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ABSTRACT

In [9], we introduced theANGIE framework for modelling
speech where morphological and phonological substructures of
words are jointly characterized by a context-free grammar and
represented in a multi-layered hierarchical structure. In [6], we
demonstrated a competitive word-spotter based on theANGIE

framework and presented several results comparing the perfor-
mance of various sublexical filler models. In the present work,
completed as a part of [5], we extend theANGIE framework to a
competitive full continuous speech recognition system. Further-
more, given thatANGIE is based on a context-free framework,
we have decided to combineANGIE with TINA ([8]), a context-
free based framework for natural language understanding, into
an integrated system. The integrated system led to a 21.7% re-
duction in word error rate compared to a baseline word bigram
recognizer onATIS. Numerous issues relating to the construction
of the combined system were explored. We have also examined
the addition of new words to the recognizer vocabulary, one of
the areas which we believe will benefit from theANGIE frame-
work and also from theANGIE-plus-TINA integration. Our com-
bined system achieved an error rate reduction of 20.8% over the
baseline system and outperformed several other configurations
we tested not involving an integratedANGIE-plus-TINA.

1. INTRODUCTION

Many spoken language systems employ a higher level language
understanding component in addition to a speech recognition
component. The interface between the two components is best
characterized as a feed forward only process, with either anN -
best list (the topN full sentence hypotheses from the recognizer)
or a word graph (a graph representation of the top scoring hy-
potheses from the recognizer, as in [10]) being passed from the
recognizer to the understanding component. The understanding
component then either rescores the hypotheses or chooses the
highest scoring one that parses. Little progress has been made
in terms of feeding knowledge in the reverse direction, from the
understanding component to the recognition component. An un-
derstanding component is needed to obtain useful results from
a spoken language system, where honoring the user’s request
rather than recognition is the aim. However, early attempts at
leveraging the understanding component for better recognition
have met with only limited success (e.g., [7], [11]). As a result,
the recognizer consumes time pursuing hypotheses which may
clearly be eliminated by the understanding component, perhaps

1This material is based upon work supported by the National Science Foun-
dation under Grant No. IRI-9618731.

even at the expense of pruning away more promising, from the
understanding component’s point of view, hypotheses.

Our ANGIE subword model, discussed in greater detail in the
next section, is based on an underlying context-free framework.
Context-free grammars also underly numerous natural language
understanding systems, including theTINA system from MIT
([8]). The goal of the work discussed in this paper is to explore
whether our subword framework can be integrated with a natural
language understanding system more tightly, so that knowledge
feeds in both directions, allowing the NL system to help filter
unpromising hypotheses early.

We also believe that the combination ofANGIE and TINA

should yield a system to which new words can be easily added
without requiring extensive sublexical or linguistic retraining.
ANGIE’s shared hierarchical subword model provides a frame-
work whereby subword structural information can be shared be-
tween words in the recognizer vocabulary and new words to be
added to the vocabulary.

2. ANGIE AND TINA FRAMEWORKS

ANGIE is a framework for subword lexical modelling which we
introduced in [9] and which is discussed more fully in [5]. In
ANGIE, word substructure is characterized by a set of context-
free rules and a set of trained probabilities. The context-free
rules are written by hand and generate a very regular, layered,
hierarchical structure, as illustrated by the example parse shown
in Figure 1. The subword structure is represented by four layers
beneath theWORD node. The layers are, from bottom to top,
phonetics, phonemics, syllabification and morphology. Stress
markings are distributed through several layers, so for example,
SROOTstands for “stressed root” and /ih+/ stands for “stressed
/ih/.” The rules governing the phonemics to phonetics layer are
particularly noteworthy because they govern which phonological
processes are permitted. Typically, such rules are captured in a
context dependent manner, but sinceANGIE uses context-free
rules, any context dependency will be captured by our choice of
rules and nonterminals along with the trained probability model.

The ANGIE probability model consists of two types of prob-
abilities, computed based on a bottom-up, left-to-right parse:
advancement probabilitiesandtrigram bottom-up probabilities.
The former are the conditional probabilities of a leaf node in the
parse tree given its immediate left column, where a column is
defined as the nodes along the path from the root to a leaf. The
trigram bottom-up probabilities are the conditional probabilities
of an internal node given its left sibling and its child. The full
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Figure 1: Sample parse tree for the phrase “I’m interested.”

column probability is the sum of the log advancement probabil-
ity and the log trigram bottom-up probabilities for the nodes up
to the point where the current column merges with its left col-
umn. The linguistic score for an entire parse is the sum of all the
column log probabilities.

