
A FLEXIBLE, SCALABLE FINITE-STATE TRANSDUCER ARCHITECTURE
FOR CORPUS-BASED CONCATENATIVE SPEECH SYNTHESIS1

Jon R. W. Yi, James R. Glass, and I. Lee Hetherington

Spoken Language Systems Group
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139 USA

fjonyi, jrg, ilhg@sls.lcs.mit.edu

ABSTRACT

In this paper we describe our work involving the conversion
of our phonologically-based synthesizer into a finite-state trans-
ducer (FST) representation which can be used for real-time
natural-sounding synthesis. We have designed a transducer
structure to efficiently perform the common task of unit selection
in concatenative speech synthesis. By encapsulating domain-
independent concatenative synthesis costs into a constraint ker-
nel, we have obtained a topology that scales linearly with the size
of the synthesis corpus. The FST representation provides a flex-
ible, unified framework in which we can leverage our previous
work in speech recognition in areas such as pronunciation mod-
elling and search. The FST synthesizer has been incorporated
into two servers which operate within our conversational system
architecture to convert meaning representations into waveforms.
We have had preliminary success with the new FST-based syn-
thesis in several constrained spoken dialogue applications.

1. INTRODUCTION

Corpus-based concatenative methods and unit selection mecha-
nisms have recently received increasing attention in the speech
synthesis community (e.g., [4, 6]). Our previous work with
speech synthesis has focused on using unit selection and wave-
form concatenation techniques to synthesize natural-sounding
speech for constrained spoken dialogue domains [10]. Fol-
lowing Hunt and Black (e.g., [4]), we organized the synthesis
constraints of unit selection into concatenation and substitution
costs, which essentially prioritize where the speech signal is
spliced and which units are appropriate for concatenation. Our
concatenative synthesizer, calledENVOICE, is phonologically-
based (i.e., symbolic), uses phones as the fundamental synthe-
sis unit, and selects variable-length segments for concatenation.
When combined with a domain-dependent corpus, it has pro-
duced very natural sounding speech for several of our spoken
dialogue domains.

Our recent work has revolved around developing a more general
framework for this synthesizer that would be easier to maintain,
extend, and deploy. Following our successful use of finite-state
transducers (FSTs) for speech recognition [3], we have also con-
verted our synthesizer to an FST-based representation. Synthesis
is now modeled as a composition of five FST components: the

1This research was supported by DARPA under Contract N66001-99-1-8904
monitored through Naval Command, Control and Ocean Surveillance Center,
and contract DAAN02-98-K-003, monitored through U.S. Army Natick Re-
search Development and Engineering Center.

word sequence,W, a lexicon,L, containing baseform pronunci-
ations, a set of phonological rules,P, a set of transition phones,
T, (used primarily for search efficiency), and a synthesis compo-
nent,S, which maps all possible phone sequences to waveform
segments for a given speech corpus. Unit selection is accom-
plished with a Viterbi orN-best search. Just as we, and oth-
ers, have found for speech recognition, the FST formulation pro-
vides clarity, consistency, and flexibility. In our case, it also al-
lows leveraging off of our previous work with FST-based speech
recognition (e.g., pronunciation modelling and search).

One of the main challenges of converting our phonological syn-
thesis framework to an FST representation was determining an
efficient structure for the synthesis FST,S. Our solution was to
introduce a series of domain-independent intermediate layers,
which efficiently encapsulate both the substitution and concate-
nation costs between every phonetic segment in a speech corpus.
This structure has the property that the size of the intermediate
layers is fixed, so that the size of the FST grows linearly with
the size of the corpus. This allows us to avoid pruning mecha-
nisms which would need to be implemented if we had directly
connected every segment in the corpus [2]. Furthermore, this
synthesis framework incorporates both concatenation and substi-
tution costs as part of the FST, and not just concatenation costs.

In the following sections, we first describe our efforts in con-
verting our phonologically-based synthesis framework to an FST
representation. We then lay out the search algorithm and tech-
niques used to speed up the search. Next, we explain the issues
we encountered in implementing FST-based speech synthesis as
a real-time server in ourGALAXY conversational system archi-
tecture. Finally, we discuss ongoing synthesis research.

