# Journal of Athletic Training

Home For Journal For Authors For Reviewers For Readers For Subscribers For Students Help

Quick Search

GO

<u>Home</u> > <u>Journal of Athletic Training</u> > <u>July/August 2010</u> > Tibiofemoral Joint Positioning for the Valgus Stress Test

Advanced Searc

## National Athletic Trainers' Association Links

### **NATA Home**

Online Manuscript Submisson and Review

Advertising

Facts & Figures

Editor-in-Chief

Journal Editors

**Editorial Board** 

**NATA Position Statements** 

**PubMed Central** 

Search PubMed

Contact Us

### **Related Articles**

### **Articles Citing this Article**

Google Scholar

### Search for Other Articles By Author

- Patricia A. Aronson
- Joe H. Gieck
- Jay HertelArie M. Rijke
- Christopher D. Ingersoll

### Search in:

n Athletic Training

Search

### ◆Previous Article Volume 45, Issue 4 (July/August 2010) Next Article ▶

Add to Favorites Share Article 🐉 Export Citations

Track Citations Permissions

Full-text

PDF

#### **Article Citation:**

Patricia A. Aronson, Joe H. Gieck, Jay Hertel, Arie M. Rijke, Christopher D. Ingersoll (2010) Tibiofemoral Joint Positioning for the Valgus Stress Test. Journal of Athletic Training: July/August 2010, Vol. 45, No. 4, pp. 357-363.

### **Original Research**

**Tibiofemoral Joint Positioning for the Valgus Stress Test** 

Patricia A. Aronson, PhD, ATC\*, Joe H. Gieck, EdD, PT, ATC<sup>†</sup>, Jay Hertel, PhD, ATC, FNATA, FACSM<sup>‡</sup>, Arie M. Rijke, PhD, MD<sup>‡</sup>, and Christopher D. Ingersoll, PhD, ATC, FNATA, FACSM<sup>‡</sup>

\*Lynchburg College, Lynchburg, VA

<sup>†</sup>Charlottesville, VA

<sup>‡</sup>University of Virginia, Charlottesville. Dr Ingersoll is now at Central Michigan University, Mount Pleasant

### Abstract

**Context:** Recommendations on the positioning of the tibiofemoral joint during a valgus stress test to optimize isolation of the medial collateral ligament (MCL) from other medial joint structures vary in the literature. If a specific amount of flexion could be identified as optimally isolating the MCL, teaching and using the technique would be more consistent in clinical application.

**Objective:** To determine the angle of tibiofemoral joint flexion between  $0^{\circ}$  and  $20^{\circ}$  that causes a difference in the slope of the force-strain line when measuring the resistance to a valgus force applied to the joint.

Design: Cross-sectional study.

Setting: University research laboratory.

Patients or Other Participants: Twelve healthy volunteers (6 men, 6 women: age =  $26.4 \pm 5.6$  years, height =  $170.9 \pm 8.4$  cm, mass =  $75.01 \pm 14.6$  kg).

**Intervention(s):** Using an arthrometer, we applied a valgus force, over a range of 60 N, to the tibiofemoral joint in 0°, 5°, 10°, 15°, and 20° of flexion.

**Main Outcome Measure(s):** Force-strain measurements were obtained for 5 positions of tibiofemoral joint flexion.

**Results:** As knee flexion angle increased, slope values decreased ( $F_{4,44} = 17.6$ , P < .001). The slope at full extension was not different from that at 5° of flexion, but it was different from the slopes at angles greater than 10° of flexion. Similarly, the slope at 5° of flexion was not different from that at 10° of flexion, but it was different from the slopes at 15° and 20° of flexion. Further, the slope at 10° of flexion was not different from that at 15° or 20° of flexion. Finally, the slope at 15° of flexion was not different from that at 20° of flexion.



### **Journal Information**

Print ISSN 1062-6050 eISSN 1938-162X Frequency Bimonthly:

> March/April May/June July/August September/October November/December

January/February

### Register for a Profile

### Not Yet Registered?

Benefits of Registration Include:

- A Unique User Profile that will allow you to manage your current subscriptions (including online access)
- The ability to create favorites lists down to the article level
- The ability to customize email alerts to receive specific notifications about the topics you care most about and special offers

Register Now!

**Conclusions:** When performing the manual valgus stress test, the clinician should fully extend the tibiofemoral joint or flex it to 5° to assess all resisting medial tibiofemoral joint structures and again at 15° to 20° of joint flexion to further assess the MCI

Keywords: knee, collateral ligaments, joint angle, valgus force

Address correspondence to Patricia A Aronson, PhD, ATC, Lynchburg College, 1501 Lakeside Drive, Lynchburg, VA 24501. Address e-mail to aronson@lynchburg.edu.

top 🛎

Copyright © 2010 **Journal of Athletic Training**. All Rights Reserved, Worldwid **Allen Press, Inc**. assists in the online publication of the *Journal of Athletic Trainin*Technology Partner - **Atypon Systems, Inc**