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Abstract. In this paper, a novel pitch mean based frequency warping (PMFW) 
method is proposed to reduce the pitch variability in speech signals at the front-
end of speech recognition. The warp factors used in this process are calculated 
based on the average pitch of a speech segment. Two functions to describe the 
relations between the frequency warping factor and the pitch mean are defined 
and compared. We use a simple method to perform frequency warping in the 
Mel-filter bank frequencies based on different warping factors. To solve the 
problem of mismatch in bandwidth between the original and the warped 
spectra, the Mel-filters selection strategy is proposed. At last, the PMFW mel-
frequency cepstral coefficient (MFCC) is extracted based on the regular MFCC 
with several modifications. Experimental results show that the new PMFW 
MFCCs are more distinctive than the regular MFCCs.  

Keywords: Pitch, frequency warping, MFCC. 

1   Introduction 

State-of-the-art speech recognition systems have to face with a lot of variability in the 
acoustic signal. For example, context variability, style variability, speaker variability 
and environment variability are some typical types of variability [1] that may cause 
mismatch between training and test data of automatic speech recognition (ASR) 
systems. A lot of schemes have been developed in the past few years to compensate 
for this mismatch in order to improve the accuracy of the ASR system. Two major 
schemes are acoustic features transformation and acoustic model parameters 
adaptation. 

Speaker variability and speaking style variability are two major factors that might 
cause mismatch between the trained acoustic models and the actual speech to be 
recognized. To reduce speaker variability, vocal tract length normalization [2, 3, 4] is 
commonly used to transform acoustic feature for ASR. The correlation between a 
speaker's average pitch and the vocal tract length was also exploited in [5]. On the 
other hand, even for a same speaker, his/her speech will change much with different 
speaking styles, therefore the speaking style variability also need to be considered. 
The pitch contour is one of the important features to classify different speaking style. 
There is a correlation between the pitch contour and the speaking style. Thus both the 
speaker variability and the speaking style variability correlate with the pitch 
frequency. 
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Automatic speech recognition should be based on speech features that contain 
relevant information capable of discriminating different speech sounds. The dynamic 
features of pitch are useful in speech recognition, especially for Chinese. Yet speech 
signals with different average pitches could contain the same phonetic information. 
Even the phase vocoder can manipulate the signal in frequency-domain, enabling 
pitch-shifting without changing the phonetic information [6, 7]. Thus the average 
pitch of speech is not the relevant feature to discriminate different phonetic 
information in speech for ASR. Commonly used speech features such as MFCCs are 
affected by changes of the pitch in speech signals. One way to alleviate the 
disturbance of pitch is to find speech features that are less sensitive to changes of 
pitch, yet capable of retaining good discriminative properties. 

In this paper, a pitch mean based frequency warping (PMFW) method is proposed 
in feature extraction to compensate for the pitch-mismatch in speech signals. In [8, 9], 
the formant-based frequency warping was discussed for speaker normalization. 
However, the motivation of this paper is not only implementing speaker 
normalization. Because the average pitch is not directly proportional to the vocal tract 
length [5], using pitch explicitly for speaker normalization is not so reasonable as 
expected. On the other hand, the average pitch of the speech segment does have 
relations to both the speakers and the speaking styles. Effects of the pitch-mismatch 
need to be considered separately in ASR. Our work presents an approach that warps 
the frequency according to the average pitch of a speech segment. The motivation 
here is to integrate the PMFW into the acoustic feature extraction at the front-end 
with a little computation and make the new PMFW features more discriminative for 
ASR. 

2   Pitch Mean Based Frequency Warping 

2.1   ASR and Pitch  

Pitch plays an important role in speech perception. The pitch is not a characteristic of 
the vocal tract length and does not directly affect the resonant frequencies. However, 
the information about pitch can be used to improve ASR systems. There are three 
typical methods that use the pitch information in ASR systems.  

First, the pitch can be used as an acoustic feature and modeled using hidden 
Markov models (HMMs) and/or Artificial Neural Network (ANN). For example, in 
[10], the dependency between the hidden state and the pitch was modeled implicitly. 
The ASR system could achieve significant improvement by incorporating the pitch 
frequency. 

