, ay. This means that Y tends to be already partly balanced between treated
and untreated units and, furthermore, although 7 will be highly unbalanced its impact on
the outcome is minor. The X-variables are the strongest predictors of both the outcome
and the selection and most effort should therefore be spent on balancing them. The sim-
ulation aims at examining the relative performance of the matching estimator when the
propensity score is estimated by means of a probit model including all variables (X, Y, Z)
and when based on the most relevant variables X only. Furthermore, the treatment effect

0; depends on 7 reflecting heterogeneity in the following manner

0i = Yo + 11 X1i + 72 Xoi +73Yn + VaYoi + 521 + Y6 Lo

Depending on the parameter setting self-selection into treatment plays a more or less
important role resulting in more or less severe imbalance of covariates. If Y and Z are
of minor relevance, merely X should actively be balanced by matching on IP(D = 1]|X).

However, IP(D = 1|X,Y, Z) follows a probit specification in accordance with equation
(6)

]P(D = 1|X,K Z) = (D(Ozo + Oéle + OQXQ + 0431/1 + O£4Yr2 + O[5Zl + Oé@Zg),

where ® is the cumulative normal density function. Thus, a probit estimation using co-
variates X, Y, and Z — henceforth called the full probit — would yield consistent estimates
of individual propensity scores but matching on them would unnecessarily balance Z,
as well. On the other hand, a misspecified probit estimation merely on X — henceforth
called the partial probit — would indeed use only the most relevant variables but might
yield inconsistent estimates of IP(D = 1|X). The choice to proceed as if a probit model
held might therefore be one reason for bias in estimates of the mean treatment effect.?
In general, the functional form of IP(D = 1|X) = IE(IE(D|X, Y, Z)|X) does not follow a

probit specification
IP(D=1|X) = /@(ao + o Xy + 0 Xo + asyy + agye + asz + ag22) fiv,z)x (¥, 2) d(y, 2)

where fy,z)x is the conditional density of (Y7,Y2, 21, Z2) given X 3 Another source of

bias arises if the impact of Y and Z on the outcome and on the selection are not zero.

2Note, though, that consistent estimation of the coefficients a in the probit model are not of any
interest. Furthermore, see YATCHEW & GRILICHES (1984) for a discussion of specification errors in
probit models.

3Since it is not easy to solve the integral analytically the true values are calculated by ways of an



In consequence, the questions of this paper are (i) whether neglecting to balance (Y, Z)
produces a bias which is offset by a larger variance of the estimates of the full model,
and (ii) whether the functional specification error in estimating IP(D = 1|X) by a probit
model causes severe problems. We assess the trade-off on the basis of the mean squared

error criterion.

The described setup allows to perform simulations along five dimensions. First, the
impact of Z on R and of Y on D may be altered. To this end, G5, B¢ and as, ay are
varied between 0 and 0.1 while the remaining a- and S-coefficients are set equal to 1, and
the constant 3y equals 0. This strategy allows an exploration of the question whether
near exclusion restrictions carry the same implications as genuine exclusion restrictions.
Second, the average number of comparison units in the sample is gradually increased from
300 to 900 while the average number of treated is fixed at 150 by accordingly adjusting
the constant ag. Thereby, we address the issue by how much the described trade-off is

altered as more and more comparison observations become available.

Third, the deterministic part of the selection equation is successively weakened which
means that all a-coefficients except for o are simultaneously reduced until they reach 25%
of their original value. This shows how the degree of selection determination influences
the stratification results. Fourth, effects ¢; may be homogeneous or heterogeneous cor-
responding to whether v = (1,0,0,0,0,0,0) or v = (0.5,0.25,0.25,0.25,0.25,0.25, 0.25).
The homogeneous case presents an interesting benchmark to compare the full and partial
probit model. Pair matching might be an unbiased and a more efficient evaluation strat-
egy than full matching when effects are homogeneous. Yet, in this study, the choice of

the matching algorithm will not be explored.

Finally, the distribution of (X, X, Y1, Ya, Z1, Z5) is varied. In a basic model all six
variables are independently and identically (iid) standard normal implying that omission
of (Y, %) from the probit model does not bias propensity score estimates because the
omitted variables are perfectly absorbed in normally distributed stochastic noise. To

avoid this favorable aspect, Z will alternatively be distributed in an odd fashion. Several

auxiliary Monte Carlo simulation: 200 times adequate (Y, Z)’s are generated and IP(D = 1|X,|Y =
y, Z = z) is calculated for each iteration inserting the given (Y, 7) = (y, z). The mean over all iterations
is an approximation to IP(D = 1]X).



alternatives have been investigated but those maintaining independence between Z and
X and reducing to an exchange of the distribution of 7 have been unable to produce

biased propensity score estimates.*

Apparently, the probit model seems quite insensitive to misspecification of the error
distribution as far as the overall fit is concerned and coefficients are of no interest. Yet,
as soon as independence of X and Z is abandoned omission of Z leads to heteroskedastic
errors of the selection equation and to arbitrarily large biased propensity score estimates,
up to estimates that are almost constant for all values of X. One specification that
is presented below — called alternative model — defines (X1, X, Y1, Ys) as iid uniformly
distributed random variables with mean zero and variance one. In contrast, Z; will follow

the functional form

Zj = Uj GXp(—MXj), ] = 1, 2, (7)

where Uj is a uniform random variable in the unit interval and ; = 1.35. In addition, Z; is
standardized to have mean zero and variance one in each iteration of the simulation. This
is necessary to ensure that selection due to Z is normalized and comparable to the basic
model.® Furthermore, interactions between Z and X are introduced into the selection

equation (6) such that it becomes

D; = 1o+ a1 Xy + o Xy + asYy; + auYo + a5 Z1; + agZa; +

ar X121 + as X Zo + a9 Xoi Z1; + 010 X2 o + 1 > 0)

Omission of Z might lead to severe misspecification problems which, however, can
substantially be alleviated by adding higher order terms of X into the probit specification.

The conditional expectation of Z; given X, Xs is a function of X, X5
]E(Z]|X1/X2) - f(Xl./Xg). (8)

Hence, inclusion of higher order terms of (X7, X3) approximates a Taylor expansion of
f(X1, X5) such that, again, almost only the stochastic part of Z will be absorbed by the

error term of the model. Three alternative probit models will therefore be specified to

4Even very asymmetric strange densities of Z failed to generate inconsistencies.
STf Z has high variance it will strongly determine selection. To normalize its impact with respect to
the basic model the variance is required to be 1.



Table 1: The Simulation Setup.

