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Abstract: In this paper, a new statistic model named Center-Distance Continuous Probability
Model (CDCPM) for speech recognition is described, which is based on Center-Distance
Normal (CDN) distribution. In a CDCPM, the probability transition matrix is omitted, and the
observation probability density functions (PDF) in each state are in form of embedded
multiple-model (EMM) based on the Nearest Neighbour rule. The experimental results across
two giant real-world Chinese speech databases and a real-world continuous-manner 2000
phrase system show that this model is a powerful one. Also, a distance measure for CDCPMs is
proposed which is based on the Bayesian minimum classification error (MCE) discrimination.
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1. Introduction

Dominant models in speech recognition (SR) are HMMs, including continuous mixture
density HMMs [1-3] with full covariance matrices or diagonal covariance matrices,
semi-continuous HMMs [4], and VQ-based discrete HMMs [5].

A Continuous HMM (CHMM) is represented by the state transition probability matrix A, the
observation probability density function matrix B and the initial probability distribution vector
Tt Many algorithms are developed to estimate these HMM parameters, such as Baum-Welch
[6], EM (Expectation and Maximization) [7], MMIE (Maximum Mutual Information
Estimation) [8], and MAP (Maximum a Posterior) [9]. Also many algorithms are developed for
recognition, such as Viterbi algorithm [10] and Frame Synchronous Search algorithm [11].

According to our researches, we found that the state transition probability matrix in a HMM
is not very important [12-17], studies on the distance measure between acoustic models also
support this conclusion [18]. This motivates us to propose a new model without the state
transition probability matrix. In this paper, such a model named center-distance continuous
probability model (CDCPM) is presented.

Acoustic model distance measure plays a very important role because of the following
reasons:

(1) Discriminating ability: establishing acoustic models using different features and
calculating the model distance matrix for each kind of features, we can find the best features
according to the average model distance for each kind of features. Obviously, the bigger the
average model distance is, the bigger discriminating ability the features have.

(2) Grouping the models: according to the model distance matrix and a pre-defined distance
threshold, we can group the models. In each group, the model distance between every two
models is very small, and the models may be difficult to distinct, which guides us to pay more
attention to these intra-group models.



(3) Verifying the model generalization ability: calculating the model distance matrix for
both the training and testing database, if the average distance in the distance matrix for testing
database does not reduce very much, we can conclude that this kind of models for such features
has a relatively good generalization ability and will be robust to other testing data.

So meanwhile a distance measure for CDCPMs based on the Bayesian minimal
classification error (MCE) discrimination is proposed.

2. The CDN Distribution and Its Distance Measure
2.1 The center-distance normal distribution

The PDF of a normal random variable & with mean value J_and standard deviation g, is

NG, 0)) = J%[ expl- (v = 1?1207, 20 (-e0,c0). )
Ox

, then the PDF of n is

Define a new random variable 1 = ‘E —-H,

2
P00 = e exp(-y*/20,%), y=0. (2)

In fact, n is the distance between a normal variable § and its mean value M . That’s why the
defined distribution is referred to as a Center-Distance Normal (CDN) distribution.
By calculating the mean value W, of CDN variable n) in Equ. (2), we have
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M, = 5 Ox or0:= Elly (3)

Substituting Equ. (3) into (2), the PDF can be rewritten as
2 2 2
p(y;Hy) = ——exp(-y"/Til)), y 20. (4)
TH,
The D-dimensional case is similar to the mono-dimensional case. Denote the (weighted)

Euclidean distance between a D-dimensional normal vector & and its mean value vector fi by

another random variable N = y(z,ﬂx) , where y(LI) is a kind of (weighted) Euclidean
distance measure. Assume I is a CDN variable, then its CDN pseudo-PDF (PPDF) is
.o 2 -
Nep (Bsiott) = 1 expl v (5.1 /. ©
Strictly speaking, N, (X; H,.H,) is the PDF of y(z,ﬂx) instead of that of E , it is just for

convenience and comparison. For simplification, Equ. (5) is called a CDN PPDF while Equ. (4)
a CDN PDF.

