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ABSTRACT

In this paper a fast and effective algorithm named
equal feature variance sum (EFVS)
frame-synchronous searching is presented for state
decoding. EFVS controls the state transition by using
only the feature variance of the speech, instead of by
using the state dwell distribution. The basic
hypothesis of this new algorithm is the equality of
feature variance sum in each state of the speech.
Given the boundaries of the speech recognition unit
(SRU), EFVS can generate the state sequence
without dynamic searching. In a continuous speech
word recognition system, this novel algorithm
reduces the error rate by 36.8% and speed up the
system by 65.6% compared with the traditional state
decoding methods.
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1. INTRODUCTION
The state decoding algorithms based on HMM[1],
not only the traditional frame-synchronous searching
(FSS) algorithms[2], but also some modified
Viterbi algorithms, are mainly based on dynamic
programming theory. This theory does not perfectly
fit the speech recognition. Firstly, these algorithms
try to get the best matching between the utterance to
be recognized and the acoustic model without
considering whether they belong to the same speech
recognition unit (SRU). In such matching one speech
feature sequence may correspond to a few different
state sequences considered as the best results.
Therefore, some recognition errors are produced.
Secondly, these algorithms are dependent on the
exponential distribution of state dwell which may not
be suitable speech recognition.

Moreover, the left-to-right HMM has some
shortcomings, such as the last state of the SRU is a
trap for the state transition, the state transition matrix
is unable to describe the speech variance well.

We propose a novel algorithm for state decoding to
resolve the above problems. The basic hypothesis of
this new algorithm is the equality of feature variance
sum in each state of speech. Under the hypothesis,
any transition between two states is only controlled
by the average feature variance sum of the speech

feature sequence without using state dwell
distribution. Because there is only one unique
sequence of feature in the state decoding, the unique
state decoding result will be obtained for later use in
recognition matching. Given the boundaries of the
SRUs, a simplified algorithm based on EFVS is
presented, which can determine the state of each
frame by calculating the average feature variance
sum of state, instead of by dynamic searching.
Therefore the recognition is made faster.

In addition, EFVS uses only the feature variance,
thus not only it is fast and effective, but also it can
deal with the speech with variable speed or wizened
utterances.

This paper is organized as follows. In Section 2 the
general methods for state decoding are discussed.
and the basic theory of EFVS state decoding
algorithm is described in details. In Section 3 the
searching rules of EFVS are presented. A simplified
algorithm for EFVS method is given in Section 4.
Experimental results and conclusoions are provided
in Section 5 .

2. STATE DECODINGMETHOD TYPE
In order to use the information of state duration,
some state decoding algorithms different from
classical Viterbi algorithm are used in many
modified HMMs. We can classify these algorithms
into several classes according to the way how the
state duration information is introduced and the
strategies of searching are used.

(1) State dwell information described by a
distribution, state transition controlled by probability.

Methods of this type use the parameters of
distribution to describe state through modeling the
state dwell distribution[1]. In the state decoding
processing, the probability of the current state dwell
and the occurance probability the of feature vector in
the state affect the transition and dwell of the current
state. The state sequence with the max probability
score is considered as the best one. Some of these
methods describe the state dwell distribution by the
statistical information of speech signal[3][4][5]. And
some methods do not assume the homogeneous
hypothesis of HMM[6].



(2) State dwell information described by a range of
duration, state transition controlled by the
relationship between the state duration and the range.

These methods get the range of duration by statistics
and assume the state dwell obeys the uniform
distribution. In controlling of the state transition, the
range of the current state dwell which controls
whether the current state should stay is determined
dynamically by the history of the duration
information of the states passed[7].

The novel state decoding algorithm presented in this
paper uses the variance of speech features to reflect
the information of state dwell and control the state
transition. It is very different from above methods.

