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Abstract

This paper discusses and evaluates a novel but simple and effective acoustic modeling method called ‘‘state-dependent phoneme-based
model merging (SDPBMM)”, used to build dialectal Chinese speech recognizer from a small amount of dialectal Chinese speech. In
SDPBMM, state-level pronunciation modeling is done by merging a tied-state of standard triphones with a state of dialectal mono-

phone(s). In state-level pronunciation modeling, which acts as the merging criterion for SDPBMM, sparseness arises due to limited data
set. To overcome this problem, a distance-based pronunciation modeling approach is also proposed. With a 40-min Shanghai-dialectal
Chinese speech data, SDPBMM achieves a significant absolute syllable error rate (SER) reduction of approximately 7.1% (and a relative
SER reduction of 14.3%) for Shanghai-dialectal Chinese, without performance degradation for standard Chinese. It is experimentally
shown that SDPBMM outperforms Maximum Likelihood Linear Regression (MLLR) adaptation and the Pooled Retraining methods
by 1.4% and 5.3%, respectively, in terms of SER reduction. Also, when combined with MLLR adaptation, an absolute SER reduction of
1.4% can further be achieved by SDPBMM.
� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Accent is one of the most challenging issues in current
automatic speech recognition (ASR) systems. Dialectal
speech is a variant of a language spoken by people living
in a certain dialect region, and hence is of similar or iden-
tical accent with some distinct and unique regional charac-
teristics. For the past few years, efforts have been made to
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improve accented speech recognition accuracy. As a result,
some promising results are achieved. Usually, research on
accented speech recognition is being carried out on the fol-
lowing aspects.

(1) Pronunciation modeling. Pronunciation lexicon has
been the primary focus of dialectal speech recognition
(Goronzy et al., 2004; Huang et al., 2004; Tjalve and
Huckvale, 2005). Efforts have also been made on
state-level pronunciation modeling for accented
speech recognition (Liu and Fung, 2004; Saraclar
et al., 2000).

(2) Retraining (Tomokiyo, 2001; Wang et al., 2003).
Retraining could be done to build a robust ASR sys-
tem by pooling standard and dialectal speech
together; or using only dialectal speech to build an
accented speech recognition system for that dialect.
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(3) Adaptation (Li et al., 2006; Diakoloukas et al., 1997).
Adaptation is one of the most effective techniques to
improve performance in accented speech recognition.
Adaptation could be performed on acoustic model as
well as language model. MLLR and maximum a pos-

teriori (MAP) are commonly used to adapt acoustic
models, whereas cache language models, topic-adap-
tive models and maximum entropy models are
choices for language models (Gao et al., 2002; Gruhn
et al., 2004).

(4) Decoder tuning (Huang et al., 2004). Modifications
are made to the decoder to better characterize
accented speech.

(5) Accent or dialect classification (Zheng et al., 2005;
Sproat et al., 2004). Classification process is per-
formed before speech recognition. It is usually
employed as a front-end for ASR systems.

In practice, the aforementioned approaches are com-
bined in various ways to achieve better performance in
accented speech recognition.

Putonghua (or standard Chinese) is the official language
of China. Often influenced by local dialects, it is spoken
with a vast variation, but still intelligible to people around
China. Besides Putonghua, there are other 8 major dialects,
which could be divided into over 40 sub-dialects (Li et al.,
2006), further divided into some 1000 descendant dialects
(Li and Wang, 2003). This is why Putonghua, spoken by
most Chinese people, is fairly influenced by their local dia-
lects. In this paper, we will refer to Putonghua spoken by
people living in a certain region and influenced by its cor-
responding Chinese dialect as dialectal Chinese. In contrast
to accented speech recognition which primarily focuses on
phonetic differences, dialectal speech recognition focuses
not only on phonetic differences but also on syntax and
semantic differences. Much details about the concepts of
dialectal and accented speech recognition could be found
in (Sproat et al., 2004; Li et al., 2006). As an extended
research of Sproat et al. (2004) and Li et al. (2006), acoustic
modeling for dialectal Chinese speech recognition is a
major concern in our research.

In general, it is impractical to collect a large amount of
data to build a recognizer for each kind of dialectal Chi-
nese, owing to its diversity. Thus, one of our motivations
is to build a robust recognizer for dialectal Chinese primar-
ily based on Putonghua. However, it would incorporate
dialectal Chinese by including a small amount of dialectal
Chinese speech data (less than 1 h). Little literature has
yet been available that focuses on using small amount of
accented data when building an accent-friendly ASR sys-
tem. Also, none of the state-of-the-art ASR systems has
been known to achieve good performance for both dialec-
tal speech and standard speech recognition simultaneously.

Attempting to address these issues, we propose a novel,
simple and effective acoustic modeling approach – state-
dependent phoneme-based model merging (SDPBMM).
Here, Gaussian mixtures from context-dependent Putong-
hua triphone HMM and its phoneme-related context-
independent dialectal monophone HMM are merged at
state-level according to both the pronunciation variation
probability and the interpolation coefficient between them.
This idea comes from the assumption that an HMM from
standard speech can ‘‘borrow” some information from its
corresponding HMM in the target dialectal speech in order
to narrow the gap between standard speech and dialectal
speech. To a great extent, the newly-merged HMM can
cover both the standard and the dialectal speech acousti-
cally. In this paper, with only 40-min Shanghai-dialectal
speech data adopted, a cost-effective acoustic model for
the Shanghai-dialectal Chinese is built from a Putonghua

recognizer using SDPBMM. It is experimentally shown
that SDPBMM has many advantages in dialectal speech
recognition.

