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ABSTRACT the resulting graphs appear to be a better match to the subse-
) ) . o e guent segment-based search. Thus they can generally be smaller
In this \{vork, We_|nvestlgate_modlflcatlons toa prok_Jabl_Ilstlc S0than our acoustic segmentations, and have improved phonetic
mentation algorithm to achieve a real-time, and pipelined capapn word recognition accuracies as well [6]. Although this prob-
bility for our segment-based speech recognizer [4]. The existingyjjistic segmentation algorithm is effective, it is computation-
algorithm used a Viterbi and backwards search to hypothe- g1y intensive, and cannot run strictly in a left-to-right fashion.
size phonetic segments [2]. We were able to reduce the coy his work [10], we describe modifications to the algorithm

putational requirements of this algorithm by reducing the effecypich enable us to achieve real-time recognition performance
tive search space to acoustic landmarks, and were able to achigygje maintaining the improved quality of the graphs.

pipelined capability by executing th&* search in blocks defined
by reliably detected phonetic boundaries. The new algorithm 2. EXPERIMENTAL FRAMEWORK
produces 30% fewer segments, and improvesiT phonetic
recognition performance by 2.4% over an acoustic segmentatid&xperiments for this work are conducted in phonetic recogni-
baseline. We were also able to produce 30% fewer segments tion and word recognition. For phonetic recognition, theiT
a word recognition task in a weather information domain [11]. acoustic-phonetic corpus is used [8]. As is frequently done by
others to reportriMIT recognition results, the set of GaAmIT
1. INTRODUCTION labels are collapsed into a set of 39 labels [9]. For word recog-
ition, theJuPITERcOrpus is used [5]. The corpus consists of

. n
The summIT segment-based speech recognizer developed t% ontaneous speech data from a live telephone-based weather

our group searches an acoustic-phonetic graph during the dec ormation system. While complete experimental results are

ing phase [4]. Although this graph can conceivably contain al resented here forimiT, only final results are presented for
possible segmentations of the speech signal, we have traditi Nip1TERdUE to space Iirr'1itations.
ally chosen to incorporate an explicit segmentation phase into the
recognizer in order to reduce the size of the search space. Tb&erances are represented by 14 MFCCs computed at 5 ms
segmentation has typically consisted of restrictingltivations intervals. Both boundary-based diphone models and segment-
of phonetic transitions, by identifying a set of allowable boundbased models are used. The context-dependent diphone models
aries or landmarks, and also restricting the setarinections are mixtures of diagonal Gaussians based on MFCC averages ex-
between landmarks (i.e., hypothetical phonetic segments).  tending out to 75 ms on both sides of the boundary [5]. The seg-
ment models are also mixtures of diagonal Gaussians, based on
easurements taken over segment thirds; delta energy and delta
CCs at segment boundaries; segment duration; and the num-
er of boundaries within a segment [4]. Language constraints
{ all recognition experiments are provided by a bigram. Error
e is computed as the sum of substitutions, insertions, and dele-

- ) flons. To measure computation, a real-time factor is used. It is
that the use of an explicit segmentation stage can be a sourceo%ﬂ

ibl if honeti ; t hvoot ned as total recognition processing time on a 200MHz Pen-
possibie error I hecessary pnonetic segments are not hypo fHEEIm Pro, divided by the total time of the speech utterances being
sized. Unfortunately we cannot search the entire segment sp

; - . . . cessed. A number greater than one translates to processing
in near real-time; thus the segmentation stage is an importa

. . tower than real-time.
component in our recognizer.