3. EQUAL FEATURE VARIANCE SUM
(EFVS) STATE DECODING

ALGORITHM
3.1. Basic Theory
Speech signal is assumed to be a stable signal during
a short-term period. Each state of the acoustic model
must be equal to or have the same ability to describe
the speech varying. So a hypotheses is provided.

Basic Hypotheses: The best state sequence is the
one that makes every state of the acoustic model
have the equal feature variance sum.

According to the hypotheses, a novel state decoding
algorithm is presented named Equal Feature
Variance Sum state decoding algorithm, in short
EFVS. In order to describe the algorithm, we deduce
some properties.

Suppose the state number of the SRU is N, and the
state space is },,,{ 110 −NSSS ! . Let the feature

vector sequence be },,,{ 110 −Tooo ! , and the

length of the SRU in frame be T. The feature
variance (FV) at the t-th frame is defined as
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At the t-th frame, the partial accumulated feature
variance sum is
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and the number of states passed is )(tSTATE . The
feature variance sum of state s is
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where t1 and t2 are the boundaries of state s.

Corollary 1: Let
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then
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Corollary 2: The last frame of the SRU must be
dealt with specially.

According to the definition of FV, we can not
calculate the FV for the last frame because the next
frame belongs to another SRU. Let

01 =∆ −T (6)

then we get
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This will not be happened at other frames.

Corollary 3: If the length of unit is unknown, the
first state must be dealt with specially.

Firstly, the first state can not be skipped for its being
responding to the beginning of pronounce. Secondly,
we can not use Corollary 1 to get state∆ when the

length of the SRU is unknown. We must control the
transition of the first state by using the first statistical
information obtained from mass data.
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Corollary 5: The state skipping exists.

If statentFVS ∆∗+≥ )1()( (9)

and statentFVS ∆∗<− )1( (10)

From Eq. (8), we get
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From Eq. (11) and (12), it is clear that the n-th state
is skipped.

Corollary 6: The last state of the SRU is not a trap
for the state transition.

Since N and state∆ are limited, there exists t such

that stateNtFVS ∆∗≥)( and the frame belongs to

the last state. Therefore the SRU will end at the
(t+1)-th frame normally.

Corollary 7: If a state transition occurs at the t-th
frame,

)1()1()2( −≤∆∗−<− tFVStSTATEtFVS state (13)

Since a state transition occurs at the t-th frame,
STATE(t-1) states have been passed at the (t-1)-th
frame. From Eq. (8), we have

statetSTATEtFVS ∆∗−≥− )1()1( (14)

Following is a proof for the left part of the inequation
(13) with reduction to absurdity.

If statetSTATEtFVS ∆∗−≥− )1()2( (15)

From Eq. (8) we get



)1()2( −≥− tSTATEtSTATE (16)

Since the state sequence is ascend, it is clear that
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So
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From this equation and (15),
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This shows that the state of the (t-1)-th frame is
different from the previous frame according to
Corollary 4, that is

)1()2( −≠− tSTATEtSTATE (20)

This equation is conflict with (18), so
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3.2 Searching rules

Let },,,{ 110 −Looo ! denote the feature vector

sequence of the current speech segment, where L is
the length of the speech segment which may contain
one or more SRUs.
When the length of the SRU feature vector sequence
is unknown, we can not use Corollary 1 to calculate

state∆ . In the realizing of EFVS state decoding

algorithm, according to Corollary 3, the first state
transition is controlled by the state duration range
which can be obtained from mass data by means of
the statistical method.

Suppose the first state ends at the t-th frame, namely
STATE(t)=1 and STATE(t+1)=2.

According to Corollary 7, we can easily obtain

)()1( tFVStFVS state ≤∆<− ,

here we define 0)1( =−FVS when the duration of
the first state is one frame. Thus we get a dynamic
variable range of state∆ at the t-th frame which is

denoted by )(tRANGE .

Let
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It is clear that
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According to Corollary 7, we have
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We consider all cases at the (t+1)-th frame.
Case 1:

)()()1( max tRtSTATEtFVS ∗≥+ .

