Home > Journal > Social Sciences \& Humanities > CE

Indexing View Papers Aims \& Scope Editorial Board Guideline Article Processing Charges

CE> Vol. 2 No.1, March 2011

OPEN ${ }^{\circ}$ ACCESS

Visual Thinking: Art Students Have an Advantage in Geometric Reasoning

PDF (Size: 90KB) PP. 22-26 DOI : 10.4236/ce.2011.21004

Author(s)

Caren M. Walker, Ellen Winner, Lois Hetland, Seymour Simmons, Lynn Goldsmith

ABSTRACT

We investigated whether individuals with training in the visual arts show superior performance on geometric reasoning tasks, given that both art and geometry entail visualization and mental manipulation of images. Two groups of undergraduates, one majoring in studio art, the other majoring in psychology, were given a set of geometric reasoning items designed to assess the ability to mentally manipulate geometric shapes in two- and three-dimensional space. Participants were also given a verbal intelligence test. Both training in the arts and verbal intelligence were strong predictors of geometric reasoning, but training in the arts was a significant predictor even when the effects of verbal intelligence were removed. These correlational findings lend support to the hypothesis that training in the visual arts may improve geometric reasoning via the learned cognitive skill of visualization.

KEYWORDS

Visualization, Geometry, Spatial Reasoning, Art Education, Mathematics Education

Cite this paper

Walker, C. , Winner, E. , Hetland, L. , Simmons, S. \& Goldsmith, L. (2011). Visual Thinking: Art Students Have an Advantage in Geometric Reasoning. Creative Education, 2, 22-26. doi: 10.4236/ce.2011.21004.

References

[1] Battista, M. T., Clements, D. H., \& Wheatley, G. H. (1991). Using spatial imagery in geometric reasoning. Arithmetic Teacher, 39, 18-21.
[2] Ben-Chaim, D., Lappan, G., \& Houang, R. T. (1988). The effect of instruction on spatial visualization skills of middle school boys and girls. American Educational Research Journal, 25, 51-71.
[3] Brieske, T. (1984). Visual thinking about rotations and reflections. The College Mathematics Journal, 15, 406-410. doi: 10.2307/2686551
[4] Callahan, P. (1999). Visualization workouts from " Geometry \& visualization: A Course for high school teachers" . unpublished notes.
[5] Casey, M., Winner, E., Brabeck, M., \& Sullivan, K. (1990). Visual-spatial abilities in art, math, and science majors: Effects of sex, handedness, and spatial experience. In K. Gilhooly, M. Keane, R. Logie, \& G. Erdos. (Eds.), Lines of thinking: Reflections on the psychology of thought. New York: Wiley.
[6] Clements, D. H., Battista, M. T., Sarama, J., \& Swamina than, S. (1997). Development of students' spatial thinking. The Elementary School Journal, 98, 171-186. doi: 10.1086/461890
[7] Cohen, D. J., \& Bennett, S. (1997). Why can' t most people draw what they see? Journal of Experimental Psychology: Human Perception and Performance, 23, 609-621. doi:10.1037/00961523.23.3.609
[8] Cunningham, S. (2005). Visualization in science education. In Invention and impact: Building excellence in undergraduate science, technology, engineering, and mathematics (STEM) education

- Open Special Issues

- Published Special Issues
- Special Issues Guideline

CE Subscription

Most popular papers in CE

About CE News

Frequently Asked Questions

```
Recommend to Peers
```

Recommend to Library

Contact Us

Downloads: 195,602
Visits: 429,269

Sponsors, Associates, a। Links >>
 - The Conference on Information
 Technology in Education (CITE
 2012)

[10] Getzels, J. W., \& Csikszentmihalyi, M. (1975). From problem-solving to problem finding, In I. A. Taylor and J. W. Getzels (Eds.), Perspectives in Creativity (pp. 90-116). Chicago: Aldine.
[11] Goldbenberg, E. P. (1996)." Habits of mind" as an organizer for the curriculum. Journal of Education. 178, 13-34.
[12] Hadamard, J. (1945). The psychology of invention in the mathematical field. NY: Dover. Hermelin, B. \& O'Connor, N. (1986). Spatial representations in mathematically and in artistically gifted children British Journal of Educational Psychology, 56, 150-157.
[13] Hetland, L., Winner, E., Veenema, S., \& Sheridan, K. (2007). Studio thinking: The real benefits of visual arts education. New York: Teachers College. Hogan, J. (1993). The death of proof. Scientific American, 92-103.
[14] Kozbelt, A. (1991). Artists as experts in visual cognition. Visual Cognition, 8, 705-723. Kozbelt, A., \& Seeley, W. P. (2007). Integrating art historical, psychological, \& neuroscientific explanations of artists' advantages in drawing. PACA, 1, 80-90.
[15] Lappan, G. (1999). Geometry: The forgotten strand. NCTM News Bulletin, 36, 3.
[16] Mitchell, P., Ropar, D., Ackroyd, K., \& Rajendran, G. (2005). How perception impacts on drawings. Journal of Experimental Psychology: Human Perception and Per formance, 31, 996-1003. doi: 10.1037/0096-1523.31.5.996
[17] National Council of Teachers of Mathematics. (2000). Prin ciples and standards for school mathematics. Reston, VA: National Council of Teachers of Mathematics.
[18] Perkins, D. (1983). The mind' s best work. Cambridge: Harvard University Press.
[19] Rosenblatt, E., \& Winner, E. (1988). The art of children's drawings. Journal of Aesthetic Education, 22, 1, 3-15.
[20] Salomon, G. \& Perkins, D. N. (1989). Rocky roads to transfer: Rethinking mechanisms of a neglected phenomenon. Educational Psychologist, 24, 113-142. doi:10.1207/s15326985ep2402_1
[21] Seago, N., Driscoll, M., \& Jacobs J. Transforming middle school geometry: designing professional development materials that support the teaching and learning of similarity. Middle Grades Research Journal, in press. Solso, R. L. (2001). Brain activities in an expert versus a novice artist: An fMRI study. Leonardo, 34,