State-level pronunciation modeling, which acts as a
merging criterion, plays an important role in SDPBMM.
Therefore, acquiring pronunciation variations and pre-
cisely calculating the variation probability, particularly
based on a small amount of dialectal data, is an inevitable
challenge. Naturally, how to deal with data sparseness
becomes a key issue for pronunciation modeling. To
address this issue, a distance-based pronunciation model-
ing approach is proposed in this paper.

This paper is organized as follows. In Section 2, a brief
overview of state-of-the-art research on acoustic modeling
for dialectal speech recognition is given, including those
which became the inspiration and motivation for our pro-
posal. The basic idea of SDPBMM is explained in Section
3. Distance-based pronunciation modeling with a small
amount of dialectal speech data is discussed in Section 4.
A series of experiments designed to evaluate effectiveness
of the proposed methods as well as some experimental
results are presented in Section 5. Conclusions are drawn
and future work on dialectal speech recognition is outlined
in Section 6.

2. Related work and objective for dialectal speech recognition

Although there exist differences between them, accented
and dialectal speech recognition own many common pho-
netic characteristics, hence some acoustic modeling
approaches can be shared between the two of them.

2.1. Latest research on acoustic modeling for accented speech
recognition

Most of the work done on acoustic modeling for dialec-
tal/accented speech recognition has primarily focused on
the following aspects.

Integration of pronunciation modeling with acoustic mod-

eling: Due to the fact that dialectal Chinese has similar
pronunciation tendency or pronunciation habit among
the speakers from a dialect region, it is a good candidate
for pronunciation modeling to deal with pronunciation



Fig. 1. Framework for dialectal Chinese speech recognizer.
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variations caused by a local dialect. Most of the state-of-
the-art ASR systems focus on lexicon adaptation. In this
method an accent-specific pronunciation lexicon, based
on data-driven or knowledge-based pronunciation mod-
eling, is generated. Many researchers have made success-
ful attempts to perform pronunciation modeling at
sub-lexical level; others have integrated pronunciation
variability into acoustic modeling for accented speech
recognition. In (Liu and Fung, 2004), the state-level
pronunciation modeling is integrated with acoustic
modeling for better characterization of sound change,
where an absolute SER reduction of 2.39% was achieved
for spontaneous speech recognition. In (Oh et al., 2007),
acoustic modeling adaptation based on pronunciation
variability was performed; as a result of which word
error rate (WER) was decreased from 39.2% to 33.2%
on Korean-accented English.
Retraining: With regard to acoustic modeling for the
dialectal speech recognition, pooling standard speech
and dialectal speech for training is the most straightfor-
ward method. It is shown in (Wang et al., 2003) that
by simply pooling 34 h of standard data with 52 min
of accented data, WER can be reduced from 49.3% to
42.7%. Another similar approach is to train models on
standard speech, and then perform a few forward–back-
ward iterations with accented speech. In (Tomokiyo,
2001), acoustic models were built on native English first,
and then two additional forward–backward iterations
were performed using a 3-h Japanese-accented English
dataset. Consequently, WER dropped from 63.0% to
48.0%. Acoustic model interpolation was also employed
to smooth difference between standard speech and
accented speech. In (Livescu, 1999), it is shown that
interpolating native and non-native retrained acoustic
models lead to a relative WER reduction of 8.1% on a
non-native test set.
Adaptation: Given a small amount of dialectal data
available, adaptation method is widely used for dialectal
speech recognition. The MLLR adaptation is often
employed when adaptation data is insufficient. In (Diak-
oloukas et al., 1997), speech data of 500 utterances from
10 speakers was used; reducing WER from 63.0% to
54.2%. MLLR adaptation based on a small amount of
accented speech is also studied (He and Zhao, 2003;
Xu and Yan, 2004). When sufficient training data
becomes available, MAP usually outperforms MLLR
because of much precise update of each Gaussian trans-
formation (Myrvoll, 2003). Some researchers combined
two adaptation methods for further improvement in
performance. They used MLLR transformed means as
priors for MAP adaptation (Sproat et al., 2004). The lit-
erature review leads us to believe that when small
amount of dialectal data is available, MLLR is a fairly
effective approach for dialectal speech recognition.
Dialect classification: Dialect classification often acts as
a front-end for dialectal speech recognition. In such
ASR systems, a dialect or sub-dialect is first identified
by a dialect classification component. Word-based and
phone-based dialect classification approaches are most
commonly used (Huang and Hansen, 2005; Ang-
kititrakul and Hansen, 2006). In (Chen et al., 2001), it
is shown that 3–5 utterances were sufficient to recognize
a speaker’s dialect. In (Sproat et al., 2004; Li and Wang,
2003), Shanghai-dialectal Chinese was classified into
several categories according to the speakers’ accent lev-
els. Hence, at the back-end in such ASR systems, each
dialect or sub-dialect class corresponds to accent-specific
acoustic models, lexica, and even language models.