2.2 The distance measure for two CDN distributions

Consider the CDN PDF described in Equ. (4), by shifting this function by d along y axis we
have

def 2
P, = p(y—dip,) = m—eXp{— (y—d)’ /Tlui}, y O[d, ) (6)
y

By unfolding the CDN PDF function, we get the corresponding normal PDF as follows
def 1
2" (Vi) = po(y—d,u,) = m—exp{— (v-d)? I}, yO(-mm)  (7)
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where
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is the normal PDF corresponding to Equ. (4). And also we have
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is the probability distribution function of a standard normal distribution. See Appendix for
some properties of function ®P(x). Hereafter we simply denote

NCD(k)(';é) = NCD(-’?;ﬂxkaUyk) (10)

Poi (1) = e (M) = po (v —d3 1) (11)

Now we are ready to define the distance measure between two CDN PPDFs N, and

where

exp(—x> /2)dx )

Ncpy - Denote the distance between the mean vectors of two CDN PPDFs by
d, =y(H,,H,,)and denote the ratio of the mean center-distances of two CDN PPDFs
by R, =W, /M, and also assume R, 21. In order to derive the distance measure, we

change the CDN distributions to their corresponding shifted normal PDFs pé?l)) (¥) and

p(()'(j;)) () (same result can be got by shifting them to p(()'(jl‘f) (y) and pég) () respectively).
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Fig.1 The (shifted) normal PDFs corresponding to the CDN PPDFs

By solving the equation

Poiy (V) = o) () (12)
we can get the root(s)
d12 /2, l'lyl = IJ'yZ
W' = =dy 2\ Jdl + R - 1)d T InR,,) (13)
2 s uyl < Uy2
R; -1

if B, =H,,, Equ. (12) has only one root, denoted by y"=d,/2;if H,, >H,,, Equ. (12)

will have two roots, one positive and one negative, denoted by yfrm) and yfm) , respectively, as

shown in Fig. 1.



Because CDN distribution is derived from the normal distribution, it is reasonable to change
one CDN PPDF back to one-dimensional normal distribution with zero mean and change
another one back to one-dimensional normal distribution with mean value d,,. The distance

between two mean vectors of the original CDN PPDFs is exactly d|,. The shadowed area

showed in Fig. 1 stands for the classification error according the Bayesian minimum
classification error (MCE) criterion. So the distance between two CDN PPDFs should be

related to the shadowed area. Hence we define the distance D(Np,Np(,)) between
Nepay and Nipp) as “1 — Area (Samples of Class 1 classified to Class 2) — Area (Samples of

Class 2 classified to Class 1)”.
When Equ. (12) has one root, as in Fig. 1 (a), the distance between two CDN
pseudo-distributions is

def
D(NCD(l)a CD(Z))_ 1- [I f(gl(zz))(y)dy J-(m) C(‘g)(l)(y)dy:|
(m) (m)
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and when Equ. (12) has two roots, as in Fig. 1 (b), according to the ®P(x) property
P(x) + P(—x) =1, the distance between two CDN pseudo-distributions can be written for

both y{™ >d, and y\" <d,, as follows
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As a matter of fact, if yf'") << () the shadowed area to the left of yfm) can be ignored. In this

(14-1)

(14-2)

situation, the distance measure can be simplified to
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The CDN distance measure has the following properties [17]:
1. Non-negative: D(N cpy> Neppy) U[01), and D(N s Nepoy F O (15)

2. Symmetric: D(NCD(I) > NCD(z)) = D(NCD(Z) > NCD(])) (16)
3. Triangular: D(NCD(I) > NCD(Z)) + D(NCD(Z) > NCD(})) 2 D(NCD(I) > NCD(3)) > (17)
if B, =M, =H,
4. Marginal: D(N ), Nepny) = L if dyy - o (18)
Practically, with a look-up table for ®(x), the distance between two CDN PPDFs can be
calculated easily using Equ.s (13) and (14).