Distribution Parameters
Variable Basic Alternative* Outcome Selection
Constant - - ag (adjusted)
X1 N(0, U[-0.5,0.5] fr=1 a; =1
Xs N(0,1 U[-0.5,0.5] Ba=1 as =1
X1 Xo - - B2 € {0, 1} 0
Y1 N(0,1 U[-0.5,0.5] B3=1 ay € {0,0.05,0.10}
Y, N(0,1 U[-0.5,0.5] By=1 ay € {0,0.05,0.10}
1Y - - Baq € {0,1} 0
A N(0,1) Uy exp(—pXy) G5 € {0,0.05,0.10} as =1
Zy N(0,1 Uy exp(—pXy) Bs € {0,0.05,0.10} ag =1
71 7o - - Bs6 € {0,1} 0
X174 - - 0 a7 € {0,1}
X175 0 ag € {0,1}
Xo 71 0 ag € {0,1}
X275 - - 0 ag € {0,1}
D; - - o; see below
U, - u[o, 1] 0 0
U, u[o, 1] 0 0
s N(0,9) N(0,9) 1 1
I N(0,1) N(0,1) 1 1

Size of the control reservoir € {300,600, 900}

Size of the treatment group: 300
Importance of the deterministic part € {0.25,0.50,0.75,1.00}
di = 70 + X1 +72Xoi +13Y1i + VaYoi + 521 + Y6 Z2; and
~ € {(1,0,0,0,0,0,0), (0.5,0.25,0.25,0.25, 0.25, 0.25, 0.25)}

uw=1.35

* Furthermore, all variables are standardized to have mean zero and variance 1.

demonstrate this issue. The first model consists of linear terms in X only, the second one

includes an interaction X;X5, and the third one further adds quadratic terms in X.

Other interesting features consider (i) whether asymmetry of the parameters (51, 82) =

(0.5,2) or (ii) whether interaction terms in the outcome equation as follows

+  BsZ1+ BeZa + P56 4122 + €

R = B+ 51Xy + BoXo + B12 X1 Xo + B5Y1 + B4Ys + B34Y1Y5



might cause additional problems. To keep the presentation of the alternative model simple
only a certain parameter constellation of the basic model will be considered more closely:
a medium impact of Y on R and Z on D, i.e. with coefficients a3 = a4 = 35 = G5 = 0.05,
a medium size of the control reservoir (600), and a selection determination of 0.75. The

setup is summarized in table 1.

4 The Matching Algorithm

Consider the basic specification retaining independence between X and 7, with Z having
no impact on the outcome R, and Y none on selection D but all other a and (-coefficients
are 1, and, furthermore, where there are 600 comparison units. This constellation already
motivates the use of the special matching algorithm presented below. The columns under
the heading full probit of table 2 compare the absolute frequencies of treated and untreated
individuals by propensity score intervals. Obviously, the distribution is very unfavorable
for matching at the boundaries. In effect, the full probit model successfully separates the
treated from the untreated. Unfortunately, high predictive ability of the model implies

difficulties in finding adequate controls for high propensity score treated individuals. The

Table 2: Distribution of Treated and Untreated Individuals.

Estimated Full Probit Partial Probit
Propensity score untreated treated untreated treated
00 < p < 01 459.58 6.80 293.39 12.41
01 < p < 0.2 49.59 8.69 135.02 23.67
0.2 < p < 03 29.39 9.77 75.58 24.86
03 < p < 04 19.88 9.86 45.08 23.71
04 < p < 05 14.29 10.74 25.49 20.54
06 < p < 06 10.11 12.48 14.16 16.63
06 < p < 07 7.18 13.47 6.93 12.65
0.7 < p < 08 5.22 15.83 3.01 9.11
08 < p < 09 3.04 18.90 1.01 4.98
09 < p < 1.0 1.46 43.50 0.07 1.70
Mean propensity score 0.09 0.65 0.15 0.38
Observations 600 150 600 150

The means are averages over 100 iterations. Comparison of number of treated and untreated individuals
by certain propensity score intervals.



picture improves substantially if Z (and Y) are omitted from the selection equation.
Estimation results of the partial probit are presented in the last two columns of the
table. Apparently, the difference in the distributions of the estimated propensity scores
for treated and untreated is less extreme than in the full probit. Therefore, matching can

be expected to be much easier.

After estimation of individual propensity scores a distance between treated and un-
treated individuals has to be defined because exact matching on the continuous score
is impossible. Here a propensity score caliper approach is pursued (COCHRAN & RuU-
BIN, 1973). A small pool of potential controls is generated for each treated unit by
excluding all untreated units whose propensity score distance to the chosen treated ex-
ceeds a certain caliper €. Within the caliper, the distances from treated individual to
potential control is defined in terms of the Mahalanobis metric based on variables W
consisting of the estimated propensity score and all matching covariates, either (X,Y, 7)
or X for the full or partial specification, respectively. It is a weighted Euclidean distance
d(wi, w,) = (wy — w.)'V 1 (wy — w,.), where indices ¢, ¢ represent the treated and the po-
tential control units, respectively. V' is the pooled covariance matrix of W which serves
to norm the vectors. In sum, the distance is

00 if |pr —pe| > €
d(wy, w,.) = (10)

(wy — w.)'VHwy —w,)  else.

An infinite distance indicates that matching is forbidden.

Matching using the Mahalanobis distance is discussed in RUBIN (1980). Gu &
RoseENBAUM (1993) perform simulations to compare three distance measures. Fur-
thermore, propensity score calipers are discussed in ROSENBAUM & RUBIN (1985) and
ROSENBAUM (1989). Calipers help substantially reduce the number of potential controls
and, thus, considerably accelerate the matching algorithm and, what is more, they pre-
vent that too distant individuals are being matched. The critical € is chosen such that
there are enough but not too many potential controls in the vicinity of each treated which
otherwise would considerably slow down the algorithm without improving results. Table
3 summarizes the choices of the critical €. The results may depend on the choice of €. A

small ¢ will come with a loss of many treated (and untreated) individuals. On the other



Table 3: Specification of Caliper Width «¢.

Basic Model Alternative Model
Selection Full Probit Partial Probit Full Partial Probit
Determ. 300 600 900 300 600 900 Probit Order
0.25 .030 .020 .010 .015 .010 .005 .03 1 .002
0.50 .040 .030 .020 .030 .015 .010 2 .010
0.75 .050 .040 .030 .040 .020 .010 3 .010
1.00 .060 .050 .040 .050 .025 .010

The first column of the basic model presents the factors which the a-coefficients of the selection equation
are multiplied with. The next columns headed by the size of the control reservoir display the critical
€. The first column of the alternative model shows the caliper width used in the full probit, the second
shows whether no interactions (1), interactions (2), and additionally squares (3) are included in the partial
probit, and the last displays ¢.

hand, however, it increases similarity of the matched units.

The final decision is how to implement the chosen matching criteria, in other words,
how the distances between treated units and controls is to be minimized. A stratification
producing small strata is preferable in order to ensure that the distance between the units
within a stratum is not too large and stratum members are very similar to each other.
This yields strata with either one treated and one or more controls or one control and
more than one treated unit. It turns out that strata with very high propensity scores
contain more than one treated and strata with low scores consist of a large number of

controls.

In this study, optimal full matching as proposed by ROSENBAUM (1991) is imple-
mented. It minimizes the overall distances between treated and controls in that it works
backwards and rearranges already matched units if an unmatched treated would better
be matched to an already used untreated. In such a case, the existing match is broken up
and its treated is available for matching again.® The strata will be non-overlapping, i.e.
individuals are not members of more than one stratum, which facilitates the calculation

of variances.” Optimal full matching can easily be transformed into a minimum cost flow

6This is in contrast to so-called greedy algorithms which do not generally achieve a minimum, see
ROSENBAUM (1991).