Our ANGIE probabilities are trained on approximately 10,000
utterances from theATIS corpus ([3]) using forced alignments
originally obtained from ourSUMMIT ATIS recognizer ([13]) and
subsequently iterated within theANGIE forced recognition sys-
tem as described in our earlier paper ([9]). ANGIE has a phone
perplexity of 7.15 on test data as compared to 14.91 for a phone
bigram and 9.20 for a phone trigram.

We believeANGIE offers several advantages for speech recogni-
tion tasks. Because of the hierarchical structure, different words
which share common word substructures will share common
subtrees in anANGIE parse. This permits pooling of training
examples across all words with a given substructure. Further,
as mentioned earlier, we believe thatANGIE permits the easy
addition of new words to the vocabulary by sharing subword
structural information between existing in-vocabulary and new
words. In principle,ANGIE also provides a subword model for
the detection of new words. The bottom-up nature ofANGIE

should facilitate the latter application. Finally, knowledge of the
subword structure provided by anANGIE parse also permits us
to use the information for prosodic modelling, as in [1].

For our natural language integration work, we used MIT’sTINA

system, which is describe in greater detail in [8]. TheTINA NL
processing system shares many similarities withANGIE. It also
makes use of a context-free grammar, designed by hand, and a
probability model trained automatically from data. TINA has
two other features worth mentioning. TINA uses constraints to
enforce feature matching, such as number and verb tense agree-
ment, and also to handle gaps, which occur fairly frequently in
English wh-queries. TINA has a robust parsing mechanism to
handle sentences which are not completely well formed due to
either poor user verbalization or recognition errors.

Unlike ANGIE’s bottom-up parsing strategy,TINA uses a top-
down methodology. The practical ramification for our task is that
we cannot implement bothANGIE andTINA in a single parser.
Instead, we will need to integrate the two parsing strategies dur-
ing our search process. We considered convertingTINA to a
bottom-up strategy, but rejected the option due to the difficulty

of supporting gap phenomena when going bottom up. We also
considered using a top-down strategy forANGIE, but we felt that
subword structures are of an inherently bottom-up organization
and we wanted to retain the bottom-up sharing, for example, of
syllables, across words.

3. RECOGNITION WITH ANGIE

In previous conference presentations, we had reported on the
success of implementing phonetic recognition ([9]) and word-
spotting ([6]) systems based on theANGIE framework. Before
discussing our integration work, we will briefly report results at
implementing a basic continuous speech recognition system us-
ing ANGIE. Our implementation of a continuous speech recog-
nizer uses a stack-decoder strategy similar to what we used in our
word-spotter. For word-level statistics, we incorporate a word bi-
gram score when our search algorithm reaches a word boundary.
We compared our recognizer using context-independent acoutic
models trained on a 5000 utterance subset ofATIS with a simi-
larly configured baseline system using the MITSUMMIT recog-
nizer. On the December 1993 test set, theANGIE system achived
an 18.8% error rate, comparable to the baseline’s 18.9%. Further
details on our recognizer implementation can be found in [5].

4. INTEGRATING SUBLEXICAL AND
LINGUISTIC MODELLING

Recall from our previous discussion that our sublexicalANGIE

model is primarily of a bottom-up design whereas our supralex-
ical TINA linguistic model is of a top-down design. A natural
organizational point to combine these two models into a single
search is at the lexical level. Our stack decoder consults the
ANGIE subword model as it attempts to construct a word hy-
pothesis bottom-up. At each putative word ending, the decoder
consults theTINA NL component to obtain a score for extending
the sentence hypothesis with the proposed word. The decoder
then combines the scores from the two sources and the search
proceeds. A graphical illustration of this process can be found in
Figure 2. Although our organization is not as tightly integrated
compared to combining the sublexical and linguistic modelling
into a single parser, it still provides a much quicker feedback cy-
cle from the NL component to the recognition. In particular, the
NL component is consulted at the end of each putative word as
opposed to at the end of each utterance, as would be the case
with either word graphs orN -best resorting.