2.2. Robust dialectal chinese speech recognizer

In China, Putonghua is spoken quite differently at differ-
ent regions due to influence of local dialects. However, a lot
of common characteristics are shared among them, so the
various kinds of dialectal Chinese are regarded as varia-
tions of Putonghua. It can be reasonably assumed that a
Putonghua recognizer is taken as a benchmark for recogniz-
ing dialectal Chinese. Dialectal Chinese also possesses
many unique characteristics introduced by its correspond-
ing local dialect. It is expected that in combination with a
relatively small amount of dialectal speech, a Putonghua

recognizer can be tuned to improve the performance in dia-
lectal Chinese speech recognition without affecting the per-
formance in Putonghua speech recognition. The basic
framework is illustrated in Fig. 1. To achieve the goal,
some effective measures should be taken to deal with the
differences between Putonghua and a certain dialectal
Chinese.

There exist several disadvantages in the state-of-the-art
ASR systems for dialectal speech recognition. Retraining
is quite time-consuming and a large amount of dialectal
data is often required. Pronunciation modeling at lexical
level is good at modeling phone changes, but gives poor



Fig. 2. Original topology before SDPBMM.

608 L.-Q. Liu et al. / Speech Communication 50 (2008) 605–615
results for sound changes in dialectal speech due to ambig-
uous pronunciation transformation. Alternatively, pronun-
ciation modeling at state-level offers a good solution to
sound changes for dialectal speech recognition; it is usually
combined with acoustic modeling or adaptation. However,
sometimes, the model sharing strategy is quite complicated,
for example, in (Liu and Fung, 2004; Fung and Liu, 2005),
some accent-specific units and their corresponding decision
trees were generated during acoustic model reconstruction.
Also, to obtain context-dependent HMMs for these accent-
specific units, a larger amount of data is required. In (Oh
et al., 2007), retraining was performed in combination with
six pronunciation variants in Korean-accented English. In
doing so, extra time consumption for retraining was
needed. Furthermore, degradation on standard speech
may result. Adaptation is very effective in recognition of
dialectal speech. Unfortunately, it always transforms a
standard model into a dialect-specific one, due to which
good performance for standard speech and dialectal speech
simultaneously cannot be guaranteed. Generally speaking,
dialect classification is a good choice when dialectal speech
is sufficient to build a dialect-specific recognizer. However,
further classification within a specific dialectal Chinese is
likely to suffer from data sparseness.

Keeping our objective in mind, and having studied pre-
vious related work, we came to a conclusion that a good
approach to building an effective dialectal Chinese recog-
nizer should meet the following requirements: (1) modeling
method should be as simple as possible. This is a prerequi-
site for fast deployment of ASR systems; (2) only a small
amount of dialectal speech data should be required keeping
in view the dialect diversity and economic considerations;
(3) good performance should be offered in both dialectal
speech recognition and standard speech recognition. Since
a dialectal Chinese recognizer is regarded as the extension
and variation of a Putonghua recognizer, better perfor-
mance should be obtained for dialectal Chinese speech rec-
ognition with almost no performance degradation for
Putonghua speech recognition; (4) the new approach should
be a complementary or additive approach to the existing
techniques. In other words, the proposed method must
not have an adverse effect on any methods, when combined
with it. For instance, the proposed method should not
antagonize adaptation methods or language modeling.

Attempting to meet the requirements mentioned above, we
propose state-dependent phoneme-based model merging
(SDPBMM) method in acoustic modeling for dialectal speech
recognition, which will be explained in the following section.

3. The SDPBMM method

In (Liu and Fung, 2004), a state-level pronunciation
modeling method, Partial Change Phone Models, was pro-
posed. It can cover both canonical form pronunciation and
surface form pronunciation simultaneously. The actual
pronunciations except the canonical pronunciations are
merged with the pre-trained, canonical form-based acoustic
models, using acoustic model reconstruction method.
Inspired by the idea, we attempted to incorporate both
standard and dialectal pronunciations in acoustic model-
ing. That is, merging Gaussian mixtures from a context-
independent monophone HMM for dialectal Chinese into
their phoneme-related context-dependent triphone HMMs
for Putonghua at state level, which is referred to as
SDPBMM. The term state-dependent means that indices
for states are identical in each HMM in the merging pro-
cess. Apparently, only monophone HMMs for dialectal
Chinese are involved in SDPBMM. In contrast to triphone
HMM, monophone HMM not only requires significantly
less observations, but also has fewer Gaussian mixtures
per state; and hence the particularly crucial issue of data
sparseness, which appears when limited dialectal speech
data is available, can be mitigated. Compared with the
acoustic model reconstruction based on triphone HMMs,
a notably less dialectal speech data is required to build
monophone HMMs.