2. FST REPRESENTATION

One of the key reasons we adopted an FST representation is
its ability to completely and concisely capture finite-state con-
straints. Given a permissible input sequence, an FST can gener-
ate a graph of output sequences [5]. The process of transforming
an input language into an output language is guided by the states
and arcs specified in the FST topology. Arcs have optional input
and output labels (the absence of a label is represented by the�
symbol), and can also have weights associated with them. For
example, a lexical dictionary can be implemented with an FST
that maps words to phonemes, with weights possibly being used
to model alternative pronunciations. Since FSTs can be cascaded
in succession to effect further mappings, a second phoneme-to-
phone FST could be used to transduce the phonemic sequence

into a phonetic sequence. The overall composition would then
map words to phones.

With this representation, unit selection for concatenative speech
synthesis can be modeled as a mapping from words to waveform
segments. Five FST components,W, L, P, T, andS, perform
the intervening steps. This factoring allows us to independently
model, design, and refine the underlying processes. When com-
bined with a search, these components work in succession from
an input sequence of words to produce a sequence of waveform
segments suitable for concatenation.

The first FST component,W, consists of a trivial chain topol-
ogy mapping (optional) input sequences to output word se-
quences. For illustrative purposes, we show an example of
W for the word ‘Boston’ containing four states and three arcs,
with input and output labels (separated by a colon) on each arc.

0 1
<pause1>:<pause1>

2
boston:boston

3
<pause2>:<pause2>

To obtain a pronunciation for ‘Boston’,W is composedwith
the lexical modelling portion consisting ofL andP. Typically,
the lexicon and phonological rule components are composed
(i.e., L Æ P) and optimized in advance for efficiency. Map-
ping words to phones, they are transposed versions of what
is used in our speech recognizer for lexical decoding. The
following pronunciation graph (W Æ (L Æ P)) is generated:

0 1
<pause1>:-

2

ε:#

3

ε:_ 4
boston:bε:# 5

ε:aa

ε:ao
6

ε:s
7ε:tcl

8

ε:epi 9

ε:en

10
ε:ix

11
ε:t

ε:en
12

ε:#

13

ε:_

14
ε:n

ε:ix

15

<pause2>:-

16
ε:#

ε:_

17ε:#

18
ε:_<pause2>:-

<pause2>:-

As will be explained in more detail in the next section, the pho-
netic pronunciation graph is embedded with transition phones in
order to improve search efficiency. Adjacent phones are rewrit-
ten via FST composition to contain intervening transition phones
(e.g.,=�= =�=! =�= �j� =�=). This is accomplished with the
transition FST,T . The final graph of phonetic pronunciation em-
bedded with transition phones,(W Æ (L Æ P)) Æ T , is optimized
for subsequent composition in the unit selection search.

The final ingredient in FST-based unit selection is the synthesis
FST,S, which maps phones (with transition phones) to wave-
form segments. Desirable properties ofS include low perplexity
(average branching factor) and scalability. Our solution decou-
ples the domain-independent and domain-dependent portions re-
siding inS. Specifically, domain-independent costs relating only
to the pertinent language form a constraint kernel that encodes
speech knowledge for concatenative speech synthesis. Individ-
ual waveforms are represented as finite-state phone chains and
are connected to the constraint kernel at the phone level.

2.1. Constraint Kernel Topology

In Figure 1, we see a diagram depicting four intermediate layers
of the constraint kernel, along with portions of two corpus utter-
ances (top and bottom). Some details have been omitted for clar-
ity (e.g., output labels of corpus waveform arcs). In the example
shown, the layers bridge a pair of source (‘Bosnia’) and destina-
tion (‘Austin’) utterances to synthesize ‘Boston’. The outermost
layers of the kernel (1 and 4) serve to multiplex and demulti-
plex transitions to and from waveform segments in the synthesis
corpus, respectively. Each state in these two layers connects all
instances of a transition between two particular phones in the

corpus. Because our synthesizer is phonologically-based, the
concatenation and substitution costs depend only on the local
phonetic context of the transition. For example, the illustrated
layer 1 state in Figure 1 gathers all instances of transitions be-
tween /O/ and /z/ in the corpus (with one of them being in the
word ‘Bosnia’). Likewise, the illustrated layer 4 state connects
to all instances of transitions between /O/ and /s/ in the corpus
(with one of them being in the word ‘Austin’). In general, if
there areP phone labels in the corpus, there areP 2 states in
each of these two layers.