The use of a segmental framework for recognition allows us t
consider a richer set of acoustic-phonetic features than can
incorporated into conventional frame-based representations [l
Currently, for example, feature vectors are extracted for phonetf
analysis both over hypothesized phonetic segments and at th
corresponding boundaries. We have always realized, howev:

Our earlyacousticsegmentation methods used spectral informa-3' LANDMARK-BASED REPRESENTATION

tion to identify landmarks and segments [3]. More recently, Weh our original probabilistic segmentation procedure the first pass

have developed a segmentation procedure which uses a frarBﬁ- . i .
i . . onetic recognizer is frame-based [2]. In this work, we sought
based Viterbi and backward" to produce a phonetic graph [2]. to reduce the computational requirements of the algorithm by

Since this method uses probabilistic acoustic-phonetic mOdeI§“nrinking the search space of the first pass recognizer. Instead of

1This research was supported by DARPA under contract N66001—96—C—852§,C‘_:)rin9 at regularly spaced 10 ms _frames, we firgt inVeStigatEd
monitored through Naval Command, Control and Ocean Surveillance Center. using lower frame-rates. In addition, we experimented with




| Frame-interval (ms) Error Rate (%)] Real-Time Factof block #1  |block 82 | block #3 | block #d

10 (constant) 28.9 3.01
20 (constant) 28.2 1.52 —ii- - B
30 (constant) 29.4 1.01 s e | - - - -
33 (variable) 28.5 0.92 4‘ L |

| L

i bast M best M best M best
QuUEsEes | gueseas | guesses guesses

Table 1: TIMIT devset results for various frame rates.

landmarksthat have been detected by a spectral change algo- l’ L L 'L
rithm. These variable frame-rate landmarks have been success | eegment |segment| segment| segment
fully applied previously to an acoustic segmentation algorithm, Qraph graph graph graph

and eliminate large amounts of computation spent considering
sections of speech unlikely to be segment boundaries [4].

To study the viability of decreasing computation by lowering theFigure 1: lllustration of block processing using hard boundaries.
frame rate of the first pass recognizer, we evaluated the phonetic
recognition performance and computation requirements usin

different frame rates. Although the segmentation algorithm pr %speech spanned by the block, and the segment-graph for that

duces a graph of segmentations rather than just a single choig§Ction is subsequently constructed. The algorithm continues by
we felt that overall top-choice performance would be correlateB'0C€SSing the next detected block. The end result is that the
to the overall quality of the corresponding graph. Frame-basef9ment-graphis produced in a pipelined left-to-right manner as
diphone models were used for these experiments. the input is being streamed into the algorithm.

As shown in Table 1, the results are divided into two section}.2. Boundary Detection Algorithms

The top section presents results for regularly spaced framerzf,

and the bottom section presents results for variable spaced la dle goqndary dehtectlon algorlthm usle:q to :etgct tge _blogk
marks. The table shows that as the frame-interval increases (c?é)-un aries must have two properties. First, the boundaries de-

creasing frame rate), computation expectedly decreases. For ré -tEdh"E)LIJStkbe veryt rellapLel, as ije best algorlthtrr;hrutnnlng
ularly spaced frames, error rate improves initially as the fram each block cannot possibly produce a segment that crosses a

rate decreases but worsens substantially at very low frame rat éc_)ck. A missed boundary bY the boundary detection algorlghm'
For landmarks, error rate is competitive even when compared i’f‘)mUCh prgferred to one that 15 |ns§rt_ed because the probabilistic
the best error rate from regularly spaced frames. Overall, the tg@gmentatlon algorithm running within each block can hypothe-

ble shows that switching from a constant frame-interval of 10 m Ize segment b_oundarles inside the bIock._Second, the boundary
etection algorithm must produce boundaries at a reasonable fre-

to landmarks does not significantly degrade error rate, but signif- . . X
Jlency so that the latency for the segmentation algorithm is not

icantly reduces computation. Based on these results, all sub$.

guent experiments in this paper use a landmark-based search!?° long. In this work, two different boundary detection algo-

rithms were examined. They are described separately below.

