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ABSTRACT word sequenceyV, a lexicon,L, containing baseform pronunci-
) ) ) ) _ations, a set of phonological ruldd, a set of transition phones,
In this paper we describe our work involving the conversiorr (ysed primarily for search efficiency), and a synthesis compo-
of our phonologlcally-bas_ed synt_heS|zer into a finite-state tr?”%‘ent,s which maps all possible phone sequences to waveform
ducer (FST) representation which can be used for real-timggments for a given speech corpus. Unit selection is accom-
natural-sounding synthesis. We have designed a transdugfiished with a Viterbi oN-best search. Just as we, and oth-
structure to eff_|C|entIy perform the common task of unit selecnm_grs’ have found for speech recognition, the FST formulation pro-
in concatenative speech synthesis. By encapsulating domaiflges clarity, consistency, and flexibility. In our case, it also al-
independent concatenative synthesis costs into a constraint kgfs leveraging off of our previous work with FST-based speech

nel, we have obtained a topology that scales linearly with the 5i7r‘écognition (e.g., pronunciation modelling and search).
of the synthesis corpus. The FST representation provides a flex-

ible, unified framework in which we can leverage our previou$dne of the main challenges of converting our phonological syn-
work in speech recognition in areas such as pronunciation mothesis framework to an FST representation was determining an
elling and search. The FST synthesizer has been incorporatefficient structure for the synthesis FSY,0ur solution was to
into two servers which operate within our conversational systerimtroduce a series of domain-independent intermediate layers,
architecture to convert meaning representations into waveformahich efficiently encapsulate both the substitution and concate-
We have had preliminary success with the new FST-based synation costs between every phonetic segment in a speech corpus.
thesis in several constrained spoken dialogue applications.  This structure has the property that the size of the intermediate
layers is fixed, so that the size of the FST grows linearly with
1. INTRODUCTION the size of the corpus. This allows us to avoid pruning mecha-
) ) . nisms which would need to be implemented if we had directly
Corpus-based concatenative methods and unit selection mecRgnnected every segment in the corpus [2]. Furthermore, this
nisms have recently received increasing attention in the speeghnesis framework incorporates both concatenation and substi-

synthesis community (e.g., [4,6]). Our previous work Withytion costs as part of the FST, and not just concatenation costs.
speech synthesis has focused on using unit selection and wave-

form concatenation techniques to synthesize natural-soundihg the following sections, we first describe our efforts in con-
speech for constrained spoken dialogue domains [10]. Fokerting our phonologically-based synthesis framework to an FST
lowing Hunt and Black (e.g., [4]), we organized the synthesisepresentation. We then lay out the search algorithm and tech-
constraints of unit selection into concatenation and substitutiomiques used to speed up the search. Next, we explain the issues
costs, which essentially prioritize where the speech signal ise encountered in implementing FST-based speech synthesis as
spliced and which units are appropriate for concatenation. Owarreal-time server in OUBALAXY conversational system archi-
concatenative synthesizer, calledvoick, is phonologically- tecture. Finally, we discuss ongoing synthesis research.

based (i.e., symbolic), uses phones as the fundamental synthe-

sis unit, and selects variable-length segments for concatenation. 2. FST REPRESENTATION

When combined with a domain-dependent corpus, it has pro-

duced very natural sounding speech for several of our spokéy'® Of the key reasons we adopted an FST representation is
dialogue domains. its ability to completely and concisely capture finite-state con-

straints. Given a permissible input sequence, an FST can gener-
Our recent work has revolved around developing a more generatie a graph of output sequences [5]. The process of transforming
framework for this synthesizer that would be easier to maintaign input language into an output language is guided by the states
extend, and deploy. Following our successful use of finite-stai@nd arcs specified in the FST topology. Arcs have optional input
transducers (FSTSs) for speech recognition [3], we have also coand output labels (the absence of a label is represented lay the
verted our synthesizer to an FST-based representation. Synthesisbol), and can also have weights associated with them. For
is now modeled as a composition of five FST components: thexample, a lexical dictionary can be implemented with an FST

— that maps words to phonemes, with weights possibly being used
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into a phonetic sequence. The overall composition would thecorpus. Because our synthesizer is phonologically-based, the
map words to phones. concatenation and substitution costs depend only on the local

) . . . . . phonetic context of the transition. For example, the illustrated
With this representation, unit selection for concatenative spee¢hy or 1 state in Figure 1 gathers all instances of transitions be-

synthesis can be modeled as a mapping from words to wavefoiean 4/ and £/ in the corpus (with one of them being in the
segments. Five FST componen®, L, P, T, andS, perform 44 ‘Bosnia’). Likewise, the illustrated layer 4 state connects
the intervening steps. This factoring allows us to independently, 4 instances of transitions betweert 4nd & in the corpus
model, design, and refine the underlying processes. When COith one of them being in the word ‘Austin’). In general, if

bined with a search, these components work in succession fro[ﬁbre areP phone labels in the corpus, there @& states in
an input sequence of words to produce a sequence of wavefogn -1, of these two layers. '

segments suitable for concatenation.

