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ABSTRACT 

In this paper the design of semi-continuous segmental 
probability models (SCSPMs) in large vocabulary continuous 
speech recognition is presented. The tied Gaussian densities 
are trained using data from all states of all utterances while the 
mixture weights are estimated using data from the state being 
trained individually. The SCSPMs tie all the densities of all 
states from all Speech Recognition Units (SRUs) to form a 
shared pdf codebook, thus the number of Gaussian densities is 
greatly reduced. Several pruning methods are reviewed and 
then a new pruning criterion is proposed in order to reduce the 
number of tied mixture Gaussian densities while there is only 
a small subset of mixture Gaussian densities with larger tying 
weights. Our preliminary experiments show that the SCSPM 
incorporated with the pruning techniques can lessen the size of 
model storage and speed up the system with little degradation 
in the accuracy compared to the prior continuous model. 

Keywords: semi-continuous segmental probability model 
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1. INTRODUCTION 

High accuracy large vocabulary continuous speech recognition 
(LVCSR) systems based on hidden Markov models (HMM)[1]  
have been developed in recent years. Each state of the speech 
recognition unit (SRU) is modeled as a mixture of elementary 
pdfs, for instance the Gaussians. To obtain higher accuracy, 
HMM-based LVCSR systems typically use continuous-density 
HMMs (CDHMMs), for instance, the EasyTalk system [2][3] 

In such a system, multiple mixture Gaussian output 
distributions are used in each state of the SRU, and each 
Gaussian component must be separately evaluated in order to 
determine the overall likelihood without parameter tying. It 
will cause large scale of the acoustic model and high 
computation complexity. In the EasyTalk system, For example, 
the SRU (herein the syllable is used) number is 418, each SRU 
is divided into 6 states, and each state is described with 16 
Gaussian densities, thus the total number of Gaussian densities 
in the system should be over 40,000. Other CDHMM based 
systems have the similar embarrassment. In general, if a 
sufficient amount of training data is available, a large number 

of parameters will yield a better recognition accuracy. 
However, the evaluation of many thousands of elementary 
Gaussians during recognition time will slow down the system 
speed.  Furthermore, if the training data are not sufficient, 
the accuracy of CDHMM based system will degrade greatly.  

In a semi-continuous density HMMs (SCHMMs)[4], the tied 
Gaussians are trained using data from all states; only the 
mixture weights are estimated with data for the state itself, 
therefore far fewer data are needed to estimate a SCHMM 
state. SC-HMM tries all the continuous output probability 
densities across each individual HMM to form a shared pdf 
codebook, thus the number of mixed Gaussian densities would 
be greatly reduced. In a typical SCHMM based system, the 
adopted Gaussian density number is about 5,000.  

Research on HMM distance measures has showed that the 
probability transition matrix contributes not so much as the 
observation function matrix does to the performance, so a kind 
of segmental probability Models (SPM) has been proposed 
based on the desertion of the HMM probability transition 
matrix with good performance, such as the mixed Gaussian 
continuous probability model (MGCPM).  

It is interesting to incorporate the concept of semi-continuity 
into the SPM. Here we design the semi-continuous segmental 
probability model (SCSPM) for acoustic modeling in the 
automatic continuous speech recognition system. As some 
tying weights of the Gaussian densities are so small that do 
little contribution to the performance of the system, we ignore 
Gaussians with smaller weights by pruning techniques. Our 
experiments shows that the SCSPM with the pruning 
techniques can lessen the size of the model and speed up the 
system with little degradation in the accuracy compared to the 
continuous version.  

In Section 2 the detailed design of SCSPM is given. First we 
present the outline of SCSPM, and then show how to build a 
codebook with the Maximum likelihood. The formula of 
weight estimation is also deduced in this section. In section 3 
the pruning techniques used to reduce the tying number in 
SCSPM is discussed. The recognition results for SCSPM are 
presented in the following section. Finally, in Section 5 the 
conclusion and an outlook on the further work are given. 



 

2. DESIGN OF SCSPMs 

We first give an overview of a prototypical design of SCSPMs 
in this section. We show the principle of SCSPM, and then 
two main steps adopted in the SCSPMs training procedure are 
enumerated in detail respectively.  

2.1 Principle of SCSPMs 

The SCSPM can be regarded as the combination of the mixed 
Gaussian density scheme and the MGCPM; here let’s take an 
overview on it. 

SCHMM (or tied mixture HMM [5]) systems use a mixture of 
– generally Gaussian pdfs – to model a state. The observation 
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where N  is the size of the Gaussian set, the codebook of 

Gaussian pdfs,
isw is the weight for Gaussian i  in State s  

and the likelihood of Gaussian i  is denoted by )(Xwi

*

. 