4. BLOCK PROCESSING Acoustic boundaries The acoustic boundary detection algo-

In addition to minimal computation requirements, a real-timerithm detects probable segment boundaries based on acoustic
. P requirements, - fhange. Boundaries are placed at major peaks of spectral change

algorithm must also be able to run in a pipeline. The origina, . ;

robabilistic segmentation algorithm could not run in a pi eIinén the speech signal. These boundaries are a subset of the land-

p lC S€g 9 PIPEING arks used to save computation. A threshold on the height of

because it relied on the backwadd search to produce th¥- . )

best paths. This required the completion of the forward \ﬂterbtlhe peaks controls the frequency of the boundaries. In this work,

search before the backwartt search could begin. This section the threshold is set such that a boundary is detected on average

i i i 0,
addresses the pipelining problem and describes a block proceevery 200 ms. Using this threshold, approximately 85% of the

. ; ; . . ) d&tected boundaries inmiT were within 10 ms of an actual

Idngfiiggrtl)t;Tellina\kl)vl?llCclheiz'it\efgegzlo?wr;%c i?)irrfge?rsiégn II?] kgggli(tiso nsegment boundary in the phonetic transcription. Since even hu-
i ) o rhans f ly di h ise pl f

this section introduces the concept of soft boundaries to allo ans frequently disagree about the precise placement of segment

Boundaries, we believed this was a reasonable result.
the A* search to recover from mistakes by the boundary detec- '

tion algorithm. Viterbi boundaries The Viterbi boundary detection algorithm
) is based on statistics in the Viterbi search. Boundaries are placed
4.1. Mechanics at frames where all active nodes above a threshold are transition

. . o ) nodes. The threshold controls the frequency of the boundaries.
Figure 1 illustrates the block probabilistic segmentation algop, ihis work, it was set to produce a boundary on average every

rithm. As the speech signal is being processed, probable sesjy s The performance of this algorithm is similar to that of
ment boundaries are located. As soon as one is detected, mg acoustic boundary detection algorithm.

algorithm runs the forward Viterbi and backwadAt searches
in the block defined by the two most recently detected boundexperiments In this experiment, the difference in performance
aries. TheA* search outputs th&/-best paths for the interval between acoustic and Viterbi boundaries in the block segmenta-



tion algorithm was examined. The boundaries were evaluated (
segment-based recognition performance and computational | _"‘“'l' . - i ——
: L - -
qwreme_n_ts. Thamit dev_set results are shown in Figure 2.
Recognition performance in terms of number of segments p - I -

second versus error rate, is plotted on the left, and computatic
performance, shown as the number of segments per second ver-

sus the real-time factor, is plotted on the right. The number drigure 3: lllustration of block processing using soft boundaries.
segments per second is controlled by a varia€lehat deter-

mines the number ofV-best paths to include in the segment-geqments per second versus the real-time factor, is plotted on the
graph. The acoustic boundaries are represented by the bro'ﬁg}wt. The soft boundaries are represented by the broken lines,
lines, and the Viterbi boundaries are represented by the solighy the hard boundaries are represented by the solid lines. The
lines. The computation plots on the right show that they bothy recognition plot shows that the soft boundaries outperform
require about the same amount of computation. However, thae hard houndaries (especially at low segment rates) in terms
recognition plot on the left shows that the Viterbi boundariegy oo rate, but the right computation plot shows that this per-
clearly outperform the acoustic boundaries in terms of recognjyrmance comes at a cost of greater computation, as expected.
tion error rate. Therefore, all subsequeniiT experiments Use - gimjjar results were obtained fouPITER This is one tradeoff

Viterbi boundaries. FooUPITER acoustic boundaries outper- 14 he taken into account when looking for an optimal operating
form Viterbi boundaries. All subsequentPITERexperiments point for the segmentation algorithm.

use acoustic boundaries.
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. . .. . Figure 4: Plots showing recognition and computation perfor-
Figure 2: Plots showing recognition and computation perfor,,ance of soft versus hard boundaries.