"Statistical inference is described in ROSENBAUM (1995) and adapted to this setup in AUGURZKY
(2000a). However, non-overlapping strata are not necessary if different techniques are used, see QUADE
(1981) or HECKMAN, ICHIMURA & ToDD (1998).



problem, a special case of linear network optimization.® Empirical applications can be

found in AUGURZKY (2000a,b).

Matching produces different strata in terms of number of treated and controls per
stratum. Some might be very extreme comprising numerous treated units and only one
control. It is they who substantially increase the variance of the estimated mean effect
of treatment on the treated. On the other hand, strata with one treated but countless
controls will work in the opposite direction but receive less weight. Therefore, an aggregate
measure assessing the uniformity of a given stratification with respect to a benchmark
stratification is helpful. To this end, suppose all estimated stratum treatment effects have
the same variance, the following formula measures variance inflation due to unfavorable

stratification® <
2

1 m2
(35, my)? Z (1—1/ny)?

s=1

where m, indicates the number of treated units and n, the number of all individuals in

stratum s = 1,..., S.

In order to make the formula meaningful it ought to be compared to a benchmark
stratification which is defined as follows. Let all treated units get their own stratum
with exactly one control. Therefore, redefine 7z = 1 and 7z = 2 for all § = 1,..., S
with S = 3% | m,, yielding a variance inflation of 4/ 3% m,. The ratio of the two

expressions yields a relative variance inflation factor denoted k2

S 2

2 1 ms
K2 = o ; TSNS (11)

For example, pair matching produces k = 1, 1-k-matching, i.e. one treated and k& controls

share a common stratum, leads to x = 0.5 (1+1/k), k-1-matching has x = (k+1)/(2Vk).
Note that the benchmark stratification can in general never be achieved since all treated
who are used in the optimal stratification would have to find an own control. This would
only be possible if there are no high propensity score treated units or else if several high
propensity score treated individuals were matched to medium score controls which is either

ruled out by a caliper approach or which otherwise would compare the incomparable. As

SBERTSEKAS (1991) discusses linear network optimization and provides FORTRAN-algorithms for
minimum cost flow problems. Furthermore, there is an operations research procedure called netflow in
SAS for these kinds of problems.

9See AUGURZKY (2000a) or ROSENBAUM (1995) for the deduction of the general variance formula.



such, k incorporates neither the balance of covariates after matching nor how many treated

units remain unmatched but only the uniformity of the stratification.

As outlined in the introduction, pair matching might be more efficient than full match-
ing. What is more, if the treatment effect is homogeneous pair matching estimates are
unbiased. Nevertheless, pair matching is disregarded in this study even in the case of
homogeneous effects. The principal aim is to shed more light on the estimation of the
propensity score when selection is strong. The homogeneous case is for illustrative pur-

poses only and serves as a valuable benchmark.

Finally, matching should produce balance of all important covariates implying that at
least their means for treated and controls be approximately equal. Therefore, to verify
balance, simple t-tests of the hypothesis of equal means under equal variances are per-
formed for each of the six variables 7 = 1,...,6. If the null hypothesis cannot be rejected
at a 5% significance level let t; = 1 and zero otherwise. Then, for an overall measure of
balance, define the aggregate balance T as

L > Bt
Z?:l B; 7

the (’s being the coefficients of the outcome equation (5). Weighting by [ takes into

(12)

account that imbalance of the less important variables Z would cause less problems than

that of X and Y.19

5 Results

Each simulation is performed 100 times and mean estimation results over all iterations
are presented and discussed for the parameter constellations mentioned above. Variability
across simulations is reflected by simulation standard errors which, however, are not
presented in the tables below for reasons of clarity. Figure 1 shows propensity score
estimation results of the basic model with true and estimated scores on the vertical axis

and the true ones on the horizontal axis. The data are taken from the constellation where

10Percent bias reduction has also been examined. Yet, results were quite unsatisfactory because a
negative percent bias reduction is basically unbounded. If balance before matching is already given the
denominator in the formula is close to zero. On the other hand, percent bias reduction is at most +100%.
Therefore, the mean reduction turned out to be rather low in each single iteration.
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Figure 1. Basic Model, Full Probit and Partial Probit

O true score A estimated score

true score

O true score A estimated score

true score

True and estimated propensity scores on the vertical axis versus true
scores on the horizontal. The figures represent one iteration of the
simulation study, the full model on the top, the partial one on the
bottom.

the critical coefficients of Y and Z are 0.1, with 600 untreated individuals, and with

selection determination of 0.75.

Apparently, the estimates of both the full and the partial specification are unbiased.
Tables 4 and 5 go into the estimation and stratification results of the full and partial model.
The first three columns characterize the simulation scenario. The first column reports the

values of the coefficients s, g, a3, and ay, the second the size of the control reservoir,



and the third shows the factor the a-coefficients of the selection equation are multiplied
with. The lower this factor the larger the randomness of the selection process and the
less severe self-selection is. The next four columns report the bias and the RMSE in the

homogeneous and the heterogeneous case. The remaining columns are self-explanatory.

The most striking result is that matching on the propensity score estimated by the full
probit model produces almost always unbiased estimates of the mean effect of treatment
on the treated while the bias of the partial probit matching rises to roughly 40% when
the impacts of Y and Z are largest. Nevertheless, root mean squared errors of the latter
are markedly lower when selection determination is highest. As selection determination
successively increases, the full model puts an increasingly heavy burden upon treated
individuals in finding appropriate controls, a fact reflected in the diminishing number
of strata and the growing number of lost treated individuals. For instance, full probit
matching ends with roughly 57 strata if selection determination is highest and the control
reservoir is smallest. By contrast, partial probit matching still produces around 101 strata
under these circumstances. That is, stratification in the latter case is more uniform as
can also be seen from its lower value of x which never surpasses 0.92 whereas full probit
matching even surpasses k = 1. However, the difference in RMSE decreases for a more

extensive control reservoir.

Furthermore, the partial probit estimates are unbiased if the omitted variables Y and
Z do not have an impact on the selection or outcome equation, respectively. However,
there is an increasing bias if their impact increases. Note that there appears to be also a
weak upward bias in the full probit model if selection determination is highest, specifically
in the homogeneous case. This bias arises due to the remaining imbalance expressed by
a 7 of around 0.6. An additional bias of opposite direction emerges in the heterogeneous
case partly offsetting the initial bias. This is because many high propensity score treated
units who tend to experience a higher effect in the heterogeneous case are discarded by
the matching algorithm. Furthermore, the RMSE in the heterogeneous case seems to be
as large as or larger than in the homogeneous case. Yet, it is smaller for high selection
determination and for large control reservoir. This finding might be explained by the
additional variability of a heterogeneous 6;. Since §; depends on the observable covariates,

its variability diminishes as selection caused by the observables becomes more important.



Table 4: Basic Model, Full Probit.

Effects Stratification

Scenario Homogeneous Heterogeneous N° of Lost K AP- Bal.