1) Incoming transitions

2) Right-classed incoming transitions

3) Left-classed outgoing transitions

4) Outgoing transitions

Destination utterance

Source utterance/b/ bjO

/O/

/O/ Ojz

Ojz

/z/

Ojs

Ojs

/s/ sjt /t/

Ojdental

sonorantjs

Ojs:�/sl + sr + c

Ojs:�/sr + c

Figure 1: Topology of constraint kernel

For complete generality, layers 1 and 4 should be fully intercon-
nected so that any state in layer 1 can connect to any state in
layer 4 with an associated concatenation cost,c, and substitution
cost,s. A full interconnection would requireP 4 arcs between
these two layers. Due to the design of our phonologically-based
synthesizer however [10], we are able to significantly reduce the
number of arcs by introducing two additional layers (2 and 3).
This is because the substitution cost is broken down into a left
and right cost,sl andsr, respectively. The left cost is associ-
ated with matching the left phone of a layer 1 state with the left
phone of a layer 4 state. The right cost is the penalty associated
with matching the corresponding right phone labels. Equiva-
lence classes are used to group phones into classes which exhibit
similar concatenation behavior, and can thus share the same con-
catenation or substitution costs. The equivalence class used for
the left phone depends on the right context, and vice versa.

In Figure 1 with theOjz transition in layer 1 for example, the right
equivalence class for the /z/ is determined by the /O/. In this case,
all consonants with an alveolar or dental place of articulation are
deemed to have the same effect on the vowel, and are grouped
into adental equivalence class, as shown in layer 2. Similarly,
with theOjs transition in layer 4, the left equivalence class for the
/O/ is determined by the /s/. In this case, all sonorants are deemed
to have the same effect on the fricative, and are grouped into a
sonorant equivalence class, as shown in layer 3. The cost of
connecting these two states is the cost,sl, of substituting an /O/
as a sonorant, the cost,sr of substituting an /s/ as a dental conso-
nant, and the concatenation cost,c, of making a splice between
a vowel /O/ and a fricative /s/ (arc weights are delineated by a ‘/’
in Figure 1). In this example, the substitution and concatenation
are very reasonable, so the overall cost is small.

Each state in layer 1 connects to only one state in layer 2, and
each state in layer 4 connects to only one state in layer 3. If there
are an average of�C equivalence classes per phone, then layers 2
and 3 each have a total of�CP states. To provide complete gener-
ality, these two layers are fully connected. Since�C << P , this
structure requires significantly fewer arcs than fully connecting
all speech segments in a large corpus. The size of such a network
would be quadratic with the number of phones in the corpus, and
would require pruning to reduce the connectivity [2].

In order to account for making splices where the contexts match
exactly,P 2 direct connections are made between states in layers
1 and 4 which have identical labels. The only cost associated
with these arcs is the concatenation cost,c, which depends on
the particular transition context. Similarly, there are�CP 2 direct
connections between layers 2 and 4 for all cases where the left
labels are identical. An example arc is illustrated in Figure 1 for
this case since the /O/ vowel is common between the two states.
In this case the total cost is the right substitution cost,sr, and the
concatenation cost. Finally, there are also�CP 2 direct connec-
tions between layers 1 and 3 for all cases where the right labels
are identical. The cost on these arcs is a concatenation cost plus
a left substitution cost. The total number of arcs in the constraint
kernel,(P (�C+1))2, is therefore fixed, and is independent of the
size of the speech corpus itself.

It should be noted that the cross-connections between layers 2
and 3, 1 and 3, 2 and 4, and 1 and 4, absorb the transition labels
which are inserted between phones via theT FST described ear-
lier. The use of the transition labels in this manner adds signifi-
cant constraint to the topology ofS, greatly reducing the number
of active search nodes, and enabling real-time synthesis. With-
out the transition labels, all arcs in the constraint kernel would
have an� label and would have to be expanded during the search.

Information about speech utterances are stored as finite-state
phone chains. For an utterance withN phones, there are an ad-
ditionalN �1 transition phones for a total of2N �1 proper and
transition phone arcs. These2N � 1 arcs of zero weight string
the 2N states into a chain. Proper phone arcs emit waveform
segment descriptors (not shown in Figure 1), whereas transition
phone arcs produce no output. A descriptor specifies the token
label, waveform filename, and start and end times of the wave-
form segment. That the arcs have zero weight allows the chain to
be traversed without penalty; consequently, successively spoken
speech segments can be concatenated without cost.

For every utterance withN phones, there are2N connections
made to the constraint kernel:N arcs connecting from the end
of every phone to the matching transition state in layer 1, and
N arcs connecting from the outgoing transition states of layer
4, to the start of the matching phone in the utterance. Note that
another advantage of the transition label is to avoid considering
self loops through the constraint kernel during the Viterbi search.