3. The CDCPM and Its Distance Measure

3.1 The center-distance continuous probability model



In a continuous hidden Markov model (CHMM) with mixed Gaussian densities (MGD) [2]
in each state, Baum-Welch [6], Viterbi [10, 19] algorithms and many better improvement
versions have been available for CHMM training and recognition. Given an observation

feature sequence O = (61 ,0, ,---,6T) of T'frames and a CHMM A = { T, A,B} with N states
where the initial probability distribution is TT=(Tf), , the state transition matrix
is A =(aj;) ., , and the output observation PDF matrix is B = (b,;(X)), , the probability
density of the CHMM A generating O is

o =3 rlo.si =Srdsrlon g =3[ ], [{]5.6))

t=

T
=S| B, 6,)[]a, . B, (a,)j (19)
;( 1 1 1 !:2' t=1°¢ t

where S = {Sf N<t< 7} is an arbitrary state transition sequence. The Viterbi algorithm gives

a maximum likelihood (ML) state sequence S = {S}ML) << 7} , and takes

f { 0,5 |/\} as the final matching score, which is only one term of the sum in Equ. (19)
Score{ O} = f{0,5 |} = r{oln, s} e 5|} 0)

CHMMs can describe signals very well, but the estimation of model parameters will cost too
much time. Researches on model distance measures show that the A matrix contributes not too
much as B does to the recognition performance [18], so we ignore the A matrix and then Equ.
(20) is changed to

Score{ O} = f{oO|n, s} = ﬁb ®,) 1)
=1

According to the above discussion, a model named center-distance continuous probability
model (CDCPM) based on CDN distributions is proposed [15].

In a CDCPM with embedded multiple-model (EMM) scheme [16], the following parameter
should be determined: (1) N: number of states; (2) M: number of CDN densities each state; (3)

(nm)

D: number of dimensions each feature vector; (4)H_ = (H|,"”): mean vector of the m-th

density component in n-th state; and (5) U, : mean center-distance of the m-th density

ynm *
component in n-th state. Where 1<n<N, 1<m<M, 1<d<D, and the observation scoring function
has the following form (EMM scheme)

b,(¥) = max N, (%H 1

IsmsM

(22)

ynm) .

Thus a CDCPM can be denoted by A = {NCD(nm)|1 Ssn<N]Ism< M} , where N,
is as in (10) and (5).

3.2 Training CDCPMs

Once N, M, and D have been determined, the training procedure is as simple as in the
following:

(1) Each observation feature sequence O from the training database is first segmented into N
segments (corresponding to N states) using some segmentation method such as the Non -
Linear Segmentation (NLS) method [12] (see Appendix for more details).

(2) For segment n, vectors of this segment from each observation sequence are collected
together and then grouped into M classes using some clustering algorithm such as LBG
algorithm [20].



(3) Estimation of H

specified segment 7.

and M is very easy for each density, namely each class, for the

xnm ynm

3.3 The modified Viterbi decoding algorithm for CDCPMs

There is no state transition probability matrix, so what controls the state transition in a
CDCPM during continuous speech recognition procedure ? Experiments have shown that NLS
algorithm is efficient for providing a sequence segmentation both for training procedure and
isolated word recognizing procedure [12]. As for the continuous speech recognition, we should
modify the Viterbi decoding algorithm.

By assigning a constant to all the elements of the 4 matrix in a CHMM, we have the
following modified Viterbi decoding algorithm for the CDCPM.

Step 1: Initialization

®,(j)=b;(0)), 1<sj<N (23)
Step 2: Forward-Searching (recursively for 2<¢t< T, 1< j< N)
®,(j) = max ®,_, (i) B, (5,) (24)
W, (j) =argmax ®,_, (i) b, (0,) (25)
I<isN
Step 3: Back-tracking
s\ = argmax @, (i) 0 (26)
1<isN
SO =@ (s 1T -1 27)

After getting the ML state sequence, the matching score can be got easily using Equ. (21).
Furthermore, the frame synchronous search algorithm [11] can also be used to decode the
state sequence.