(a) (b) (c) Bias RMSE Bias RMSE strata tr’d score T
0.00 300 0.25 -0.01 0.37  -0.04 0.50 129.97 3.36 084 -0.02 1.00
0.50 -0.08 0.57 -0.14 0.67 97.15 899 097 -0.05 0.96
0.75 0.09 0.79 0.03 0.84 73.58 13.10 1.14 -0.05 0.82
1.00 0.15 1.15 0.11 1.16 56.49 11.34 1.36 -0.04 0.60
600  0.25 0.03 0.34 0.01 0.41 143.34 3.22 071  -0.03 1.00
0.50 0.03 0.43 -0.02 0.43 115.43 9.17 0.80 -0.07 0.99
0.75 -0.01 0.56  -0.05 0.51 89.35 12.04 095 -0.06 0.90
1.00 0.05 0.88  -0.00 0.79 72.28 1559 1.10 -0.06 0.72
900  0.25 0.03 0.30  -0.00 0.34 141.79 4.58 0.66 -0.04 1.00
0.50 -0.00 0.39  -0.05 0.37 122.68 9.96 0.74 -0.08 0.99
0.75 0.01 0.46  -0.04 0.40 100.08  15.10 0.86 -0.09 0.92
1.00 -0.01 0.61  -0.06 0.51 81.95 1782 0.99 -0.09 0.79
0.05 300 0.25 -0.01 0.36  -0.04 0.48 128.32 4.02 084 -0.02 1.00
0.50 0.09  0.52 0.05 0.58 98.90 818 098 -0.04 0.96
0.75 0.07  0.78 0.02 0.82 73.53 12,51 1.15  -0.05 0.85
1.00 0.16 1.15 0.11 1.15 57.15 13.50 1.34 -0.05 0.59
600  0.25 -0.01 0.35  -0.03 0.42 142.70 3.06 071 -0.03 1.00
0.50 0.02 0.42  -0.03 0.43 116.97 819 082 -0.06 0.99
0.75 0.04 0.56  -0.02 0.52 90.68 13.99 094 -0.08 0.91
1.00 -0.02 0.81  -0.08 0.71 72.17 1717  1.09 -0.07  0.68
900  0.25 -0.04 0.32  -0.08 0.38 141.98 4.63 066 -0.05 1.00
0.50 0.04 038 -0.01 0.35 122.73 1051 0.74  -0.09  0.99
0.75 0.09 0.43 0.03 0.36 98.23 14.25 0.86 -0.09  0.92
1.00 0.10 0.71 0.03 0.57 79.78 1832 0.99 -0.09 0.79
0.10 300  0.25 0.03 0.38 0.01 0.51 129.60 343 085 -0.02 1.00
0.50 0.09  0.52 0.05 0.57 96.04 877 098 -0.04 097
0.75 0.09 0.80 0.03 0.82 72.43 13.22 1.15 -0.05 0.79
1.00 0.22 0.93 0.16 0.93 58.69 1434 132 -0.05 0.63
600  0.25 -0.01 0.36  -0.04 0.45 143.86 3.26  0.71  -0.03 1.00
0.50 -0.07 046 -0.11 0.46 116.51 792 081 -0.06 0.98
0.75 0.14 0.55 0.07 0.48 90.84 13.78  0.95 -0.07 0.88
1.00 0.03 0.69 -0.03 0.61 73.88 1828 1.07r -0.08 0.7
900 0.25 0.00 0.30 -0.04 0.34 140.43 4.84 066 -0.05 1.00
0.50 -0.01 0.44 -0.06 0.41 121.32 10.77 0.74 -0.09 1.00
0.75 0.09 048 0.02 0.40 100.14 1597 0.86 -0.10 0.97
1.00 0.09 0.68 0.02 0.54 80.22 1847 0.99 -0.09 0.77

The results are averages over all 100 iterations. The first block represents the scenario: (a) value of the
coefficients s, B¢, 3, g, (b) size of control reservoir, (c) selection determination. The next block reports
bias and RMSE for the homogeneous and the heterogeneous case. The last block shows stratification
results: the number of strata and of lost treated units, the stratification measure s, the difference in true
propensity scores of treated units after and before matching, and the aggregate balance 7.



Table 5: Basic Model, Partial Probit.

Effects Stratification

Scenario Homogeneous Heterogeneous N° of Lost K AP- Bal.

(a) (b) (c) Bias RMSE Bias RMSE strata tr'd score T
0.00 300 0.25 0.01 0.40 -0.01 0.54 129.07 292 082 -0.01 0.96
0.50 -0.05 0.49 -0.07 0.56 117.00 4.36 0.8 -0.02 0.93
0.75 0.03 0.46 0.01 0.48 107.81 424 089 -0.01 0.93
1.00 0.06 0.45 0.05 0.46 101.21 4.46 092 -0.01 0.90
600  0.25 0.04 0.39 0.04 0.47 144.00 224 069 -0.01 095
0.50 0.05  0.42 0.03 0.42 130.61 5.02 071 -0.03 094
0.75 -0.02 0.44 -0.04 0.40 124.04 6.19 0.74 -0.02 0.94
1.00 -0.01 0.39 -0.02 0.35 120.12 6.36 0.76 -0.02 0.92
900  0.25 0.00 0.32 -0.01 0.37 143.61 3.16 0.63 -0.02 0.95
0.50 0.00 0.37  -0.02 0.35 137.36 5.66 0.66 -0.03 0.95
0.75 0.02 0.35  -0.00 0.30 130.95 891 0.69 -0.03 094
1.00 -0.03 0.40 -0.04 0.33 125.78  11.50 0.70 -0.03  0.92
0.05 300 0.25 0.04 0.34 0.04 0.45 128.47 295 081 -0.01 094
0.50 0.18  0.46 0.19 0.51 116.53 3.52 086 -0.01 091
0.75 0.14 0.50 0.13 0.52 108.82 4.67 089 -0.01 0.90
1.00 0.18  0.51 0.16 0.50 101.76 448 091 -0.01 0.87
600  0.25 0.04 0.39 0.04 0.47 143.15 235 068 -0.01 094
0.50 0.12 0.39 0.11 0.39 134.06 559 0.72 -0.03 0.91
0.75 0.17 0.38 0.14 0.34 123.44 6.57 0.74 -0.02 0.91
1.00 0.18 0.44 0.14 0.38 120.77 6.40 0.75 -0.02 0.87
900  0.25 0.02 0.31 0.01 0.36 143.88 3.13  0.63 -0.02 0.93
0.50 0.20  0.42 0.17 0.38 137.84 933 066 -0.03 0.93
0.75 0.20 0.42 0.15 0.35 129.33 9.10 0.68 -0.04 0.90
1.00 0.30 0.48 0.23 0.38 124.34 1218 0.69 -0.03  0.89
0.10 300  0.25 0.19 0.46 0.24 0.60 129.41 285 082 -0.01 0.90
0.50 0.32  0.50 0.34 0.55 115.86 419 085 -0.02 0.87
0.75 0.33 0.56 0.32 0.57 107.64 446 089 -0.01 084
1.00 0.42 0.65 0.41 0.64 103.05 3.53 091  -0.01 0.83
600  0.25 0.14 0.38 0.15 0.46 144.53 249 0.68 -0.01 0.92
0.50 0.24 0.42 0.22 0.40 132.97 4.84 0.71 -0.02 0.86
0.75 0.41 0.56 0.35 0.49 125.63 6.26 0.74 -0.02 0.84
1.00 0.44 0.60 0.37 0.51 121.74 6.22 0.76 -0.02 0.82
900 0.25 0.17  0.35 0.18 0.39 142.11 3.56 063 -0.02 0.88
0.50 0.29 0.48 0.25 0.43 134.63 5.81 0.66 -0.03 0.86
0.75 0.38  0.52 0.30 0.43 131.07 9.05 0.68 -0.03 0.85
1.00 0.41 0.57 0.31 0.44 123.81 11.76 ~ 0.70  -0.03  0.83

The results are averages over all 100 iterations. The first block represents the scenario: (a) value of the
coefficients (s, O, a3, a4, (b) size of control reservoir, (c) selection determination. The next block reports
bias and RMSE for the homogeneous and the heterogeneous case. The last block shows stratification
results: the number of strata and of lost treated units, the stratification measure x, the difference in true
propensity scores of treated units after and before matching, and the aggregate balance 7.