2.2. Search

The role of the search component is to find the least-cost se-
quence of speech utterance segments for a given text input.
Specifically, the search finds the least-cost path through the com-
position of(W Æ (L Æ P) Æ T) with S. In keeping with our par-
allelism between recognition and synthesis, the search we use is

essentially the same Viterbi-style dynamic programming beam
search that is used for recognition, except that different graphs
are searched. For synthesis, we optimize(W Æ (L Æ P) Æ T)
and then walk through its states in topological order, exploring
compatible arcs inS at the same time. Pruning consists of dy-
namic programming pruning plus score- and count-based beam
pruning, which are tuned to achieve real-time synthesis.

To reduce latency when synthesizing a long system response, we
break the response into chunks separated by sentence boundaries
and explicitly referenced pauses or waveform segments called
“shortcuts” (described in the next section). Since the state of the
system is known at these boundaries, the searches for each chunk
can be performed separately, allowing us to perform waveform
output for one chunk while performing the search for a subse-
quent chunk.

3. IMPLEMENTATION

Based on the structures and algorithms described in the previous
section, we have developed a set of software tools and servers for
working with this new FST framework. These tools encompass
the steps that are performed in the assembling, testing, and run-
ning of an FST-based concatenative speech synthesizer. We use
command-line utilities for lexicon creation, constraints compi-
lation, and corpus instrumentation, as well as for synthesis test-
ing. The lexicon creation process reuses tools from our speech
recognizer. The constraint kernel of the synthesis FST is com-
piled from substitution and concatenation costs matrices. The
synthesis FST is then populated with phones from a corpus of
time-aligned waveforms. FST synthesis can then be tested with
arbitrary sequences of in-vocabulary words.

We have integrated FST synthesis as networked servers into the
GALAXY COMMUNICATOR architecture which we use for all of
our spoken dialogue systems [7]. Two servers fulfill the text-to-
speech conversion component, and handle the separate tasks of
unit selection and waveform concatenation. Based on a client-
server architecture, they communicate with a central hub which
coordinates all tasks in a conversational system. The two servers
are pipelined and perform synthesis at speeds sufficient for inter-
active purposes.

Within our GALAXY COMMUNICATOR implementation, the first
step of synthesis actually begins in our natural language genera-
tion server,GENESIS[1]. GENESISrecursively expands internal
meaning representations into text strings which can be displayed
directly on a display, or sent to a synthesis server. The server re-
lies on a message or template file, a lexicon, and a set of rewrite
rules to perform generation. For synthesis, the message file is
identical to that used for text generation. The lexicon can op-
tionally be modified to expand abbreviations, or explicitly rep-
resent waveform segments. These synthesis “shortcuts” allow
the developer to bypass the search when desired, and provide
backwards compatibility with our earlier word and phrase con-
catenation work. Another feature ofGENESISwhich we use for
synthesis is the ability to specify features for entries in the lex-
icon. We have used this to help select words and syllables with
the correct prosodic context.

The GENESISrewrite rules can be used to perform text prepara-
tion for synthesis beyond what may be needed for text genera-

tion. For example, we have designed regular-expression rules
that rewrite flight numbers and times originally in numerical
form into written form (e.g., 6425! sixty four twenty five,
11:05! eleven oh five). This configuration performs the respon-
sibilities typically assumed by a TTS text pre-processing stage.
Because it is part of the generation component, it offers increased
accuracy (e.g., unambiguous abbreviation expansion) and flexi-
bility when developing multiple domains and languages.

In the next step of the synthesis chain, the unit selection server
receives pre-processed text to synthesize from the natural lan-
guage generation component. The word sequence is converted
into a phonetic sequence by the lexical FST and prepared for
searching by the transition label FST. If the word sequence is in-
terrupted with waveform segment “shortcuts”, phonetic context
must be maintained before and after the waveform segment to
ensure correctness of the search.

Based on the results of the unit selection search, the waveform
concatenation component receives instructions to concatenate
the appropriate waveform segments. Currently, concatenation
is performed without signal processing. For performance con-
siderations, the waveform concatenation server loads the entire
corpus of utterances from disk into memory at startup time. As
concatenation instructions are received, waveform samples are
streamed to the output audio server. The waveform concatena-
tion and output audio servers can be co-located for efficiency.