Our integration efforts encountered one serious difficulty. The
robust parsing mechanism withinTINA proved computationally
expensive. This mechanism implements an effect similar to the
following top level rule:2:

sentence⇒ skip∗ [full parse] (skip| partial parse)∗

Naturally, the expense of hypothesizing the insertion of skip
words at all possible points in the sentence leads to a combi-
natorially explosive search space. Our solution is to remove the
robust parsing mechanism fromTINA and implement our own
greedy strategy in the decoder. Our strategy is as follows: For a
particular hypothesis, parse as many words as possible, allowing

2Here, the * refers to zero or more, the| refers to alternatives, and [] means
optional.
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Figure 2: Integration ofANGIE andTINA into the stack decoder
search process.

Recognizer Total Sub Del Ins
SUMMIT w/Word Bigram 18.9 11.7 4.9 2.3
ANGIE w/Word Bigram 18.8 11.7 4.2 2.9
SUMMIT w/Word Bigram and 18.2 10.8 5.5 1.9

TINA 100-best Resorting
ANGIE-plus-TINA Integrated 14.8 8.7 4.5 1.6

Table 1: Comparison of word error rate percentages for different
recognizers.

only full parses. When the NL parser fails, it retraces backwards
until it finds a point where the NL grammar permits a sentence
end, and it starts a new parse at that point. This strategy is ob-
viously greedy, in that we restrict the locations where a parse
breaking point is inserted to the point of least backward retrace-
ment following a parse failure. However, our greedy strategy
ran two orders of magnitude faster than the original robust parse
mechanism, and resulted in a tractable system.

A comparison of our integratedANGIE-plus-TINA recognizer
and several baseline recognizers is shown in Table 1. As can
be seen from the table, the integratedANGIE-plus-TINA system
results in a 21.7% error rate reduction from theSUMMIT word
bigram system. Moreover, we see that the tight integration also
results in an 18.7% error rate reduction from theTINA 100-best
resorting system, illustrating the value of the tight integration. In
the resorting system, we linearly interpolatedTINA andSUMMIT

scores, using a set of optimized weights.

An examination of the error rate reductions show that much of
the improvement is in substitutions. An examination of the top
substitution errors corrected by the integratedANGIE-plus-TINA

system suggests a large reduction of number agreement errors,
as in the confusion between “flights” and “flight.” Many of the
remaining top substitution errors in theANGIE-plus-TINA system
are ones which are gramatically correct in our rules, for exam-
ple, “New York” being substituted for “Newark” and “a” being
substituted for “an.”3

3We do not enforce a feature agreement constraint for “a” and “an” in our
TINA rules.

5. ADDING WORDS TO VOCABULARY

Since introducing theANGIE framework in [9], we have been
suggesting that one of the advantages of the framework is the
potential to support flexible vocabulary changes, such as the ad-
dition of new words to the vocabulary. We believe thatANGIE’s
ability to share word substructures between existing and newly
added words will provide better lexical support for the added
words. Further, with the integration of an NL processing system,
the combined system should have better linguistic support than,
for instance, a classn-gram.

For our new word study, we envision the following scenario. The
recognizer is part of a conversational system. The system may
retrieve information from a database in response to a user query.
For example, the user may inquire about flights to California and
the system may retrieve a list of cities there. At this point, we
would want to increase the recognizer’s vocabulary to include
all the cities. The salient features of this class of scenarios are
that we know the category of the new words to be added to the
system vocabulary, the addition must be done online without ex-
tensive lexical retraining, and the number of words to be added
is small relative to the size of the total vocabulary. TheATIS data
set consists ofATIS-2 andATIS-3 subsets with 34 additional city
names present in theATIS-3 subset. We chose to use these addi-
tional city names as new words to be added in our experiment.

Because we want to be able to compare systems, with and with-
out the new city names, which are identical except for the avail-
ability of lexical and linguistic training for the new city names,
we adopted the following experimental methodology. We start
with a recognizer trained on the full training data, with the new
city names. Then we artificially removed the benefits of the ad-
ditional lexical training by setting the lexical arc weights of the
new city names to zero in theSUMMIT baseline case and by not
using those examples to update the probability model in the case
of ANGIE. This allows both systems to be trained on exactly the
same set of acoustic data. Our approach is similar to that used
in the new word work in [4]. For the linguistic training, we al-
low both the class bigram baseline andTINA to see the new city
names, but as unknown cities.