As far as balancing success is concerned, no strategy surpasses the other in all scenarios.
If selection determination is weak full probit always achieves perfect balance. However,
its performance diminishes quickly as selection determination is growing. On the other
hand, partial probit’s balancing success starts worse but does not reduce as fast as full
probit’s. Part of this finding is explicable by the choice of the caliper width e. It is wider
for strong selection (see table 3), hence, treated individuals might choose controls with a
relatively low propensity score. For the same reason, 7 deteriorates faster in the full than
in the partial probit model. However, a constant ¢ for all scenarios would have produced

a large casualty list of treated units in the full model.

In spite of non-constant ¢, the full probit loses more treated units such that the relative
difference in the true full propensity scores between treated individuals before matching
and the remaining treated after matching A P.score is more pronounced than in the partial
probit. The negative signs show that treated individuals are lost in the high end of
the propensity score scale. However, while partial probit matching never exceeds 3%.
full probit matching even reaches 10%. Note, however, that the number of lost treated
increases with the size of the control reservoir. This counterintuitive result arises because

of decreasing caliper widths, see table 3.

In sum, partial probit produces a better overall performance than full probit for the
examined parameter constellations. Alas, if the coefficients of Y and Z grew above the
0.1 considered here, full probit could be expected to be the preferred strategy. Moreover,
if there is no strong selection into treatment full probit matching is not at a disadvantage,
in contrast, it even sometimes outperforms partial probit. Yet, strong selection as in
DEHEJIA & WAHBA (1998) or AUGURZKY (2000a) calls for a careful assessment of the

importance of the variables included in the selection equation.

The basic model seems to be overly optimistic as far as the distributions of Y and
Z are concerned. The top panel of figure 2 presents propensity score estimates under
the alternative partial probit model. Apparently, it underestimates propensity scores for
individuals with high IP(D = 1|X) and overestimates for those with low scores. This is
in contrast to the next two pictures which present estimated propensity scores built on
probit models with higher order terms. Pictures of the full probit are not presented for

they are virtually identical to those of the basic model.



Figure 2: Alternative Model, Partial Probit With and Without Higher Order
Terms
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True and estimated propensity scores on the vertical axis versus true
scores on the horizontal. The figures represent one iteration of the
simulation study. The first picture shows results when no interactions
are included; the second contains interactions, the third additionally
contains squares in X.



Table 6: Mean Ranks.

Full probit Partial probit
untreated treated untreated treated
Basic Model
True propensity score 313.59 625.75 332.14 550.78
Estimated propensity score 313.28 627.01 331.79 552.19
Alternative Model
True propeunsity score 329.87 557.76 335.14 536.65
Estimated, without higher order terms 328.67 562.54 367.40 407.94
Estimated, w/ interactions 328.67 562.54 336.59 530.82
Estimated, w/ inter. & squares 328.67 562.54 335.43 535.44

The results are mean ranks in the treatment and in the comparison group. They are further averaged
over all iterations.

One might ask whether the order of treated and untreated units with regard to their
estimated biased propensity scores would be similar to the order of individuals in accor-
dance with their true scores IP(D = 1|X). In this case, treated and untreated would
hardly change their ranks within the sample. As a result, stratification might be similar
to that if the true scores were used for matching and the biased propensity score estimates
would not be a source of bias in the matching estimates. However, as illustrated in table
6, the mean rank of treated units has diminished considerably for the alternative model
with no higher order terms implying that a large number of untreated and treated units
must have interchanged their ranks. Alas, once higher order terms are taken into account
— particularly interaction between X; and X5 — there is no difference in mean ranks worth

mentioning anymore.

Table 7 presents simulation results for the alternative model in simulation scenario
(0.05, 600, 0.75) for the full and the partial probit. Consider first the partial probit results.
Surprisingly, they are still better than the comparable ones of the full probit basic model,
though worse than those of the partial probit basic model. Interactions in the outcome
equation (9) lead to an increase of the RMSE and produce a larger bias if no higher order

terms in the probit model are accounted for. Yet, this pattern disappears once they are



Table 7: Alternative Model.

Effects Stratification

Homogeneous Heterogeneous Ne¢ of Lost K AP- Bal.

Bias RMSE Bias RMSE strata tr'd score T

Full Probit

Mahalanobis distance within calipers
— no interactions in outcome equation

0.08 0.48 0.05 0.80 118.82 13.51 0.74 -0.12 0.98
— with interactions in outcome equation
0.11 0.53 0.11 0.87 118.82 13.51 0.74 -0.12 0.98

Propensity score distance within calipers
— no interactions in outcome equation

0.08 0.51 0.06 0.84 113.16 13.51 0.75 -0.12 0.98
with interactions in outcome equation
0.07 0.56 0.04 0.92 113.16 13.51 0.75 -0.12 0.98

Partial Probit

Mahalanobis distance within calipers
— no interactions in outcome equation

1 0.14 0.43 0.23 0.72 134.37 0.50 0.72 -0.00 0.91
2 0.16 0.47 0.24 0.78 128.72 7.82 0.72 -0.05 0.92
3 0.19 0.49 0.30 0.81 128.16 6.58 0.73 -0.04 0.93

— with interactions in outcome equation

1 -0.33 0.56 -0.55 0.94 134.37 0.50 0.72 -0.00 0.91
2 -0.06 0.48 -0.13 0.81 128.72 7.82 0.72 -0.05 0.92
3 -0.03 0.48 -0.07 0.80 128.16 6.58 0.73 -0.04 0.93

Propensity score distance within calipers
no interactions in outcome equation

1 0.13 0.42 0.21 0.71 140.85 0.50 0.71 -0.00 0.92
2 0.12 0.49 0.17 0.81 127.86 7.82 0.73 -0.05 0.92
3 0.18 0.47 0.27 0.77 126.94 6.58 0.73 -0.04 0.92

— with interactions in outcome equation

1 -0.80 0.95 -1.34 1.58 140.85 0.50 0.71 -0.00 0.92
2 -0.10 0.52 -0.21 0.88 127.86 7.82 0.73 -0.05 0.92
3 -0.05 0.46 -0.11 0.78 126.94 6.58 0.73 -0.04 0.92

The means are averages over all 100 iterations for scenario (0.05, 600, 0.75) of table 5. The first column
refers to the partial probit model, 1: no higher order terms, 2: interactions, 3: interactions and squares.
The first block reports bias and RMSE for the homogeneous and the heterogeneous case. The last block
shows stratification results: the number of strata and of lost treated units, the stratification measure k,
the difference in true propensity scores of treated units after and before matching, and the aggregate
balance 7. Interactions in outcome equation means that (812, O34, O56) = (1,1,1).



included. Asymmetry in the coefficients (51, 52) = (0.5, 2) instead of (1, 1) of the response
equation does not at all alter the results which is why they are omitted. In contrast to
the basic model, heterogeneous effects lead to substantially worse estimation results in

that biases and RMSEs are markedly larger than in the homogeneous case.