MGCPMs adopt a left-to-right non skipping topology, the 
state transition is controlled by the high robust Nonlinear 
Partition (NLP) algorithm which is based on the equal feature 
variance sum (EFVS)[6] criterion in the training procedure 
while the EFVS based search or modified Viterbi algorithm [7] 
in the recognition procedure. The mixed Gaussian densities 
(MGDs) are used to describe the intra-state feature space.  

MGCPMs can achieve a satisfying recognition accuracy in the 
continuous speech recognition, but the acoustic model is large 
and the problem of lacking of training data exists. Here we try 
to tie all the MGDs into a codebook, thus we get the SCSPMs.  

A standard procedure of SCSPMs training can be illustrated in 
Fig. 1. 
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Fig. 1. The structure of SCSPMs 

2.2 Codebook Generation 

Each pdf in the codebook of the SCSPMs contains the mean 
vector and the covariance matrix. Two algorithms can be used 
to obtain the codebook of SCSPMs. One is the classification 
and the other is the mergence. Here we give these two 
algorithms respectively. 

Let N be the expected codebook size, the classification 
algorithm can be described as follows. 

1. Initialization. The mean vector and the variance vector 
are calculated from all vectors in the training corpus. The 
current codebook size n is 1. 

2. The LBG algorithm [8] is used to divided size N 
codebook into a size n*2 codebook. The current 
codebook size is changed to n*2. 

3. The MGD clustering is used to adjust the codebook. The 
object function is Equation (1) and we expect it reach its 
maximum.  

4. If Nn = , exit, otherwise go to step 2. 

The classification algorithm ensures that the obtained 
codebook can reach the maximum likelihood, but the 
calculation complexity is very large. For example, if N=4,096, 
the last MGD clustering should adjust all the 4,096 Gaussian 
at the same time. Another algorithm for obtaining the 
codebook is the mergence algorithm. The MGCPMs are 
consisting of Gaussian densities. We can use them as the 
initial codebook, and then merge them to a fixed number of 
codebook. The mergence algorithm can be described as:  

1. Choose the nearest pair of Gaussian densities among the 
codebook. Here we define a simple distance between two 
Gaussian densities as follows: 

||||),( 2121
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where tg  is the t-th Gaussian, and tµ*  the mean 

vector of tg . 

2. Let ig , jg  be the two Gaussians selected by the last 

step, remove both ig  and jg  from the codebook, and 

add a new Gaussian g  into the codebook with the mean 

vector µ*  and the diagonal covariance vector σ*  are 

such that 

2/)( ji µµµ *** += , 2/)( ji σσσ *** +=  (3) 

3. Let n  be the current codebook size, if Nn = , exit, 
otherwise go to step 1. 

2.3 Weight Estimation 

Having obtained the codebook, we can estimate the weights of 
Gaussian densities for each state of SRUs. The Maximum 
Likelihood Estimation (MLE) method can be adopted to make 
the model reach its maximum of the likelihood of 
corresponding training data. We define the object function as 
follows:  
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Where Z  is the output feature vector set of an acoustic 

model θ , and },...,2,1:{ JjzZ j == . 

We use the following probability density functions to describe 

the distribution of feature vector jz   
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where nC  is the n-th pdf in the codebook and ng  is the 

weight of the n-th pdf. The nw ’s are such that  
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Equation (5) is a conditional extremum , the Lagrange 
function is: 
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For each Nt ,..2,1= , we can get the following differential 

equations: 
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By summing the upper equation over t and using Equation (6), 
we get 
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From (9)(10), we can get the iterative equation of nw : 
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This is the estimation equation of tying weights of each pdf for 
the acoustic model θ . 

Each acoustic model has N tying weights after the above 
weights estimate process. We find that some tying weights of 
the Gaussian densities are so small that they do little 
contribution to the performance of the system. In the next 
section we adopt some pruning techniques to reduce the 
number of tying weights. 

3.  Pruning Techniques  

There are three pruning methods for SCHMMs that can be 
used to reduce the number of tying weights [9]: 

1. Pruning by a Bigger-Weight criterion: if the weights of a 
given state do not exceed a certain threshold, the 
corresponding Gaussians are omitted.  

2. Pruning by a Fixed-Number criterion: The Gaussians are 
sorted in the descending order according to the tying 
weights, only a fixed number of Gaussians with highest 
weights are kept for each state.  

3. Pruning by a Fixed-Probability-Percentage criterion: the 
Gaussians with the highest weights are selected up to the 
point where the sum of these weights reaches a 
predefined percentage threshold.  