3.4 The distance measure for two CDCPMs

The distance measure between two CDCPMs is based on the distance measure for the CDN
distribution. For CDCPMs with EMM scheme, i.e., using Equ. (22), let

A= {NopumllsnsNIsms M, k=12 (28)
denote two CDCPMs, and define
1 & .
D(/\l ’/\2) = WZ_; lilsrp}’,lql?M D(NCD(lnp) b NCD(2nq) )i| (29)

as the CDCPM model distance measure.
Obviously, the distance measure for CDCPMs has the following properties:
1. Non-negative: D(A,,\,) U[0,1), and D(N,,\,F 0 (30)
2. Symmetric: D(A,N\,) = D(N\,,\)) 31)

4. Experimental Data

In order to evaluate the efficiency of the CDCPM, several groups of experiments are done
across two real-world giant Chinese speech database and a continuous-manner 2000-phrase
system is built up.

4.1 The database descriptions



There are two different databases used here: DBI and DBII.

DBI is a giant Chinese database, uttered by 80 people aged from 16 to 25 from all over
China. Speakers consist of 40 males and 40 females. The sub-vocabulary for each speaker
includes a mono-syllable word set (11groups by 100 Chinese words), a bi-syllable word set (63
groups by 100 words), a tri-syllable word set (11 groups by 100 words), a quad-syllable word
set (10 groups by 100 words), a penta-syllable word set (1 group by 76 words), a hexa-syllable
word set (1 group by 23 words) and a hepta-syllable word set (1 group by 10 words). Five
sub-vocabularies make up a complete vocabulary. As a matter of fact, the database uttered by
80 people is a 16 times’ repetition of the vocabulary. In the vocabulary, 419 Chinese syllables
do not occur equally, instead, the occurrence frequency for each syllable depends on the
frequency it occurs in all the Chinese words (phrases) found in a Chinese dictionary. Moreover,
each speaker utters ten sentences different from those uttered by any other speakers.

Words or sentences are required to be uttered in Mandarin with a little local accent under an
environment with some background noises, so that the obtained real-world speech database
will be more available in practice.

Speech is first filtered to a bandwidth of 8KHz (cut-off frequency) and then digitized at
16KHz sampling rate. Such a giant database consists of 25GB speech data, about 230 hours’
utterances.

DBII is another giant real-world Chinese continuous speech database of about 5GB, the data
of which are sampled from the telephone network (bandwidth 3.4 kHz and sampling rate 8
kHz) and uttered by 200 males and females, aged from about 20 to 50, and with different
accents from almost all over China. In such a database, people speak in a very spontaneous
way, very fast and with different background noises. Fig.2 gives a histogram of the length of
Chinese syllables labelled in this database. From the figure, we can see that, the average
syllable dwell time is about 10 frames, i.e., 160 ms.
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Fig. 2 A histogram of the lengths of Chinese syllables in DBII

4.2 Feature extraction

In our experiments, the linear predictive coding (LPC) analysis is performed on each
windowed 32ms frame every 16ms using Levinson-Durbin recursive algorithm [21], and
cepstral coefficients are computed from the Linear Predictive Coefficients [22]. Also
regression analysis [23] is applied to each time function of the cepstral coefficients over 5
adjacent frames every 16 ms.

Every speech frame is then represented by a set of D-order cepstral coefficients and a set of
regression coefficients, which are constructed as vectors in D-dimensional Euclidean spaces,
and the vectors at #-th frame is denoted by ¢(¢)and F(¢) respectively.

Define the weighted Euclidean distance between two vectors X, and X, as



y(’;él";éZ):\/z_wd(xld _xzd)2 s (32)

where X, and X, can be either cepstral vectors or regression vectors, and
W = (Wi, Was---»wp) is the weight vector. In our experiments, the d-th component of the

weight vector is chosen to be the reciprocal of the statistical variance of d-th cepstral
component so that each component contributes statistical equally in distance measure.
Actually, this kind of weighted Euclidean distance measure is a Mahalanobis distance measure
where the covariance matrix is simplified to a diagonal matrix.