The first FST component, consists of a trivial chain topol- 1o/ bl> ol oz f/  Source utterance
ogy mapping (optional) input sequences to output word se:

quences. For illustrative purposes, we show an example of
W for the word ‘Boston’ containing four states and three arcs,
with input and output labels (separated by a colon) on each ard.

Incoming transitions

o <pausel>:<pausel> 0 boston:boston e <pause2>:<pause2> @ 2) Right-classed incoming transitioyp dlsiels; + s, + ¢
olsiels, + ¢
To obtain a pronunciation for ‘Boston\W is composedwith  3) Left-classed outgoing transitio
the lexical modelling portion consisting &f andP. Typically,
the lexicon and phonological rule components are composeagoutgoing transitions ™.,
(i.e., L o P) and optimized in advance for efficiency. Map-
ping words to phones, they are transposed versions of what o
is used in our speech recognizer for lexical decoding. The R

following pronunciation graphW o (L o P)) is generated: Destination utterance  // s K sfe

Figure 1: Topology of constraint kernel

As will be explained in more detail in the next section, the phoFor complete generality, layers 1 and 4 should be fully intercon-
netic pronunciation graph is embedded with transition phones fected so that any state in layer 1 can connect to any state in
order to improve search efficiency. Adjacent phones are rewritayer 4 with an associated concatenation cgsind substitution
ten via FST composition to contain intervening transition phonegost, s. A full interconnection would requiré>* arcs between
(e.9../a/ /B — |a/ a|B /B/). This is accomplished with the these two layers. Due to the design of our phonologically-based
transition FSTYI'. The final graph of phonetic pronunciation em-synthesizer however [10], we are able to significantly reduce the
bedded with transition phone@¥ o (L o P)) o T, is optimized number of arcs by introducing two additional layers (2 and 3).
for Subsequent Composition in the unit selection search. This is because the substitution cost is broken down into a left
and right costs; ands,, respectively. The left cost is associ-
The final ingredient in FST-based unit selection is the synthesiged with matching the left phone of a layer 1 state with the left
FST, S, which maps phones (with transition phones) to wavephone of a layer 4 state. The right cost is the penalty associated
form segments. Desirable propertiesSoinclude low perplexity with matching the corresponding right phone labels. Equiva-
(average branching factor) and scalability. Our solution decoyence classes are used to group phones into classes which exhibit
ples the domain-independent and domain-dependent portions gmilar concatenation behavior, and can thus share the same con-
siding inS. Specifically, domain-independent costs relating onlyatenation or substitution costs. The equivalence class used for

to the pertinent language form a constraint kernel that encodgse left phone depends on the right context, and vice versa.
speech knowledge for concatenative speech synthesis. Individ-

ual waveforms are represented as finite-state phone chains dAdrigure 1 with the|z transition in layer 1 for example, the right

are connected to the constraint kernel at the phone level. equivalence class for the/is determined by the)/. In this case,
all consonants with an alveolar or dental place of articulation are
2.1. Constraint Kernel Topology deemed to have the same effect on the vowel, and are grouped

into adental equivalence class, as shown in layer 2. Similarly,
In Figure 1, we see a diagram depicting four intermediate layessith theo|s transition in layer 4, the left equivalence class for the
of the constraint kernel, along with portions of two corpus utterfo/ is determined by thel/. In this case, all sonorants are deemed
ances (top and bottom). Some details have been omitted for clao- have the same effect on the fricative, and are grouped into a
ity (e.g., output labels of corpus waveform arcs). In the examplsonorant equivalence class, as shown in layer 3. The cost of
shown, the layers bridge a pair of source (‘Bosnia’) and destin@onnecting these two states is the cegtof substituting and/
tion (‘Austin’) utterances to synthesize ‘Boston’. The outermosas a sonorant, the cost, of substituting any as a dental conso-
layers of the kernel (1 and 4) serve to multiplex and demultinant, and the concatenation castpf making a splice between
plex transitions to and from waveform segments in the syntheseésvowel b/ and a fricatived/ (arc weights are delineated by a */’
corpus, respectively. Each state in these two layers connects iallFigure 1). In this example, the substitution and concatenation
instances of a transition between two particular phones in there very reasonable, so the overall cost is small.