From this equation and Corollary 4, we obtain

)()1( tRANGEtRANGE =+

and

)()1( tSTATEtSTATE >+ .

Therefore the (t+1)-th frame belongs to a different
state from the t-th frame. This case is corresponding
to (I) in Figure 1.
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Figure 1. Rules for state decoding
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Case 2:

)()()1( min tRtSTATEtFVS ∗≤+ .

From this equation and Corollary 4, we get

)()1( tRANGEtRANGE =+
and

)()1( tSTATEtSTATE =+ .

Then the (t+1)-th frame will stay at the current state.
This case is corresponding to (II) in Figure 1.

Case 3:

)1()()( min +<∗ tFVStRtSTATE

and

)()()1( max tRtSTATEtFVS ∗≤+ .

In this case, we must divide )(tRANGE into

)()(_)( tRANGEtLRANGEtRANGE ∪= .

This case is illustrated by (III) in Figure 1.

Here

)](/)1(),(()(_ min tSTATEtFVStRtLRANGE +=
and
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Then )(_ tLRANGE and )(_ tRRANGE are
used to control the state dwell and transition of the
(t+1)-th frame, respectively. A state transition is
given by )(_ tLRANGE which is corresponding
to (IV) and a state dwell is given by

)(_ tRRANGE which is corresponding to (V) in
Figure 1.



Case 4:

)()1()( maxmin tRNtFVStRN ∗≤+<∗ .

Then the (t+2)-th frame is the last frame of the SRU.

Case 5:

)()1( max tRNtFVS ∗>+ .

Then the searching fails, which indicates the duration
of the first state is too long.

Case 6:

)()2( min tRNLFVS ∗≤− .

Then the searching fails, which indicates the duration
of the first state is too short.

3.3. Simplified algorithm
When the boundaries of the unit are known, a
simplified algorithm is deduced which can generate
the state sequence of the SRU feature vector
sequence without dynamic searching during the state
decoding.

Let T be the length of the SRU feature vector
sequence. It is easy to obtain state∆ by
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Let the number of feature vectors in the first n states
be Ln, where 11 −≤≤ Nn . If there exists k such
that
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then kLn = which indicates that Ln is the

boundary between state n and n+1. Apparently,
1−= TLN is satisfied. So the processing of

searching boundary between two states is changed to
searching the number of feature vectors in the first n
states.

4. EXPERIMENTAL RESULTS AND
CONCLUSIONS

The experiment is made across a continuous speech
word recognition system with 24,667 basic words
and many user words. The system acoustic model is
CDCPM[8] based on syllable units with 6 states and
16 mixed density distributions in each state. The test

data contains 204 Chinese words with 2-4 syllables
uttered by 5 untrained men.

Table 1 shows that when the number of searching
paths increase, the system is made slower by 26.3%
for EFVS method and 64.9% for FSS method.
Compared to FSS, EFVS reduces the error rate by
36.8% and speed up the system by 65.6%.

EFVS algorithm has following advantages:
(1) the state deconding speed is fast and the hit rate is
high;

(2) the state dwell distribution fits for the speech;

(3) the last state of SRU is not a trap for the state
transition;

(4) the state decoding results reflect the rules of the
speech varying;

(5) the variable speech speed can be adapted to;
(6) the wizened utterances can be dealt with.
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Table 1. The word recognition rate of different state decoding algorithms
Algorithm Path Num. Speed(s/w) word recognition rate(%)

800 3.964 65.7 67.2 68.1 68.1 70.1 70.1 70.1 70.1FSS
1200 6.432 65.2 66.7 67.7 67.7 69.1 69.6 69.6 69.6
800 1.363 82.4 85.8 87.3 89.2 89.7 89.7 89.7 90.2EFVS
1200 1.722 82.4 86.8 88.2 89.2 89.7 90.2 90.7 91.2