The two kinds of feature vectors are used in clustering and scoring procedures separately
[15-17]. Both cepstral vectors and their corresponding regression vectors are described by their

own PDFs. Let b{”(¢) be the PDF of cepstral vectors in state n, and b3’ (F) the PDF of
regression vectors in state n, the score of an observation vector pair (¢(¢),¥(¢)) in state n is
then computed by

by (€(1),F(1) = b (€(1))THY (F(1)) . (33)
4.3 Speech recognition units

There are about 419 toneless syllables and 5 tones in standard Chinese speech, totally about
1300 syllables with tone. Each syllable consists of two parts: an initial and a final. Totally 22
initials (including a null-initial) and 38 finals occur in Chinese speech. In order to supply more
precise description, the initials and the finals can be divided into 22 consonant phonemes and
17 vowel phonemes [24]. Choosing Chinese speech recognition units is based on the described
acoustics knowledge. Experiments show that Chinese syllables as speech recognition units are
the best choice for continuous speech recognition [13-14].

5. Experimental Results

In the following experiments, the weighted Euclidean measure is chosen to be the
Mabhalanobis distance measure where the covariance matrix is simplified to a diagonal
covariance matrix.

5.1 Comparison on CDCPM via CHMM

In this experiment [14], testing vocabulary include all 35 Chinese finals, the database is a
840 times’ repetition of the vocabulary by a male speaker. The sampling rate is 8KHz, and
feature is the 16™ order cepstrum derived from 12" LPC coefficients.

The number of states for each final is 5, and the number of densities for each state is 2 and 3
for CDCPM and CHMM respectively. The error rates are 1.07% and 1.43% for CDCPM and
CHMM respectively.

The results show that the CDCPM performs as well as the CHMM even it is simplified,
because the ignored part is not so import and furthermore the CDCPM focuses on the more
import part of the acoustic models.

The storage complexity CDCPM-to-CHMM ratio is 1/ D, and the time complexity ratio is
1/2D, where D is the number of dimension of the features.

5.2 Comparison on EMM scoring via MGD scoring

This experiment is designed to test which form of scoring function is better, two kinds of
scoring functions are compared, one is based on mixed CDN densities (MCDND) as



M
bVl (f) = ZgnmNCD (‘i’ Hxnm’uynm) : (34)

m=1

and another is the EMM scheme as defined in Equ. (22).

The training and testing data are taken from DBI, and cover about one fourth of DBI. The
features are D=16" order cepstral coefficients, and each CDCPM has N=6 states and M=6 CDN
densities each state.

The testing vocabulary here include all the Chinese finals. Experimental results are given in
Tab. 1. From Tab. 1, we can see that the latter form, i.e., the EMM scheme, performs better.

Tab.1 Comparison on forms of scoring functions

Top n 1 2 3 4 5 6 7 8 9 10 | 12 | 18
EMM 78.22(91.48]95.52(97.54{98.53199.12(99.40{99.59|99.70(99.77{ 99.9 | n/a
MCDND [70.22]86.18]{91.61{94.48|96.21[{97.45[98.24|98.79]99.16{99.35| n/a | 99.9

The EMM scheme can be explained in this way. Assume there is a well-trained left-to-right
CDCPM with N states and M CDN densities each state and an unknown speech feature
sequence O =(0,,0,,...,0,) . There exists a segmentation determining which state it

belongs to for any 0,. For any segmentation, scoring using Equ. (22) leads to choosing a

maximal matching score from M " one-density CDCPMs. These M " one-density CDCPMs
can be regarded to be embedded in the original M-density N-state CDCPM. Thus the original
CDCPM are called an EMM one. That’s a good explanation why the EMM performs better.