Each state in layer 1 connects to only one state in layer 2, amgsentially the same Viterbi-style dynamic programming beam
each state in layer 4 connects to only one state in layer 3. If thesearch that is used for recognition, except that different graphs
are an average @ equivalence classes per phone, then layers &re searched. For synthesis, we optimiZ& o (L o P) o T)

and 3 each have a total 6fP states. To provide complete gener-and then walk through its states in topological order, exploring
ality, these two layers are fully connected. Siféec< P, this compatible arcs irf at the same time. Pruning consists of dy-
structure requires significantly fewer arcs than fully connectingamic programming pruning plus score- and count-based beam
all speech segments in a large corpus. The size of such a netwgrkining, which are tuned to achieve real-time synthesis.

would be quadratic with the number of phones in the corpus, and .
would require pruning to reduce the connectivity [2]. To reduce latency w_hen synthesizing a long system response, we
break the response into chunks separated by sentence boundaries

In order to account for making splices where the contexts mata@md explicitly referenced pauses or waveform segments called
exactly, P? direct connections are made between states in layetshortcuts” (described in the next section). Since the state of the
1 and 4 which have identical labels. The only cost associatezsystem is known at these boundaries, the searches for each chunk
with these arcs is the concatenation cestwhich depends on can be performed separately, allowing us to perform waveform
the particular transition context. Similarly, there &'®? direct output for one chunk while performing the search for a subse-
connections between layers 2 and 4 for all cases where the lgftient chunk.
labels are identical. An example arc is illustrated in Figure 1 for
this case since the//vowel is common between the two states. 3. IMPLEMENTATION
In this case the total cost is the right substitution cgstand the
concatenation cost. Finally, there are af$#®> direct connec- Based on the structures and algorithms described in the previous
tions between layers 1 and 3 for all cases where the right labegéection, we have developed a set of software tools and servers for
are identical. The cost on these arcs is a concatenation cost pigrking with this new FST framework. These tools encompass
a left substitution cost. The total number of arcs in the constraifibe steps that are performed in the assembling, testing, and run-
kernel,(P(C +1))?, is therefore fixed, and is independent of thening of an FST-based concatenative speech synthesizer. We use
size of the speech corpus itself. command-line utilities for lexicon creation, constraints compi-
lation, and corpus instrumentation, as well as for synthesis test-
It should be noted that the cross-connections between layersgy. The lexicon creation process reuses tools from our speech
and 3, 1and 3, 2and 4, and 1 and 4, absorb the transition labeixognizer. The constraint kernel of the synthesis FST is com-
which are inserted between phones viaTheST described ear- piled from substitution and concatenation costs matrices. The
lier. The use of the transition labels in this manner adds Signifbynthesis FST is then populated with phones from a corpus of
cant constraint to the topology 6f greatly reducing the number time-aligned waveforms. FST synthesis can then be tested with
of active search nodes, and enabling real-time synthesis. WitBrbitrary sequences of in-vocabulary words.
out the transition labels, all arcs in the constraint kernel would
have are label and would have to be expanded during the searcdve have integrated FST synthesis as networked servers into the
GALAXY COMMUNICATOR architecture which we use for all of
Information about speech utterances are stored as finite-stgjgy spoken dialogue systems [7]. Two servers fulfill the text-to-
phone chains. For an utterance withphones, there are an ad- speech conversion component, and handle the separate tasks of
ditional N' — 1 transition phones for a total afV — 1 proper and it selection and waveform concatenation. Based on a client-
transition phone arcs. The8&/ — 1 arcs of zero weight string  server architecture, they communicate with a central hub which
the 2N states into a chain. Proper phone arcs emit waveforgoordinates all tasks in a conversational system. The two servers

segment descriptors (not shown in Figure 1), whereas transitigfie pipelined and perform synthesis at speeds sufficient for inter-
phone arcs produce no output. A descriptor specifies the tokgtive purposes.