Second, the pitch can be used to synchronize the frame size and/or the shift. A 
constant frame size and a constant shift are always used in ASR systems. The power 
spectral estimation may include artifacts without aligning the frames to the natural 
pitch cycles. A pseudo pitch synchronous method was proposed in [11] which 
improved the robustness and accuracy for low SNR speech.  

Third, the pitch can be used for frequency warping factor estimation. In [5, 12], the 
correlation between a speaker's average pitch and the vocal tract length was exploited 
and the probability distribution of warp factors conditioned on pitch observations was 
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modeled. That pitch-based warp factor estimation can be an effective method of 
improving ASR performance. 

In ASR systems, the MFCC is one of major acoustic features. MFCC features are 
calculated from the power spectrum, and include some harmonic structure related to 
the pitch. Variations in pitch could cause variations in features. As a result the pitch 
mismatch and the variability in features have effects on speech recognition systems. 
On the other hand, the pitch variability and the speaker variability do not have direct 
relations. Even the same speaker could have pitch variability, such as at different 
mental conditions. The variability due to pitch will be implicitly alleviated by training 
a speech recognition system on a corpus collected from a large, diverse collection of 
speakers. However, the explicit reduction or elimination of pitch-included feature 
variability could lead to better recognition performance. 

2.2   Pitch Mean Based Frequency Warping 

Frequency warping is a typical kind of methods for feature transformation. The 
frequency axis is scaled by a warping function fα(ω), where α is a warping factor. 
Given the power spectrum, X(ω), of a speech signal, the warped spectrum is 

( )( )( )Y X fαω = ω  (1) 

The warping function fα(ω) is always assumed invertible, i.e. strictly monotonic 
and continuous [3]. The warping function should conserve the bandwidth and 
information contained in the original spectrum in theory. However, there is redundant 
information in the original spectrum and only a subband of spectrum is useful for 
frequency warping. In our work, a linear frequency function is used, i.e. fα(ω) = α ω. 
The reason for using a linear frequency function is that it has explicit physical 
meaning. According to the Fourier transformation, the compressing or stretching in 
frequency axis is equivalent to the re-sampling of the waveform in time axis, i.e. X(α 

ω) = 
1

α
x(t/α). Thus warping frequency with a linear function could alleviate the 

pitch-mismatch in the speech signal. Generally speaking, the phonetic information is 
‘hidden’ in the relative spectrum. The frequency warping adjusts the spectrum to 
determine more distinctive bands for ASR in some sense. It has been proved that the 
Maximum-Likelihood (ML) based frequency warping is effective for ASR [2], 
however, it requires more data and computation. Because perceiving pitch is natural 
for human and human can process speech properly with pitch variations, such as 
singing and speaking, we will focus on the relations between the pitch and the 
warping factor. 

How to determine the warping factor α is important for frequency warping. In our 
method, the warping factor is dependent of the average pitch of a certain speech 
segment. We can assume that the warping factor α is a function of the average pitch 
as follows 

( )g pα =  (2) 
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where p is the pitch mean of a speech segment. Our goal here is to determine an 
analytic approach to expressing the relationship between the warping factor and the 
average pitch. Thus, two monotonic and continuous functions are exploited and 
compared in our experiments. Two typical functions are defined as follows 
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where pmin and pmax are the minimal and maximal pitch values of the human voice, 
respectively, αmin and αmax are the lowest and highest bounds of the warping factor, 
and p is the pitch mean of a speech segment. Empirically the pitch range of human 
voice is from 50 Hz to 500 Hz approximately. In our experiments, the range of the 
pitch is from 55 Hz to 440 Hz for convenience and any pitch with its value lower (or 
higher) than 55 (or 440) Hz is set to 55 (or 440) Hz. αmin (or αmax) is also determined 
empirically as 0.85 (or 1.15) in our experiments. Equation (3) is in a linear form 
meaning that the warping factor is proportional to the average pitch in a linear space 
while Equation (4) is in a nonlinear form meaning that the warping factor is 
proportional to the average pitch in an octave space. 

The pitch mean of the speech segment is calculated as 
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where T is the total frame number of a speech segment, pt is the pitch value at frame t 
(if no pitch value is successfully estimated at frame t, pt is set to 0 in the above 
equation), and N is the total number of frames at which pitch value is successfully 
estimated. Note that T could be set as a fixed time period such as 2 seconds, however, 
for convenience, in our experiments, each sentence is considered as a speech segment 
and T is set to its length.  