Most of the state-of-the-art ASR systems tend to use
context-dependent triphone HMMs to build robust
acoustic models. In order to reduce the model complexity,
trimming down the redundant Gaussian Mixtures and
estimating unseen triphones in training data, decision
tree-based state tying method is commonly used (Hwang
et al., 1996). Correspondingly, SDPBMM is implemented
within a decision tree. The states from triphone HMMs
with the same central phoneme are represented by a deci-
sion tree in which the tied states are represented by a leaf
node. That is, multiple states of triphone HMMs with the
same centre-phone are treated the same in the decision tree.
The idea is illustrated in Fig. 2. In Fig. 2, taking a Chinese
Initial an as an example, the 2nd states of the an-centered
triphones are represented by a decision tree. Both a state
of monophone from dialectal speech and a tied-state of
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triphone from standard speech are composed of multiple
Gaussian mixtures. To accomplish the merging, Gaussian
mixtures within the 2nd states from the dialectal mono-
phone an and its pronunciation variants ang are merged
into the leaf nodes of an-centered decision tree, i.e. the tied
states of standard triphone. In that case, whether a pronun-
ciation variant ang for Initial an is involved in the merging
or not is determined by pronunciation modeling which will
be introduced in Section 4. In some sense, initial an is com-
pulsory and its variant ang is optional in SDPBMM. The
merging process is depicted in Fig. 3. The merging takes
place at state level between a monophone together with
its pronunciation variants from dialectal speech and a tri-
phone from standard speech whose central phoneme is
the same as the dialectal monophone. As a result, a merged
tied-state consists of multiple Gaussian mixtures from both
the state of standard triphone HMM and its corresponding
state of phoneme-related dialectal monophone HMM(s), as
denoted by thin solid curves, thick solid curves and thin
dotted curves in Fig. 3, respectively.

Theoretically, SDPBMM is formulated as follows. Let x

and si be an input vector and the ith state in a HMM,
respectively. The original probability density function
(PDF) for continuous HMM p(xjsi) is

pðx siÞj ¼
XK

k¼1

wikNðx; lik; RikÞ; ð1Þ

where wik is the mixture weight of the kth mixture compo-
nent of state i, K is the total number of Gaussian mixtures
in state i. For simplification, N(x;lik;Rik) will hereinafter
be denoted as Nik(�).

Let p0(xjsi) be the revised output PDF of a merged state i

after applying SDPBMM, it can be represented as

p0ðxjsiÞ ¼ kpðxjsðsÞi Þ þ
XM

m¼1

ð1� kÞpðxjsðsÞi ; s
ðdÞ
im Þpðs

ðdÞ
im js

ðsÞ
i Þ; ð2Þ

where sðsÞi is ith tied-state in a standard triphone HMM; M

is the number of pronunciation variants occurring in
Fig. 3. Unchanged topology after SDPBMM.
dialectal speech for sðsÞi ; sðdÞim is ith state in the mth dialectal
monohone HMM; parameter k is a linear interpolating
coefficient between standard and dialectal acoustic models
which is usually determined empirically, for example, k was
set to 0.75 in (Tomokiyo, 2001). pðsðdÞim js

ðsÞ
i Þ is the probability

of the mth pronunciation variant at state level in dialectal
speech given a standard state and hence

PM
m¼1pðsðdÞim js

ðsÞ
i Þ �

1. Afterwards, Eq. (2) can be further simplified and ex-
panded as Eqs. (3) and (4):

p0ðxjsiÞ ¼ kpðxjsðsÞi Þ þ
XM

m¼1

ð1� kÞpðxjsðdÞim Þpðs
ðdÞ
im js

ðsÞ
i Þ ð3Þ

¼
XK

k¼1

kwðsÞik N ðsÞik ð�Þ þ
XM

m¼1

XN

n¼1

ð1� kÞ

� pðsðdÞim js
ðsÞ
i Þ � w

ðdÞ
imnN ðdÞimnð�Þ: ð4Þ

In Eq. (4), K and N are the numbers of Gaussian mixtures
of state sðsÞi and state sðdÞim , respectively; w0ðsÞik ¼ kwðsÞik and
w0ðdÞimn ¼ ð1� kÞ � pðsðdÞim js

ðsÞ
i Þ � w

ðdÞ
imn are new mixture weights

for standard and dialectal Gaussian mixtures respectively
in the merged state of SDPBMM.

From Eq. (4), it can be seen that the new weight for
Gaussian mixture from standard speech, w0ðsÞik , is controlled
by k, and the new weight for Gaussians mixture from dia-
lectal speech, w0ðdÞimn , is controlled by both the pronunciation
variation modeling between standard speech and dialectal
speech, pðsðdÞim js

ðsÞ
i Þ, and k. Normally, w0ðsÞik � w0ðdÞimn , that is,

the standard speech has a greater effect on the output
PDF in the merged state of SDPBMM. It indicates that,
on the one hand, SDPBMM can essentially be regarded
as an extension to acoustic model based on standard speech
with richer acoustic coverage on dialectal speech. In other
words, a dialectal phoneme with some deviation from stan-
dard can be covered acoustically. On the other hand, due to
the fact that merging takes place between a tied-state of
standard triphones and state(s) of dialectal monophones,
the dialectal monophones can inherit recognition capability
from standard triphones since they are much more pre-
cisely and robustly modeled. For example, in Fig. 3, in
SDPBMM, the merged state of the Initial an, has broader
acoustic coverage on the Initial an with some deviation
resulting from dialect and the an sounding similar to ang

for dialectal speech recognition. Therefore, it is expected
that good performance can be achieved for both dialectal
speech and standard speech recognition. Also, because
SDPBMM keeps the topology of decision tree for standard
tied-states unchanged, no modifications to lexicon and
decoder are required. Also SDPBMM does not require
retraining, which can save time and toil to a great extent.
4. Pronunciation modeling based on a small amount of

dialectal speech

As shown in Eq. (4), pðsðdÞim js
ðsÞ
i Þ is the pronunciation

variation probability occurring at state level between stan-
dard and dialectal HMMs. One of the challenges that



Fig. 4. Flowchart for distance-based pronunciation modeling at phonetics
level.