label, waveform filename, and start and end times of the wave-
form segment. That the arcs have zero weight allows the chain Within our GALAXY COMMUNICATOR implementation, the first
be traversed without penalty; consequently, successively spoksigep of synthesis actually begins in our natural language genera-
speech segments can be concatenated without cost. tion serverGENESIS[1]. GENESISrecursively expands internal
meaning representations into text strings which can be displayed
For every utterance wittV' phones, there ar2N connections gjrectly on a display, or sent to a synthesis server. The server re-
made to the constraint kerneN arcs connecting from the end |ies on a message or template file, a lexicon, and a set of rewrite
of every phone to the matching transition state in layer 1, anfljjes to perform generation. For synthesis, the message file is
N arcs connecting from the outgoing transition states of laygfentical to that used for text generation. The lexicon can op-
4, to the start of the matching phone in the utterance. Note thghnally be modified to expand abbreviations, or explicitly rep-
another advantage of the transition label is to avoid consideringsent waveform segments. These synthesis “shortcuts” allow
self loops through the constraint kernel during the Viterbi searchye developer to bypass the search when desired, and provide
backwards compatibility with our earlier word and phrase con-
2.2. Search catenation work. Another feature GENESISwhich we use for
synthesis is the ability to specify features for entries in the lex-

The role of the search component is to find the least-cost Sg5,n e have used this to help select words and syllables with
quence of speech utterance segments for a given text NPy correct prosodic context.

Specifically, the search finds the least-cost path through the com-
position of (W o (L o P) o T') with S. In keeping with our par- The GENESIsrewrite rules can be used to perform text prepara-
allelism between recognition and synthesis, the search we usdien for synthesis beyond what may be needed for text genera-



tion. For example, we have designed regular-expression rul@fe design of the FST representation was heavily influenced
that rewrite flight numbers and times originally in numericalby our phonologically-based synthesizer whose costs are de-
form into written form (e.g., 6425~ sixty four twenty five, rived solely from symbolic contextual information. A conse-
11:05— eleven oh five). This configuration performs the responguence of this design is that it is currently not possible to intro-
sibilities typically assumed by a TTS text pre-processing stageuce segment-specific concatenation or substitution costs based
Because it is part of the generation component, it offers increased acoustic information, as can be done elsewhere (e.g., [2, 4]).
accuracy (e.g., unambiguous abbreviation expansion) and fle#hile we believe many cases do not require such a detailed dis-
bility when developing multiple domains and languages. tance metric, we are considering introducing a finer level of de-

) . . ) tail in the constraint kernel, which could incorporate quantized
In the next step of the synthesis chain, the unit selection servgr.q ,stic information.

receives pre-processed text to synthesize from the natural lan-
guage generation component. The word sequence is converfBaere are many other issues which we plan to address in future
into a phonetic sequence by the lexical FST and prepared farork. In order to reduce the abruptness of some concatenation
searching by the transition label FST. If the word sequence is imttifacts, we have begun to explore the use of signal process-
terrupted with waveform segment “shortcuts”, phonetic contexng techniques to modify both fundamental frequency and seg-
must be maintained before and after the waveform segment moent duration. To date, we have taken advantage of the con-
ensure correctness of the search. strained nature of outputs in our conversational domains, and
have avoided the use of any kind of prosodic generation mod-

Based on the results of the unit selection search, the Waveforlrjme_ Prosody has mainly been incorporated at the lexical level in

concatenation component receives instructions to Concate”%‘@reENES|s|anguage generation module, and with our ongoing
the appropriate waveform segments. Currently, concatenaliggign of a general corpus for the natural-sounding synthesis of
is performed without signal processing. For performance COMrbitrary words (e.g., proper nouns). We would like to investi-

siderations, the waveform concatenation server loads the entk‘jﬁte corpus-based prosodic generation in future work, however.
corpus of utterances from disk into memory at startup time. AS '

concatenation instructions are received, waveform samples dally, we are interested in developing synthesis capabilities for
streamed to the output audio server. The waveform concaterlanguages other than English, and are actively working on a ver-
tion and output audio servers can be co-located for efficiency. sion for Mandarin Chinese in a weather information domain [9].

. This system is currently using syllable onsets and rhymes as the
We have converted several of our domains to USEEMOICE  nqamental synthesis units with tokenized phrases as the lexi-

synthesizer we have developed [10]. The most recent systef| yopresentation. We also have plans to work on Spanish and
consists of thetERCURY air travel domain for flight information Japanese synthesizers in the near future.

and pricing [8]. Synthesizer development typically begins once
the natural language generation component has been complefezknowledgments Scott Cyphers, Joe Polifroni and Stephanie
for a displayful system. Since the synthesizer currently relies o8eneff helped to rectify many system and server issues.

a domain-dependent corpus, the most time-consuming process is

usually the design of a set of prompts to be read. As utterances 5. REFERENCES
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