In practice, errors in pitch estimation are inevitable. However the average of pitch 
in a speech segment can be calculated with little bias if the speech segment is long 
enough. The method in [13] can be used to balance the doubling error rates and the 
halving error rates in pitch estimation to get more accuracy pitch mean in a speech 
segment. 

2.3   PMFW Derived Feature 

The proposed PMFW is integrated in the feature extraction at the front-end without 
additional computation in the training and the decoding procedures. The PMFW 
features are based on the standard MFCCs with two additional steps added as shown 
in Fig. 1. 

First, the pitch mean based frequency warping is performed in the Mel-filters 
frequencies. The frequency warping can be implemented by simply varying the 
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spacing and width of the component filters of the filter bank without changing the 
original speech signal [2]. The PMFW is implemented as follows 

( ) ( ), 0,1,..., 1B k B k k N′ = α = +  (6) 

where B(k) is the start frequency of Mel filter k (for example, B(0), B(1), B(2) are 
start, middle and end frequencies of the first Mel filter, respectively), and N is the 
total number of Mel filters. Equation (6) means that a male speaker with a smaller α 
would use a relative low band of frequency to calculate features, and vice versa. It can 
be assumed that male speakers’ phonetic information is hidden in relative low 
frequency bands and female speakers’ is hidden in relative high frequency bands. 
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Fig. 1. Schematic diagram for PMFW feature extraction 

Second, Mel filters are selected. Different warping factors will bring mismatch in 
bandwidth between different speech signals. In [2, 3], the piecewise warping 
functions were used to solve this problem. Using the piecewise warping function 
ensures that the full frequency band is used in features at different warping factors. 
However, the full band is not used in our method. We determine stable sub bands by 
cutting off a fixed number of lowest/highest bands at different warping factors. The 
selected sub bands should contain the same number of Mel filters. The number of 
filters that should be cut off is determined by 

max max

max
( )

arg max ( )
B k f

n B k
α ≤

= α  (7) 

where fmax denotes the maximal signal bandwidth. The filter start frequencies selected 
after PMFW are B'(N+1-n), …, B'(n). Both the lower and the higher filters will be cut 
off. For the experiments described in this paper, the sampling rate is fixed at 16 kHz, 
imposing a limit on the maximum signal bandwidth of 8 kHz. 35 (N=35) Mel filters 
are used and n=34 calculated by using Equation (7). Thus B'(2), …, B'(34) are selected 
to use for feature extraction after PMFW. 
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3   Experiments and Discussion 

3.1   Experimental Setup 

Experiments were designed to compare the performance of systems using traditional 
MFCCs and PMFW MFCCs. A subset of 863CSL corpus [14], which is a continuous 
speech database, was used in our experiments. The training set contained 20 male 
speakers' data and 20 female speakers' data, totally 21,749 sentences (10,824 
sentences for male and 10,925 for females) for about 22 hours. The test set contained 
another 8 male speakers' data and 8 female speakers' data, totally 8,941 sentences 
(4,524 for males and 4,417 for females) for about 9 hours. 

In our experiments, we used HTK version 3.2 [15] for training, testing, and the 
baseline’s MFCCs feature extraction. The PMFW MFCCs were extracted by our own 
program using the algorithm proposed in this paper. The pitch, MFCCS and PMFW 
MFCCs were extracted every 12 milliseconds. Both PMFW MFCCs and traditional 
MFCCs were 26 dimensional, consisting of 13 static coefficients and corresponding  
 

Table 1. Recognition results with gender matched/mismatched training and test data (‘Linear’ 
means using Equation (3) to calculate the warping factor while ‘Octave’ using Equation (4) to 
calculate the warping factor; n M (or n F) means the training or testing set contains speech data 
by n male (or female) speakers; the performance is evaluated in syllable accuracy rate, in %) 

Training Set 
 

Test Set 
Method 20 M (%) 20 F (%) 

Baseline 67.69 15.42 
Linear 69.90 48.59 8 M 
Octave 69.31 44.60 

Baseline 20.71 78.90 
Linear 53.87 81.03 8 F 
Octave 48.78 80.56 

Table 2. Recognition results with gender independent training (n M (or n F) means the training 
or testing set contains speech data by n male (or female) speakers; the performance is evaluated 
in syllable accuracy rate, in %)) 