We have converted several of our domains to use theENVOICE

synthesizer we have developed [10]. The most recent system
consists of theMERCURY air travel domain for flight information
and pricing [8]. Synthesizer development typically begins once
the natural language generation component has been completed
for a displayful system. Since the synthesizer currently relies on
a domain-dependent corpus, the most time-consuming process is
usually the design of a set of prompts to be read. As utterances
are recorded, they can be transcribed with a speech recognizer
and inserted into the synthesis FST.

For domain specific synthesis, we have used both manual and
semi-automatic means of designing recording prompts. For ex-
ample, static responses are recorded as a whole. For covering re-
sponses with more dynamic content, we use an underlying gen-
eration template and fill it in with different vocabulary items,
such as numbers, and names of cities and airlines. We have also
experimented with semi-automatic means of selecting recording
prompts. In the past, for the purpose of synthesizing proper
nouns, we have used iterative, greedy methods to compactly
cover an inventory of stress-marked, syllable-like units [10].

4. CONCLUSIONS AND ONGOING WORK

In this paper we have introduced a scalable, FST implementa-
tion for unit selection in concatenative speech synthesis. We
have deployed this technology within real-time synthesis servers
operating in theGALAXY COMMUNICATOR environment. It is
integrated such that phrase, word, and sub-word approaches are
combined seamlessly to produce natural-sounding real-time syn-
thesis for constrained conversational domains. Synthesizers are
developed using software that works in conjunction with our
speech recognizer. We believe that this framework provides us
with a flexible platform for future synthesis research.

The design of the FST representation was heavily influenced
by our phonologically-based synthesizer whose costs are de-
rived solely from symbolic contextual information. A conse-
quence of this design is that it is currently not possible to intro-
duce segment-specific concatenation or substitution costs based
on acoustic information, as can be done elsewhere (e.g., [2, 4]).
While we believe many cases do not require such a detailed dis-
tance metric, we are considering introducing a finer level of de-
tail in the constraint kernel, which could incorporate quantized
acoustic information.

There are many other issues which we plan to address in future
work. In order to reduce the abruptness of some concatenation
artifacts, we have begun to explore the use of signal process-
ing techniques to modify both fundamental frequency and seg-
ment duration. To date, we have taken advantage of the con-
strained nature of outputs in our conversational domains, and
have avoided the use of any kind of prosodic generation mod-
ule. Prosody has mainly been incorporated at the lexical level in
our GENESISlanguage generation module, and with our ongoing
design of a general corpus for the natural-sounding synthesis of
arbitrary words (e.g., proper nouns). We would like to investi-
gate corpus-based prosodic generation in future work, however.

Finally, we are interested in developing synthesis capabilities for
languages other than English, and are actively working on a ver-
sion for Mandarin Chinese in a weather information domain [9].
This system is currently using syllable onsets and rhymes as the
fundamental synthesis units with tokenized phrases as the lexi-
cal representation. We also have plans to work on Spanish and
Japanese synthesizers in the near future.

Acknowledgments Scott Cyphers, Joe Polifroni and Stephanie
Seneff helped to rectify many system and server issues.

5. REFERENCES

1. L. Baptist and S. Seneff, “GENESIS-II : A versatile system for lan-
guage generation in conversational system applications,”these pro-
ceedings.

2. M. Beutnagel, M. Mohri, and M. Riley, “Rapid unit selection from
a large speech corpus for concatenative speech synthesis,”Proc.
Eurospeech, 607–610, Budapest, 1999.

3. J. Glass, T. J. Hazen, and L. Hetherington, “Real-time telephone-
based speech recognition in the JUPITER domain,”Proc. ICASSP,
61–64, Phoenix, 1999.

4. A. J. Hunt and A. W. Black, “Unit selection in a concatenative
speech synthesis system using a large speech database,”Proc.
ICASSP, Atlanta, 373–376, 1996.

5. E. Roche and Y. Shabes (eds.), “Finite-State Language Processing,”
MIT Press, 1997

6. Y. Sagisaka, “Speech synthesis by rule using an optimal selection of
non-uniform synthesis units,”Proc. ICASSP, 679–682, New York,
1988.

7. S. Seneff, et al., “GALAXY -II : A reference arch. for conversational
system development,”Proc. ICSLP, 931–934, Sydney, 1998.

8. S. Seneff and J. Polifroni, “Formal and natural language generation
in theMERCURY conversational system,”these proceedings.

9. C. Wang, et al., “MUXING: A telephone-access mandarin conver-
sational system,”these proceedings.

10. J. Yi and J. Glass, “Natural-sounding speech synthesis using
variable-length units,”Proc. ICSLP, 1167–1170, Sydney, 1998.