Neither of the above three criteria is perfect. The first one may 
conflict with Equation (6). The second and third one may omit 
some Gaussians that have bigger weights.  

As far as the training procedure of SCSPMs is concerned, the 
weights of each state are obtained through an iterative process. 
We can get the following new pruning method. 

4. Pruning by a Bigger-Weight criterion only during the 
weight estimation process: during each iteration, if the 
weights in a given state do not exceed a certain threshold, 
the corresponding Gaussians are omitted.  

The difference between Criteria 1 and 4 is that the later one is 
iteratively applied, the threshold can be set to be small enough, 
and the sum of the weights satisfy Equation (6) at the end of 
the iteration.  

4.  EXPERIMENTAL RESULTS 

A continuous Chinese speech corpus from 863 materials is 
used in the following experiments. The corpus contains 13 
speakers’ data and there are 520 utterances available for each 
speaker. All the recorded materials are obtained in a low noise 
environment through a close-talk noise-canceling microphone. 
Ten speakers’ data are used as the training database for 
SCSPMs; the remaining part is used for testing. They are 
digitized at a sampling frequency of 16KHZ. A 32ms 
Hamming window is applied to each frame of speech. And 
then the cepstral coefficients derived from 16-order LPC 16 
are extracted every 16ms. We choose the Chinese syllables as 
the SRUs and each syllable is divided into 6 states by the NLP 
algorithm. 

4.1 Experiment of codebook size 
The codebook size is an important factor for SCSPMs, here 
we have codebooks with 1,024, 2,048, and 4,096 Gaussians 
respectively. The fourth pruning criterion is chosen in this 
experiment. 
Table 1. Accuracy Rate with different codebook size 

Codebook Accuracy Rate (%) 
Size Criterion Top 1 Top 5 Top 10 

1,024 Classification 60.39 85.74 91.56 



 

 Mergence 61.33 86.08 91.64 
Classification 69.50 88.79 92.76 

2,048 
Mergence 70.21 88.93 92.94 

Classification - - - 
4,096 

Mergence 75.49 90.48 94.42 

The codebook with 4,096 Gaussians through classification the 
method is not built due to the computational complexity.  
Table 1 shows that the error rate can be reduced by about 
36.6% when increasing the codebook size from 1,024 to 4,096. 
It also shows that the mergence method has better 
performance than the classification method.  

4.2 Pruning techniques 

In this experiment, we select the codebook of size 2,048 and 
use the mergence method to generate codebook.  
Table 2. Accuracy rate when using different pruning criterion 

Accuracy Rate (%) Pruning 
Criterion Top 1 Top 5 Top 10 

1. (th=0.005) 69.52 88..76 92.69 
2. (th=50) 68.74 87.89 91.45 

3. (th= 90%) 69.11 88.24 92.17 
4. (th=0.00001) 70.21 88.93 92.94 

The above table shows that when using Criterion 4 the 
performance is the best. 

4.3  SCSPMs vs. MGCPMs 

We build MGCPMs with 4 and 8 mixed Gaussians for each 
state. The SCSPMs has 4,096 Gaussians in the codebook, and 
pruning Criterion 4 is adopted. 
Table 3. Accuracy rate of MGCPMs and SCSPMs 

Model Accuracy Rate (%) 

Name 
Gaussian 

Num 
Top 1 Top 5 Top 10 

MGCPMs (4) 9,669 74.35 89.15 93.78 
MGCPMs (8) 18,685 75.87 90.62 94.55 

SCSPMs 4,096 75.49 90.48 94.42 

From the above table we can see that the recognition accuracy 
rate of SCSPM is higher than MGCPMs of 4 mixtures but 
lower than that of 8 mixtures. And the SCSPMs have far fewer 
Gaussians than MGCPMs have, thus the computational 
complexity can be greatly reduced for SCSPMs. 

5.  SUMMARY 

In this paper the SCSPMs for continuous speech recognition is 
proposed and studied. The experimental results show that the 
SCSPMs can reduce the computational complexity during the 
recognition process with only a little degradation in accuracy 
compared to the MGCPMs. The codebook size is an important 
factor for SCSPMs. We can conclude that the accuracy rate 
increases with the large codebook size, so does the 
computational complexity. To reduce the number of tied 
Gaussians in each state, we study four pruning criteria 
respectively and the experimental result shows that the 
criterion of pruning small tying weights during the training 

outperforms other criteria. In our future study, we will do 
more experiments on the relationship between the accuracy 
rate and the codebook size and apply the SCSPMs to the 
systems with other SRUs such as initial/final or phoneme. 
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