mance of acoustic versus Viterbi boundaries.
5. FINAL EXPERIMENTS

Based on the results from the development experiments, final

The statistics presented for each of the boundary detection algbMIT experiments, done on the cdestset, used Viterbi bound-
rithms show that they are generally reliable. However, they ar@fies. FOmIMIT, an improvement over the baseline acoustic seg-
not perfect. In particular, they do occasionally insert a boundarinentation in terms of error rate, number of segments, and com-
where a boundary does not exist. When this occursMHeest ~ putation was attained using soft Viterbi boundaries. In addition,
algorithm running between the boundaries cannot hypothesi¥éhen the recognizer was allowed to run without any computa-
actual segments that cross the boundary. tional constraints, a further error rate reduction was achieved by
simply increasing the size of the segment-graph. This result is
To counter this problem, soft boundaries were introduced. Fighown in Table 2.
ure 3 illustrates this concept. In contrast to Figure 1, where the

4.3. Recovery From Errors

N-best algorithm runs between every neighboring hard bound- Error Rate (%)| Segments/Seconf
ary, theN-best algorithm runs betwe@very othersoft bound- Baseline 29.1 87.2
ary. This allows theV-best algorithm to recover from mistakes | Real-time 28.4 56.6
in the boundary detection algorithm by hypothesizing segmentsSlower than real-timg 28.1 61.3

that span parts of two blocks. Unfortunately, this benefit comes
at a cost. An algorithm using soft boundaries requires more com-_l_ ble 2- Final i it th restset
putation than one using hard boundaries because some sectiong'€ <: FINAITIMIT recognition resufts on the cotestset.

of the speech signal are processed twice. In addition, an algo-

rithm based on soft boundaries has a higher latency because {82! JUPITER experiments, done on thestset, used acous-
output lags the latest input data by at least one block. tic boundaries. FopUPITER the new segmentation algorithm

achieved an improvement in terms of error rate and number of
Experiments In this experiment, the performance differencesegments using acoustic soft boundaries. However, the algo-
between soft and hard boundaries was examined. Again, thighm at that operating point required significantly more compu-

boundaries were evaluated on segment-based recognition petion than the baseline. To further reduce computation, the full

formance and computational requirements. TiheiT devset set of phonetic labels used in the segmentation algorithm were
results are shown in Figure 4. Recognition performance in terntollapsed into a set of broad-classes. A broad class size of 20
of number of segments per second versus error rate, is plotted was able to achieve an improvement in word error rate and num-
the left, and computation performance, shown as the number bér of segments at a much more reasonable level of computation.



Table 3 summarizes thiestset results fooUPITER In the table, pronunciation network mismatch. For phonetic recognition, the
the real-time result used the set of broad-class models, and thenunciation network used in probabilistic segmentation and in
slower than real-time result used the full set of models. the subsequent segment-based search is the same. As is typical
in phonetic recognition, this network allows any phone to follow

Error Rate (%)| Segments/Second  any other phone. FarurPITER the pronunciation network used
Baseline 10.6 99.7 in probabilistic segmentation allows any phone to follow any
Real-time 10.5 65.2 other phone, but the network used in the subsequent segment-
Slower than real-time 10.0 76.3 based search contains tight word-level phonetic constraints.

This paper concentrated on the tradeoff between recognition per-
formance and computation, without regard to memory require-
ments. However, memory can affect the speed of execution as
6. DISCUSSION well if t_he memory requir_ements are so enormous that ti_me spe_nt
) swapping memory dominates over time spent computing. This

In this paper, various modifications to the probabilistic segmerRh€nomenon is seen at very lafyein this paper.

tation_ algorithm presented_ in [2] were _explo_red_, with the goal of:inally, a word graph search which directly computes a graph
creating an algorithm that is fast, runs in a pipeline, and results 0uld replace theV-best computation. This should eliminate

competitive recognition error rate. Computational savings Were, yundant computation used to expand previously seen segmen-
attained by using acoustic landmarks located at irregular inte{étions in the-best search [7]

vals rather than regularly spaced frames. A left-to-right pipeline
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