5.3 A real-world continuous-manner speech recognition system

A 2000-phrase continuous-manner speech recognition system has been established based
on CDCPMs [16]. The training data are taken from DBI, about one fourth of the database is
used, and testing data are uttered by several speakers in a real-world environment. In this
system, the vocabulary consists of 2000 Chinese phrases of 3 to 5 syllables. It is very flexible to
manage the vocabulary, you can add a phrase to, modify a phrase in, or delete a phrase from the
vocabulary without extra training. In Tab. 2, recognition rates for training and testing sets are
listed.

Tab.2 Performance of a 2000-phrase real-world system

Training Set 1* candidate Testing Set 1* candidate
MO0 99.65% M10 97.80%
MO1 99.90% M1l 98.00%
MO02 99.90% M20 95.40%
MO03 99.95% M21 98.40%

5.4 Experiments in the very-bad environment

Experiments are also done across the whole DBII which is established in a very-bad
environment. Some utterances are even not understandable by human. The sampling rate is 8
kHz. And 10" order LPC analysis is performed on the sampled data. The feature vector
dimension is D=10.

Each CDCPM used here has N=6 states and maximal M=16 CDN densities each state. When
training the CDCPM, the density number in each state is either fixed (FIX) (16 densities) or
variant (VAR) (maximally 16 densities). In the VAR scheme, the number of CDN densities are



determined by the training data by some criterion, which will be discussed in another paper.
Results show that using different number of densities performs better.
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90
[ —8— VAR
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75.'1'1'1'1'1'1'1'1'1'1
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Fig. 3 Recognition Rate on DBII
(“FIX” means fixed number of CDN densities each state while
“VAR” means various number of CDN densities each state)

6. Summary

In this paper, a new, powerful, and low-complexity model, named CDCPM, has been
described, and the distance measure for CDCPMs is proposed. A CDCPM is a simplified
HMM, all algorithms designed for HMM can be used for CDCPMs after modification. The
experimental results show that it is a potential model.

We can draw the following conclusions:

(1) A CDCPM is a new simplified version of a CHMM, the observation probabilities in matrix
B is simplified to be mono-dimensional distance-based PDFs.

(2) The Nearest Neighbour rule based EMM scoring scheme is better than MGD scoring
scheme.

(3) Distance measure for acoustic models is important to theoretically studying and guiding.
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Appendices
A.1 Non-Linear Segmentation (NLS) Algorithm

Non - Linear Segmentation (NLS) algorithm used in this paper can be described as follows.
Denote the observation sequence of feature vectors by O = (61,0,....0r), which is to be

segmented into N parts. Define
def def 1 I

Y= y(@m,6), 1SIST=1, By =—-3 v, (A1)
i=1

Then [ ,, the length of the first n segments, can be calculated by the following rule
k=1 k
if Zyi<nAySZyi, then L,=k, 1<sn<N -1
i=1 i=1 (A2)
def
Ly=T
From Equ. (36), it is obvious that the sum of feature variations in each segment equals
approximately to one another, so the NLS algorithm is efficient, robust, and useful for
providing a initial segmentation for training procedure and for isolated word recognizing
procedure.

A.2 The properties of function ®P(x)



The normal probability distribution function ®(x) has the following properties [17]:

. 0s®(x)<1, O R (A3)
2. D(x)=05 & 0 and DOE 05 (Ad)
3. D(x+3)=2dD(x), 05=20,x0R (A5)
4. D(x)+D(-x) =1, I R (A6)
5. (d(x) - D(0) +(D(y) - ™0) 2(Bx +y) ~RO)), Dr,y= 0 (A7)

The following is the proof for Property 5.
[Proof]

=+ (®(x) - (0)) +(D(y) - D(0)) —(D(x +y) - N(0))

_ ! 2 v 1 2 [ 1 2
_J.O\/Z_[exp( t°/2)dt +L \/E[exp( t°/2)dt J.O mexp(—t /2)dt
= [ exp(~1? / 2)dt - —=exp(~* | 2)dr

0 V2T P 42T P

[’ 1 2 7 1 2
=] TSPt 20 | o’ (2

:J.Oy : {eXP(—12/2)—exp(—(t+x)2/2}dt

Jam
=0
O(ear @0) (dr ®OE (¢ yr ®0)