1 Initial/Final in Chinese is similar to phoneme in English, which is
commonly used in Chinese speech recognition.
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SDPBMM has to face is how to precisely evaluate proba-
bility for each pronunciation variant given a small amount
of dialectal speech data. Due to data sparseness issue, the
pronunciation modeling at the phonetic level is used to esti-
mate the probability at the state level. It is also shown in
(Saraclar et al., 2000) that almost no performance differ-
ence between phonetic level and state level pronunciation
modeling was observed. In pronunciation modeling,
knowledge-based and data-driven approaches are widely
used (Strik and Cucchiarini, 1999). Typically, the knowl-
edge-based pronunciation modeling is a good choice, espe-
cially when no or limited development data is available.
However, a drawback is that sometimes there could be a
mismatch between the information provided by the phone-
ticians and the data actually used. Moreover, it is difficult
to obtain precise probability for each pronunciation vari-
ant which plays an important role in the framework of
SDPBMM. In the data-driven pronunciation modeling
approach, forced-alignment or phoneme recognition is
used to transcribe acoustic signals. Based on the resulting
transcription, dynamic programming can be performed to
derive mapping rules, build a decision tree, train an artifi-
cial neural network, or calculate a phone confusion matrix
(Strik and Cucchiarini, 1999). With regard to forced-align-
ment, a constrained network is necessary and likely pro-
nunciation variants are constrained by the network. One
advantage of the forced-alignment is that fewer errors are
introduced by the recognizer. However, under-coverage
for development data might take place. With regard to
phoneme recognition, a phoneme-loop based network is
used to recognize speech data (Zheng et al., 2002). Hence,
it provides an effective approach to the under-coverage
problem. However, many errors are also introduced by
the recognizer. It is shown in (Gruhn et al., 2004) that there
was a mismatch of 45% at phone level between canonical
transcription and surface form transcription via phoneme
recognition, and half of the errors were introduced by the
recognizer. Under such circumstances, an imprecise proba-
bility was likely to be obtained for some pronunciation
variants, especially those with fewer observations in dialec-
tal speech. This issue is much severe when only limited
development data is available.

Taking these factors into account, we choose the forced-
alignment approach to pronunciation modeling in
SDPBMM. One prominent issue faced by the forced-align-
ment approach is how to construct a network which can
not only cover likely pronunciation variants but also
reduce the errors introduced by a recognizer. In this paper,
a distance-based pronunciation modeling (DBPM)
approach is proposed as a solution.

Suppose that A is an HMM for a phoneme built on
Putonghua and A0 is the HMM for the same phoneme built
on a certain dialectal Chinese. It is assumed that the simi-
larity between Model A and Model A0 can be measured by
their acoustic distance. The closer they are, the more simi-
lar they are; likewise, two less similar models will have a
bigger distance acoustically. Thus the distance between
the Putonghua HMM and its corresponding dialectal
HMM can be measured quantitatively. The steps for the
DBPM are depicted in Fig. 4.

1. Generation of distance matrices for Chinese Initial/
Final (IF)1

The distances between one mono-IF HMM from
Putonghua and every mono-IF HMM from dialectal
speech are calculated. Under the assumption that initials
and finals are not mutually confusable, two distance
matrices are generated for initial and final sets, respec-
tively. In our study, the Bhattachyaryya distance mea-
sure is adopted because it is capable of characterizing
the distance more precisely by taking the difference of
covariance into account (Huang et al., 2001). Bhatta-
chyaryya distance measure is defined as

dðk1; k2Þ ¼
1

8
ðl1 � l2Þ

T R1 þ R2

2

� ��1

ðl1 � l2Þ þ
1

2

� ln
ðR1 þ R2Þ=2j j
R1j j1=2 R2j j1=2

: ð5Þ

2. Likely pronunciation variants selection
The selection is based on the distances obtained in Step
1. In most cases, an IF from Putonghua is closest to the
exactly same IF from dialectal speech. Usually, the first
N dialectal IFs with the shortest distance are selected. N,
for example, was set to 4 in our experiment.



Table 1
Data division for the development and test sets

Data set Database Detailed information

Train_MBN MBN 34,500 utterances, approximately 30-h speech
Test_MBN MBN 1200 utterances, totally 80-min speech
Dev_WDC1 WDC 10 speakers, 510 utterances, totally 40-min

speech
Dev_WDC2 WDC 20 speakers, 1070 utterances, approximately

70-min speech
Dev_WDC3 WDC 40 speakers, 2100 utterances, approximately

120-min speech
Dev_WDC4 WDC 60 speakers, 3050 utterances, approximately

180-min speech
Dev_WDC5 WDC 80 speakers, 3860 utterances, approximately

240-min speech
Test_WDC WDC 20 speakers, 995 utterances, approximately

60-min speech
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3. Construction of a constrained network.
The network is constructed based on the selections pro-
duced in Step 2. In the resulting network, every IF has N

likely pronunciation variants and final pronunciation
variants most suitable for the dialectal speech of interest
are derived from these N candidates. Afterwards, forced
alignment (Lussier, 2003) on a basis of the constrained
network using a standard speech recognizer is per-
formed to obtain the most suitable phonetic pronuncia-
tion for a certain dialectal Chinese.