These still surprisingly favorable results in spite of severe misspecifications expressed
in the first picture of figure 2 might be explained by the fact that within the propensity
score calipers the Mahalanobis distance, which is not misspecified, still matches the correct
individuals. To explore this hypothesis all results are repeated replacing the Mahalanobis
distance by the propensity score distance within calipers. The results are also shown in
table 7. They are fairly similar to the previous results with one notable exception: the bias
and RMSE are markedly larger in case interactions in the response model are introduced

but none in the probit model.

For the sake of comparability, the table displays estimates of the full probit model,
as well. The most striking result is that it achieves an almost perfect overall balance 7.
This unexpected finding, however, may partly be explained by the fact that a considerable
number of high propensity score treated units is lost facilitating balancing the variables of
the remaining sample. As a result, the superior balance is accompanied by an unfavorably
AP.score of 12% making the matched sample less representative. Similarly,  is almost as
small as in the partial probit model because it merely reports uniformity of the realized
stratification given the number of lost treated units. Finally, using a propensity score
distance within calipers does not alter the results except for slightly increased RMSE. In
sum, the partial probit does not do worse than the full probit even if the partial probit
model is severely misspecified. Including higher order terms into the selection equation
might be a way to alleviate problems caused by omission of variables which are correlated

with the included ones.

6 Conclusion

This paper investigates propensity score matching when selection into treatment is re-

markably strong and thus the treatment and comparison group differ considerably in



their observable covariates. In such a scenario, matching adequate units is demanding.
To alleviate this problem, we suggest to carefully reconsider the selection equation with
respect to variables that might play a subordinate role in the outcome equation. Omission
of these variables helps increase the randomness of the selection process and reduce the
variance of the matching estimates. However, their omission from the selection equation
might lead to inconsistent propensity score estimates and hence biased matching esti-
mates. This study assesses the bias-variance trade-off in a simulation resting on the mean

squared error criterion.

To this end, we presuppose existence of variables Z which strongly influence the se-
lection decision but which, on the other hand, do not or do only weakly determine the
outcome under scrutiny. For a large enough sample size, specification tests of the probit
model would then recommend the inclusion of Z to consistently estimate the propensity
score. Likewise, we introduce variables Y which are relevant to the outcome but irrelevant
to the participation decision. Matching on a propensity score estimate based on Z and Y
will balance Z at the expense of balance of the variables most relevant for both the out-
come and the selection. Moreover, unnecessary effort is spent to remove small imbalance
in the variable Y. In consequence, (i) some treated have to be systematically discarded
from the sample because they do not find adequate controls and, (ii) more treated have
to share one control, a fact that reduces uniformity of the stratification and thus increases

standard errors.

In effect, the results show that matching on inconsistent estimates of the propensity
score, i.e. those achieved when Z (and Y') are excluded, produces estimation results of the
mean effect of treatment that are often better in terms of the RMSE than those achieved by
matching on estimates that rest on all covariates relevant for the selection. This remains
true even if Z shows some impact on the outcome as long as this impact is limited. DRAKE
(1993) points to a similar direction in concluding that misspecifying the propensity score
results in smaller biases than misspecifying the response model. Therefore, we recommend
to only include variables into the selection equation that are highly significant. Variables
with low significance levels are obvious candidates for exclusion even if they might play
a role in the outcome equation. Moreover, if established research suggests that certain

variables Z are irrelevant to the outcome under study they should solely be included into



al
the selection equation if there are other strong reasons for doing so.

If, nevertheless, imbalance of some variables seems to be inacceptable after matching,
an additional linear regression adjustment might be pursued with presumably less cost
than balancing all the remaining variables in advance. If misspecification of the propen-
sity score seems to be inacceptable, one might additionally take account of statistically
significant higher order terms of those variables included in the selection equation. A
sensitivity analysis that compares partial models with the full model might be a way to
assess different approaches, see e.g. HECKMAN, ICHIMURA & ToODD (1997: section 13)
or AUGURZKY, (2000b). In sum, the main criterion of success for matching remains the
balance of the relevant covariates and not the proper estimation of the selection equation.
This aim is easily obtained by a full probit model only if selection determination is low
and/or the control reservoir is large but in several applied situations it might be better

obtained by a partial model.



References

Augurzky, Boris (2000a) “Matching the Extremes — A Sensitivity Analysis Based on Real
Data”, unpublished manuscript, Heidelberg.

Augurzky, Boris (2000b) “Evaluating the Effect of Postsecondary Education”, unpublished

manuscript, Heidelberg.

Angrist, Joshua D. & Jinyong Hahn (1999) “When to Control for Covariates? Panel-
Asymptotic Results for Estimates of Treatment Effects”, NBER Technical Working Paper
no. 241.

Bertsekas, Dimitri B. (1991) Linear Network Optimization: Algorithms and Codes, Cam-
bridge MA, MIT Press.

Cochran, W.G. & Donald B. Rubin (1973) “Controlling Bias in Observational Studies:
A Review”, Sankhya, Series A, 35: 417-46.

Dehejia, Rajeev H. & Sadek Wahba (1998) “Propensity Score Matching Methods for
Non-Experimental Causal Studies”, NBER Working Paper, 6829.

Drake, Christiana (1993) “Effects of Misspecification of the Propensity Score on Estimators
of Treatment Effect”, Biometrics, 49: 1231-1236.

Gu, X. Sam & Rosenbaum, Paul R. (1993) “Comparison of multivariate matching meth-
ods: Structures, distances and algorithms”, Journal of Computational and Graphical
Statistics, 2: 405-20.

Hahn, Jinyong (1998) “On the Role of the Propensity Score in Efficient Semiparametric
Estimation of Average Treatment Effects”, Fconometrica, 66: 315-31.

Heckman, James J. (1996) “Randomization As An Instrumental Variable”, Review of Eco-
nomics and Statistics, 77(2): 336-41.

Heckman, James J., Hidehiko Ichimura & Petra Todd (1997) “Matching as an Econ-
ometric Evaluation Estimator: Evidence from Evaluating a Job Training Program”, Re-
view of Economic Studies, 64: 605-54.

Heckman, James J., Hidehiko Ichimura & Petra Todd (1998) “Matching as an Econ-
ometric Evaluation Estimator: Theory and Methods”, Review of Economic Studies, 65:
261-94.