Training Set 
 

Test Set 
Method 20 M +20 F (%) 

Baseline 67.27 
Linear 70.99 8 M 
Octave 70.02 

Baseline 78.04 
Linear 80.77 8 F 
Octave 80.19 

Baseline 72.59 
Linear 75.82 8 M + 8 F 
Octave 75.04 
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13 delta coefficients. The 5-state 8-mixture Hidden Markov Model (HMM) topology 
was adopted to model the toneless tri-IFs where IF means either a Chinese initial or a 
Chinese final. The speech recognition units were 397 Chinese syllables (with tone 
disregarded). 

3.2   Results and Discussion 

The first experiment was designed to compare the performance between traditional 
MFCCs and the PMFW MFCCs on gender dependent models. Table 1 illustrates that 
when the traditional MFCCs are used, there will be very large drops in syllable 
accuracy rate when there is gender mismatch between the training speakers and the 
testing speakers. When the PMFW MFCCs are used, the accuracy rate will be 
improved considerably no matter the training speakers and the test speakers match in 
gender or not. 

Traditional MFCCs perform badly when the training and test speakers gender 
mismatch. Thus some ASR systems use gender dependent models and perform gender 
recognition before speech recognition. The PMFW MFCCs could alleviate variations 
caused by gender mismatch. Although the accuracy rates in the gender mismatch test 
are lower than that in the gender matched test when PMFW MFCCs used, the 
accuracy will be remarkably increased in contrast to traditional MFCCs. Comparing 
two functions for calculating the warping factor, we can see that using a linear 
function to restrict the warping factor and the pitch mean could achieve higher 
accuracy at all tests in contrast to the octave function. 

The second experiment was designed to compare the performance between 
traditional MFCCs and the PMFW MFCCs on the gender independent models. The 
percentages correct for the baseline when tested with 8 male and 8 female speakers 
were 67.27% and 78.04%, respectively, which were lower than those (67.69% and 
78.90%, respectively) in the first experiment. The size of the training set in the second 
experiment was about twice larger than that in the first experiment, however, the 
accuracy rates were lower. The reason for that could be that traditional MFCCs of 
male and female speech are relatively diverged in the feature space, although the 
acoustic models used in two experiments both were 5-state 8-mixture based HMMs. 
Thus, it might be more difficult to model the distributions of the gender independent 
features than the gender dependent features when the acoustic model parameter size is 
fixed. 

According to the first experiment, the linear function for warping factor calculation 
had better performance, so here we will only discuss the results when using the linear 
function here. When using PMFW MFCCs, the percentages correct when tested with 
8 male and 8 female speakers were 70.99% and 80.77%, respectively, in the second 
experiment, and 69.90% and 81.03%, respectively, in the first experiment. It shows 
that the accuracy for males has been increased by 1.09%, while that for females has 
been decreased by 0.26%. Compared with traditional MFCCs, the PMFW MFCCs 
could have better performance, in other words, the PMFW MFCCs can have more 
convergence in the feature space than traditional MFCCs. Furthermore, in 16-speaker 
test (8 male and 8 female), there was a syllable error rate reduction of 11.8% when 
linear PMFW MFCCs were used in contrast to the traditional MFCCs. 



94 J. Liu, T.F. Zheng, and W. Wu 

4   Conclusion 

The motivation of this paper is to extract more distinctive features at the front-end 
with little extra computation. By exploiting the correlation between the pitch and the 
speech, we propose an effective pitch mean based frequency warping method. To 
alleviate the pitch variations in speech signals, the warping factor is considered as a 
function of the average pitch of a speech segment. Then, two typical functions of the 
pitch mean are defined to calculate the warping factor. Furthermore, a simple method 
for performing frequency warping in the Mel-filter bank frequencies is described. The 
Mel filters selection strategy is presented for solving the mismatch in bandwidth 
between the original and the warped spectrum. Based on these operations, the PMFW 
MFCCs is extracted instead of the traditional MFCCs. Experimental results show that 
the PMFW MFCCs have better performance than traditional MFCCs 
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