4. Phoneme confusion matrix generation.
The surface form transcription produced by the forced
alignment is aligned with canonical transcription
produced via syllable-to-phoneme conversion. Conse-
quently, a phoneme confusion matrix is then generated
by means of dynamic programming.

5. Selection of pronunciation variants.
Pronunciation variations between standard speech and
dialectal speech can be derived from the resulting confu-
sion matrix. The probability for each pronunciation var-
iation is calculated using Eq. (6)
P ðd sÞj ¼ Nðd; sÞ
NðsÞ � 100%: ð6Þ
To further decrease the confusability, a relative proba-
bility is used as a threshold for pruning. Finally, the
probabilities for those pronunciation variations surviv-
ing the pruning are normalized.

5. Experiments and results

The Mandarin Broadcast News (MBN) database (Hub-
4NE) (LDC, 1997), a read style standard Chinese speech
corpus, was used to train a baseline system, i.e. Putonghua

recognizer. It contained about 30 h of high quality wide-
band speech with detailed Chinese IF transcriptions. The
acoustic models of the Putonghua-based baseline contained
tied-state cross-word standard tri-IF HMMs. Each tri-IF
was modeled using a left-to-right non-skip 3-state continu-
ous HMM, with 14 Gaussian mixtures per state. Thirty-
nine-dimensional MFCC coefficients with log energy, D,
and DD were used as features with cepstral mean normali-
zation (Huang et al., 2001). In fact, the same acoustic mod-
els were used in (Sproat et al., 2004; Zheng et al., 2005; Li
et al., 2006). Also, six zero-initials were added to the stan-
dard IF set to help improve the performance and make the
modeling process consistent. Another database used here
was Wu dialectal Chinese database (WDC) (Li et al.,
2003), which contained 100 native Shanghai speakers, 50
males and 50 females. WDC was recorded under a similar
condition as that of MBN, therefore, channel mismatch
can be minimized. WDC was composed of the read-style
speech from medium and strong Shanghai-accented speak-
ers. More details can be found in (Li et al., 2003).

Two data sets, Train_MBN and Test_MBN, were
selected from MBN for training and testing respectively.
A test set, Test_WDC, was selected from WDC for perfor-
mance evaluation. These data sets are listed in Table 1 in
detail. Initially, the MBN-based Putonghua HMMs
achieved SERs of 30.5% and 49.8% on Test_MBN and
Test_WDC respectively. There was an absolute degrada-
tion of approximately 20.0% on Shanghai-dialectal Chinese
speech. With respect to performance of Putonghua HMMs,
similar results on Shanghai-dialectal Chinese were also
achieved in (Sproat et al., 2004; Zheng et al., 2005; Li
et al., 2006). Because acoustic modeling was our research
focus, no language model was used. Hence, our experi-
ments were performed at Chinese syllable level and SER
reduction was used as a measure of system performance.
So, a lexicon of 406 toneless Chinese syllables was taken.
Besides, HTK 3.2 (Young et al., 2002) was used in these
experiments.

It is well known that recognition performance on a cer-
tain dialectal speech usually relies on quantity of data used.
We intended to use as little dialectal speech data as possible
to achieve good performance. Some experiments were per-
formed to determine the appropriate development set for
dialectal speech. In this research, another 5 data sets, con-
sisting of 40-min, 70-min, 120-min, 180-min and 240-min
dialectal speech, were selected from WDC which are also
detailed in Table 1. These five data sets were used to train
Shanghai-dialectal Chinese-specific acoustic models from
scratch. Here, the same methods as that of Putonghua

acoustic modeling were adopted. The results evaluated on
Test_WDC are depicted in Fig. 5. In Fig. 5, it is shown that
with the increase of training data from WDC, as expected,
better performance in dialectal Chinese speech recognition
was achieved. In the best case, the training set,
Dev_WDC5, consisting of all speech data from WDC
except Test_WDC, achieved an SER of 38.3%. In addition,
a trend observed through Fig. 5 is that the SER achieved
by retraining on the basis of training sets of more than
one hour was lower than the baseline. In other words, if
more than one hour of dialectal speech data is given, acous-
tic models built by retraining using only Shanghai-dialectal
speech data outperformed those built using more than 30 h
Putonghua speech data. Simply put, one-hour data can be a
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Fig. 5. Comparison between dialect-specific retraining and Putonghua

baseline evaluated on Test_WDC.

Table 2
Some initials/finals with multiple pronunciation variants obtained via
distance-based pronunciation modeling

Canonical Probability Surface form

c 0.736 c
0.264 ch

en 0.572 en
0.428 eng

ia 0.731 ia
0.269 iang

ii 0.764 ii
0.236 iii

in 0.432 in
0.568 ing

s 0.729 s
0.271 sh

uan 0.753 uan
0.247 an

ve 0.750 ve
0.250 ie

ch 0.546 c
0.454 ch

eng 0.564 eng
0.436 en

ie 0.797 ie
0.203 ve
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threshold below which the data set can be regarded as a

small data set. Thus, we focus on how to make full use of
a dialectal speech data set less than one hour for dialectal
Chinese speech recognition. In later experiments, 40-min
data set, Dev_WDC1, was used as default development
set for SDPBMM-based acoustic modeling.