Heckman, James J., Robert J. Lalonde & Jeffrey Smith (1999) “The Economics and
Econometrics of Active Labor Market Programs”, Handbook of Labor Economics, Chapter
31, Volume 3, edited by Orely Ashenfelter and David Card. New York, NY: North-
Holland.

Holland, Paul W. (1986) “Statistics and Causal Inference (with discussion)”, Journal of the
American Statistical Association, 81: 945-70.



Lechner, Michael (1999) “Earnings and Employment Effects of Continuous Off-the-Job
Training in East Germany after Unification”, Journal of Business and Economic Statistics,
17/1: 74-90.

Lechner, Michael (2000) “An Evaluation of Public Sector Sponsored Continuous Vocational

Training Programs in East Germany”, The Journal of Human Resources, 35: 347-75.

Quade, Dana (1981) “Nonparametric Analysis of Covariance by Matching”, Biometrics, 38:
997-611.

Rosenbaum, Paul R. & Donald B. Rubin (1983) “The Central Role of the Propensity
Score in Observational Studies for Causal Effects”, Biometrika, 70: 41-55.

Rosenbaum, Paul R. & Donald B. Rubin (1985) “Constructing a Control Group Using
Multivariate Matched Sampling Methods That Incorporate the Propensity Score”, The
American Statistician, 39: 33-38.

Rosenbaum, Paul R. (1989) “Optimal Matching for Observational Studies”, Journal of the
American Statistical Association, 84: 1024-32.

Rosenbaum, Paul R. (1991) “A Characterization of Optimal Designs for Observational
Studies”, Journal of the Royal Statistical Association, Series B, 53: 597-610.

Rosenbaum, Paul R. (1995) Observational Studies, New York: Springer Series in Statistics.

Roy, Andrew D. (1951) “Some Thoughts on the Distribution of Earnings”, Ozford Economic
Papers, 3: 135-46.

Rubin, Donald B. (1974) “Estimating Causal Effects of Treatments in Randomized and
Nonrandomized Studies”, Journal of Fducational Psychology, 66: 688-701.

Rubin, Donald B. (1977) “Assignment to Treatment Group on the Basis of a Covariate”,
Journal of Educational Statistics, 2: 1-26.

Rubin, Donald B. (1980) “Bias Reduction Using Mahalanobis Metric Matching”, Biomet-
rics, 36: 293-98.

Rubin, Donald B. (1986) “What Ifs Have Causal Answers?”, Journal of the American Sta-
tistical Association, 81: 961-62.

Schmidt, Christoph M. (1999) “Knowing What Works: The Case for Rigorous Program

Evaluation”, IZA Discussion Paper no. 77.

Schmidt, Christoph M., Rob Baltussen & Rainer Sauerborn (1999) “Evaluation of
Community-Based Interventions: Group-Randomization, Limits and Alternatives”,

Discussion paper series no. 281, Department of Economics, University of Heidelberg.

Yatchew, Adonis & Zvi Griliches (1984) “Specification Error in Probit Models”, Review
of Economics and Statistics, 66: 134-39.



IZA Discussion Papers

No Author(s) Titel Area Date

181 E.Wasmer Space, Search and Efficiency 2 8/00
Y. Zenou

182 M. Fertig Discretionary Measures of Active Labor Market 6 8/00
C. M. Schmidt Policy: The German Employment Promotion Reform

in Perspective

183 M. Fertig Aggregate-Level Migration Studies as a Tool for 1 8/00
C. M. Schmidt Forecasting Future Migration Streams

184 M. Corak Intergenerational Influences on the Receipt of 3 8/00
B. Gustafsson Unemployment Insurance in Canada and Sweden
T. Osterberg

185 H. Bonin The Post-Unification German Labor Market 4 8/00
K. F. Zimmermann

186 C. Dustmann Temporary Migration and Economic Assimilation 1 8/00

187 . K. Bauer Immigration Policy, Assimilation of Immigrants and 1 8/00

Natives' Sentiments towards Immigrants: Evidence

T
M. Lofstrom
K from 12 OECD-Countries

. F. Zimmermann

188 A. Kapteyn The Myth of Worksharing 5 8/00
A. S. Kalwij
A. Zaidi

189 W. Arulampalam Is Unemployment Really Scarring? Effects of 3 8/00

Unemployment Experiences on Wages

190 C. Dustmann Racial and Economic Factors in Attitudes to 1 8/00
I. Preston Immigration
191 G.C. Giannelli Joint Decisions on Household Membership and 5 8/00
C. Monfardini Human Capital Accumulation of Youths: The role of
expected earnings and local markets
192 G. Brunello Absolute Risk Aversion and the Returns to 5 8/00
Education
193 A. Kunze The Determination of Wages and the Gender 5 8/00
Wage Gap: A Survey
194 A. Newell Regional Unemployment and Industrial 4 8/00
F. Pastore Restructuring in Poland
195 F. Bichel Overeducation, Undereducation, and the Theory 5 9/00
A. Mertens of Career Mobility



196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

J. S. Earle
K. Z. Sabirianova
G. A. Pfann

M. Kreyenfeld
C. K. Spiess
G. G. Wagner

H. Entorf

T. Bauer
G. S. Epstein
I. N. Gang

T. J. Dohmen
G. A. Pfann

P. Francois
J. C. van Ours

J. M. Abowd
F. Kramarz

D. N. Margolis
T. Philippon

G. S. Epstein

A. L. Booth
M. Francesconi
J. Frank

C. M. Schmidt
R. Baltussen
R. Sauerborn

C. M. Schmidt

J. Hartog
R. Winkelmann

M. Barbie
M. Hagedorn
A. Kaul

T. J. Dohmen

A. van Soest
M. Das
X. Gong

Equilibrium Wage Arrears: A Theoretical and
Empirical Analysis of Institutional Lock-In

Options to Quit

A Forgotten Issue: Distributional Effects of Day
Care Subsidies in Germany

Rational Migration Policy Should Tolerate Non-
Zero lllegal Migration Flows: Lessons from
Modelling the Market for lllegal Migration

What are Migration Networks?

Worker Separations in a Nonstationary Corporate
Environment

Gender Wage Differentials in a Competitive Labor
Market: The Household Interaction Effect

The Tail of Two Countries: Minimum Wages and
Employment in France and the United States

Labor Market Interactions Between Legal and
lllegal Immigrants

Temporary Jobs: Stepping Stones or Dead Ends?

The Evaluation of Community-Based Inter-
ventions: Group-Randomization, Limits and
Alternatives

Arbeitsmarktpolitische Mal3nahmen und ihre
Evaluierung: eine Bestandsaufnahme
Dutch Migrants in New Zealand:

Did they Fare Well?