For our experiment, we compared adding the new city names to
three systems: a baselineSUMMIT recognizer with a pronunci-
ation graph for sublexical modelling and a class bigram for lin-
guistic modelling, anANGIE recognizer with a class bigram, and
an ANGIE-plus-TINA recognizer. Adding new words involves
primarily three steps. Adding the baseforms, adding sublexi-
cal support and adding linguistic support. We assume that we
know the correct baseform for all the new city names in an effort
to limit our study to the effects of the sublexical and linguistic
models. In an actual system, a dictionary, or a letter-to-sound
system, perhaps using theANGIE framework, can be used. To
provide sublexical support, in theSUMMIT pronunciation graph
case, we add the baseforms, expanded by phonological rules, to
the graph with zero lexical arc weights, which corresponds to
neutral weights. InANGIE, we allow the parser to share prob-
abilities and structures with existing vocabulary words. How-
ever, we discovered that there were several cases whereANGIE

assigned zero probabilities to some of the structures in the new
city names because such structures did not occur in training data.
These structures were licensed by the context-free rules, but had



SUMMIT ANGIE ANGIE -plus-TINA

Reduced 34.2% 31.2% 32.8%
Augmented 19.2% 19.2% 15.2%
Full 18.9% 18.8% 14.8%

Table 2: Error rates of different systems in the presence of sim-
ulated new word additions to the active vocabulary.

no support from the probability model. There are several po-
tential solutions. The one we pursued was to operateANGIE

in phoneme-to-phone generation mode, which generated likely
phone sequences based on probabilities for similar structures in
training data, and then use the resulting phone sequences as sup-
plemental training data to prime the probability model, eliminat-
ing the zero probabilities. This can be done very quickly, as the
number of new words to be added is assumed small. For linguis-
tic support, we added the new words to the city name category in
both the class bigram and theTINA grammar, assigning probabil-
ities within the category uniformly over both previously existing
and newly added words.

The results of our new word experiment are summarized in Ta-
ble 2. In this table, “full” vocabulary refers to a system trained
with knowledge of all city names, “reduced” refers to the ar-
tificially reduced lexical and linguistic training described ear-
lier, and “augmented” refers to the simulated addition of the
new city names to the reduced vocabulary configurations. We
make several observations from the table. Most disappointing
is thatANGIE does not surpass the baselineSUMMIT pronunci-
ation graph if we consider the augmented vocabulary configura-
tion. However, a closer evaluation shows that a possible expla-
nation for this is that the loss of lexical training data impacted
performance only slightly, increasing error rate from 18.9% to
19.2% and 18.8% to 19.2% in theSUMMIT and ANGIE cases,
respectively. This observation is consistent with that made in
[4] on the same set of simulated new word additions. However,
other authors in the literature have noticed more dramatic detri-
ments from lack of lexical training with other choices of word
additions (e.g., [12]). We conclude that more work is needed to
conclusively determine howANGIE compares with a pronuncia-
tion graph when new words are added. Another point to observe
is that with the reduced configurations,ANGIE outperforms the
pronunciation graph, suggesting thatANGIE is better able to deal
with a large number of unknown words. TheANGIE-plus-TINA

configuration shows a large benefit in the augmented vocabulary
setups as compared toSUMMIT or ANGIE without TINA. We ex-
amined more closely the error rate increase forANGIE-plus-TINA

going from full vocabulary to augmented vocabulary (14.8% to
15.2%) by considering an augmentedANGIE configuration with
a fully-trainedTINA configuration and vice-versa. In both cases,
we achieve an error rate of 15.0%, suggesting that the degra-
dations due to limitedTINA training and due to limitedANGIE

training are roughly equal.

6. SUMMARY AND FUTURE WORK

In this paper, we described the successful integration of our
ANGIE sublexical modelling framework with theTINA natural
language processing system. The combination resulted in a
21.7% error rate reduction as compared to a baseline system with

a word bigram. We also explored the addition of new words to
both anANGIE-based recognizer and a combinedANGIE-plus-
TINA system. In theANGIE only case, the results were compara-
ble to that of the baselineSUMMIT pronunciation graph. The
combined system performed better than the other tested aug-
mented vocabulary configurations.

The development of theANGIE framework is an ongoing pro-
cess. In terms of future work, we intend to pursue use of our
integratedANGIE-plus-TINA system in actual conversational do-
mains, instead of theATIS data we used for the reported study.
(Some of this work is reported by our colleague in [2]). Also, we
would like to switch to context-dependent acoustic models, now
that the basic recognition infrastructure is operational.
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