The data set, Dev_WDC1, was used to build 65 context-
independent dialectal mono-IF HMMs for SDPBMM,
each mono-IF HMM was of the exactly same topology
as that of standard tri-IF HMM except that there were
six Gaussian mixtures per state.
iii 0.571 ii
0.429 iii

ing 0.333 in
0.667 ing

sh 0.477 sh
0.523 s

zh 0.624 z
0.376 zh

r 0.716 r
0.284 l
5.1. Distance-based pronunciation modeling

In distance-based pronunciation modeling, the standard
mono-IF HMMs were built based on Train_MBN, which
were the intermediate results of context-dependent acoustic
modeling, while the dialectal mono-IF HMMs were built
based on Dev_WDC1. Within the constrained network,
the 4 most likely candidates for each canonical pronuncia-
tion were included in terms of their distances. The Putong-

hua acoustic model in combination with the constrained
network performed the forced-alignment on Dev_WDC1
so as to obtain surface form transcription for dialectal Chi-
nese. A relative probability of 15%, was used as a threshold
for pruning. By following the steps described in Fig. 4, final
pronunciation variants were obtained, some of which with
multiple pronunciation variants are listed in Table 2.

In fact, the resulting pronunciation variants listed in Table
2 are quite consistent with the phonetic knowledge about
Shanghai-dialectal Chinese (Li et al., 2006; Li and Wang,
2003). For example, in Shanghai dialect, there exist no retro-
flex Initials, [zh,ch, sh]. Instead they are pronounced as [z,c, s]
in Shanghai-dialectal Chinese. The pronunciation varia-
tions, /zh ? z/, /ch ? c/, and /sh ? s/ are of high pronunci-
ation variation probability in Shanghai-dialectal speech; but
not vice versa. Another example is that [en] and [eng] are
mutually confusable to a higher degree in Shanghai-dialectal
Chinese, so almost equal pronunciation variation probabil-
ity is achieved for /eng ? en/ and /en ? eng/.
5.2. Evaluations on SDPBMM – related acoustic models

In SDPBMM, the development set, Dev_WDC1, had
been used to build the dialectal mono-IF HMMs in Section
5.1; the linear coefficient k in Eq. (3) was determined exper-
imentally and was set to 0.72. In addition, the pronuncia-
tion modeling weight, pðsðdÞim js

ðsÞ
i Þ, as listed in Table 2, was

also incorporated into SDPBMM in accordance with Eq.
(4). To make it clear, the overall procedure for evaluating
the effectiveness of SDPBMM is comprehensively depicted
in Fig. 6. A series of experiments were designed and per-
formed according to it.

The basic components for Putonghua acoustic model
AM0 and SDPBMM-based acoustic model AM1 are listed
in Table 3. Due to the fact that the model merging was per-
formed at state level, only the number of Gaussian mix-
tures of each state was increased. Compared with AM0,
the overall number of Gaussian mixtures was increased
by approximately 53% in AM1.

Two acoustic models, AM0 and AM1, were evaluated
by Putonghua set Test_MBN, and Shanghai-dialectal Chi-
nese set Test_WDC, respectively. The results are listed in
Table 4.

It shows that SDPBMM can give an SER reduced by an
absolute 7.1% compared with AM0 when Test_WDC was
used. It can also achieve a slightly higher SER of only
0.9% on Test_MBN than AM0. That is to say, SDPBMM
can achieve a significant improvement in dialectal speech



Fig. 6. Overall procedure for SDPBMM-related evaluation.

Table 3
Basic components for Putonghua (AM0) and SDPBMM (AM1) acoustic
models

Putonghua SDPBMM

States 3230 3230
Gaussian mixtures 45,220 68,866
Tri-IF HMMs 7411 7411

Table 4
Comparisons of Putonghua (AM0) and SDPBMM (AM1) on Test_MBN

and Test_WDC

Acoustic model SER

Test_MBN (%) Test_WDC (%)

AM0 30.5 49.8
AM1 31.4 42.7

Table 5
Results for pooled retraining (AM3) on Test_MBN and Test_WDC

Acoustic model SER

Test_MBN Test_WDC

AM3 31.3% 48.0%
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recognition without significant degradation in standard
speech recognition.

In AM1, it is naturally assumed that improvement in
dialectal speech recognition may result from increase in
Gaussian mixtures in the merged states. Compared to
AM0, where 14 Gaussian mixtures per state are contained,
on average, there were 21.3 mixtures per state in AM1. To
make a fair comparison, another Putonghua acoustic model
with 22 Gaussian mixtures per state was built on
Train_MBN, which had approximately equal parameter
scale as that of AM1. The SER on Test_WDC was
decreased from 49.8% to 49.0%. However, compared to
AM1, a gap of an absolute 6.3% still exists. These results
show that significant improvement cannot be achieved by
simply increasing the parameter scale for dialectal speech
recognition.
5.3. Comparison of SDPBMM with pooled retraining

It was reported in (Wang et al., 2003) that significant
recognition improvement on non-native speech was
achieved by’pooled’ retraining. To make a fair comparison
of SDPBMM and the pooled retraining, exactly the same
amount of dialectal data, Dev_WDC1, pooling with
Train_MBN, was used for the retraining. Same modeling
procedure as AM0 was adopted and the resulting acoustic
model was named AM3, as indicated in Fig. 6. The results
of AM3 on Test_MBN and Test_WDC are listed in Table
5.