Dynamic Effciency and Pareto Optimality in a
Stochastic OLG Model with Production and Social
Security

Housing, Mobility and Unemployment

A Structural Labour Supply Model with
Nonparametric Preferences

9/00

9/00

9/00

9/00

9/00

9/00

9/00

9/00

10/00

10/00

10/00

10/00

10/00

10/00

11/00

11/00



212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

. Gong
. van Soest
. Zhang

T > X

. Gong
. van Soest
. Villagomez

m > X

X. Gong
A. van Soest

J. Ermisch
M. Francesconi

F. Biichel

Hansen
. Wahlberg

o<

C. Dustmann
A. van Soest

. Kramarz
. Philippon

— M

Cornelius

W. A.
E. A. Marcelli

C. Grund

W.P.M. Vijverberg

M. Rosholm
M. Svarer

J. Schwarze

L. Modesto
J. P. Thomas

P. A. Puhani

Sexual Bias and Household Consumption: A
Semiparametric Analysis of Engel Curves in Rural
China

Mobility in the Urban Labor Market: A Panel Data
Analysis for Mexico

Family Structure and Female Labour Supply in
Mexico City

The Effect of Parents’ Employment on Children’s
Educational Attainment

The Effects of Overeducation on Productivity in
Germany — The Firms’ Viewpoint

Occupational Gender Composition and
Wages in Sweden

Parametric and Semiparametric Estimation in
Models with Misclassified Categorical Dependent
Variables

The Impact of Differential Payroll Tax Subsidies on
Minimum Wage Employment

The Changing Profile of Mexican Migrants to the
United States: New Evidence from California and
Mexico

Wages as Risk Compensation in Germany

Betit: A Family That Nests Probit and Logit

Wages, Training, and Job Turnover in a Search-
Matching Model

Using Panel Data on Income Satisfaction to
Estimate the Equivalence Scale Elasticity

An Analysis of Labour Adjustment Costs in
Unionized Economies

On the Identification of Relative Wage Rigidity
Dynamics: A Proposal for a Methodology on
Cross-Section Data and Empirical Evidence for
Poland in Transition

4/5

11/00

11/00

11/00

11/00

11/00

11/00

11/00

11/00

12/00

12/00

12/00

12/00

12/00

12/00

12/00



227

228

229

230

231

232

233

234

235

236

237

238

239

240

L. Locher

. Brunello
. Comi
. Lucifora

Ono

. Coimbra

r—x

. Modesto

L. Modesto

G. Saint-Paul

. Bardasi

<m

C. Dustmann

C. M. Schmidt

R. Rotte
M. Steininger

W. Schnedler

R. Hujer
M. Caliendo

S. Klasen
|. Woolard

R. Euwals

A. Borsch-Supan

A. Eymann

F. Andersson
K. A. Konrad

W. Koeniger

. Lloyd-Braga

. Francesconi

Immigration from the Eastern Block and the
former Soviet Union to Israel: Who is coming
when?

The College Wage Gap in 10 European
Countries: Evidence from Two Cohorts

Unions, Increasing Returns and Endogenous
Fluctuations

Should | Stay or Should | Go? Educational Choices
and Earnings: An Empirical Study for Portugal

The Economics of Human Cloning

The Effect of Non-Standard Employment on
Mental Health in Britain

The Wage Performance of Immigrant Women:
Full-Time Jobs, Part-Time Jobs, and the Role of
Selection

Soziodkonomische Determinanten extremistischer
Wahlerfolge in Deutschland: Das Beispiel der Eu-
ropawahlen 1994 und 1999

Who gets the Reward? An Empirical Exploration
of Bonus Pay and Task Characteristics

Evaluation of Active Labour Market Policy:
Methodological Concepts and Empirical
Estimates

Surviving Unemployment without State Support:
Unemployment and Household Formation in
South Africa

The Saving Behaviour of Two Person House-
holds: Evidence from Dutch Panel Data

Human Capital Investment and Globalization in
Extortionary States

Labor and Financial Market Interactions: The Case
of Labor Income Risk and Car Insurance in the UK
1969-95

12/00

12/00

12/00

12/00

12/00

12/00

12/00

12/00

12/00

12/00

12/00

12/00

01/01

01/01



241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

W. Koeniger

G. Faggio

J.

E

S

Konings

. Brainerd

. M. Fuess, Jr.

M. Millea

E
K

E

. Andersson

. A. Konrad

. Plug

W. Vijverberg

E

. Plug

W. Vijverberg

-

I -

. M. Picard
. Toulemonde

.M. S. van Praag
. Cardoso

. J. Hatton
. G. Williamson

. Yemtsov

. Yemtsov

. Yemtsov

. Gersbach

. Schniewind

. Gersbach

. Schniewind

. Boeri

. Briicker

Trade, Labor Market Rigidities, and Government-
Financed Technological Change

Job Creation, Job Destruction and Employment
Growth in Transition Countries in the 90's

Economic Reform and Mortality in the Former
Soviet Union: A Study of the Suicide Epidemic in
the 1990s

Pay and Productivity in a Corporatist Economy:
Evidence from Austria

Globalization and Human Capital Formation

Schooling, Family Background, and Adoption:
Does Family Income Matter?

Schooling, Family Background, and Adoption:
Is it Nature or is it Nurture?

The Impact of Labor Markets on Emergence and
Persistence of Regional Asymmetries

“Should I Pay for You or for Myself?”

The Optimal Level and Composition of
Retirement Benefit Systems

Demographic and Economic Pressure on
Emigration out of Africa

Labor Markets, Inequality and Poverty in Georgia

Inequality and Income Distribution in Georgia

Living Standards and Economic Vulnerability in
Turkey between 1987 and 1994

Learning of General Equilibrium Effects and the
Unemployment Trap

Product Market Reforms and Unemployment in
Europe

Eastern Enlargement and EU-Labour Markets:
Perceptions, Challenges and Opportunities

01/01

01/01

01/01

01/01

01/01

01/01

01/01

01/01

01/01

01/01

01/01

01/01

01/01

02/01

02/01

02/01



257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

rxXZ

<=<Z

o0

Boeri

. Rosholm

. Scott
. Husted

. Ferrer-i-Carbonell
. M.S. van Praag

. Cahuc
. Postel-Vinay

. Lindahl

. Lindahl

. Datta Gupta
. Smith

. Dustmann

. Rosholm
. Svarer

. Dustmann
. Kirchkamp

. Newell

. Newell
. Reilly

. Buddelmeyer

. Augurzky

. M. Schmidt

. Augurzky

. M. Schmidt

Transition with Labour Supply

The Times They Are A-Changin’:
Organizational Change and Immigrant
Employment Opportunities in Scandinavia

Poverty in the Russian Federation

Temporary Jobs, Employment Protection and
Labor Market Performance

Home versus School Learning:
A New Approach to Estimating the Effect of Class
Size on Achievement

Summer Learning and the Effect of Schooling:
Evidence from Sweden

Children and Career Interruptions:
The Family Gap in Denmark

Return Migration, Wage Differentials, and the
Optimal Migration Duration

Structurally Dependent Competing Risks

The Optimal Migration Duration and Activity
Choice after Re-migration

The Distribution of Wages in Transition Countries

The Gender Pay Gap in the Transition from
Communism: Some Empirical Evidence

Re-employment Dynamics of Disabled Workers

The Evaluation of Community-Based
Interventions: A Monte Carlo Study

The Propensity Score: A Means to An End

1/3

02/01

02/01

02/01

02/01

02/01

02/01

02/01

02/01

02/01

02/01

03/01

03/01

03/01

03/01

03/01

An updated list of IZA Discussion Papers is available on the center's homepage www.iza.org.