Through the pooled retraining, the SER of AM3 on
Test_WDC was decreased from 49.8% to 48.0% whilst
the SER on Test_MBN was increased from 30.5% to
31.3%. Compared with AM1, a comparable performance
on Putonghua was achieved but an absolute gap of 5.3%
in SER on dialectal Chinese still existed. It shows that
retraining by pooling a small amount of dialectal speech
cannot achieve as significant improvement as SDPBMM
on dialectal Chinese. In pooled retraining, some triphone
HMMs were built only on standard speech due to severe
data sparseness of dialectal speech. No accented speech
training samples were available for these HMMs into
which no information from dialectal speech could be incor-
porated. Instead, in SDPBMM, Gaussian mixtures from



Table 7
Results for MLLR + SDPBMM (AM4) and SDPBMM + MLLR (AM5)
on Test_MBN and Test_WDC
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dialectal speech were explicitly merged into the states from
standard speech. Much information from dialectal speech
was transformed into acoustic models of standard speech.
Acoustic model SER (%)

AM4 42.2
AM5 41.3
5.4. Comparison of SDPBMM with adaptation method

It was reported in (Wang et al., 2003) that MLLR is
much beneficial when only a small amount of data is avail-
able, so MLLR adaptation was performed based on
Dev_WDC1 and AM0. In MLLR adaptation, all the stan-
dard tri-IFs were classified into 65 classes, and only mean
update was performed in transformation matrix. The
resulting acoustic model was denoted as AM2 in Fig. 6.
As a result, an SER of 44.1% was achieved on Test_WDC

which was still higher than the SER of 42.7% by AM1 with
exactly same data set. These results are listed in Table 6. It
shows that compared with MLLR, SDPBMM can achieve
better performance (with an absolute SER reduction of
1.4%) on dialectal speech. Also, as expected, the adapted
acoustic model usually worsens the performance when
evaluated on Putonghua, the SER on Test_MBN was
increased by 13.3%. It shows that only applying adapta-
tion over standard acoustic model cannot achieve good
performance on dialectal speech and standard speech
simultaneously.
5.5. Integration of SDPBMM with adaptation

Naturally, a question arises whether SDPBMM can give
good results when being integrated with some existing tech-
niques. To make it clear, SDPBMM was integrated with
adaptation.

It is assumed that SDPBMM primarily concentrates on
addressing the issues of the phonetic mismatch between
dialectal speech and standard speech. Because the adapta-
tion has been proven as a good solution to channel mis-
match, it is expected that in combination with a certain
adaptation method, SDPBMM can further improve the
performance on dialectal speech. To verify the assumption,
Dev_WDC1, was used for adaptation again. As a result,
two new acoustic models SDPBMM + MLLR and
MLLR+SDPBMM were built from AM5 and AM4,
respectively, as shown in Fig. 6. They were performed in
the same order as mentioned here. For example, in AM5,
the SDPBMM was performed on AM0 followed by the
MLLR adaptation using Dev_WDC1. The results are listed
in Table 7. From the table, it can be seen that through the
integration of SDPBMM and MLLR adaptation, further
SER reductions of 0.5% and 1.4% on dialectal Chinese
Table 6
Results for MLLR adaptation (AM2) on Test_MBN and Test_WDC

Acoustic model SER

Test_MBN Test_WDC

AM2 43.8% 44.1%
speech were achieved by AM4 and AM5, respectively. It
is shown that SDPBMM and adaptation methods can act
as complementary procedures for each other. Nevertheless,
AM5 outperformed AM4 by 0.9%, so SDPBMM is more
appropriate to be a front-end component for adaptation
in ASR system.
6. Conclusions and future work

In our paper, SDPBMM, a novel, simple and effective
acoustic modeling method for dialectal Chinese speech rec-
ognition, is proposed. To obtain new mixture weights for
DPBMM constrained by pronunciation modeling, dis-
tance-based pronunciation modeling is proposed especially
based on a small amount of dialectal speech data. Through
a series of experiments, it is concluded that SDPBMM pos-
sesses the following advantages: (1) it is simple but practical
for acoustic modeling when only a small amount dialectal
speech data is available; (2) it can achieve a significant per-
formance improvement on dialectal Chinese; (3) it can show
good performance for both standard and dialectal speech
recognition; (4) it can achieve a better performance than
adaptation, especially when given a small amount of dialec-
tal speech data; (5) it is complimentary to adaptation, that is
to say, SDPBMM together with adaptation can improve
performance for dialectal speech recognition. In a word,
SDPBMM is one of the most effective acoustic modeling
methods for read-style dialectal Chinese speech recognition
when small amount of data is available.

In this paper, the experiments were conducted on
Shanghai-dialectal Chinese, and yet no dialect-specific
knowledge was incorporated in acoustic modeling, thus,
the proposed methods can be easily generalized to other
dialectal Chinese speech recognition.

One apparent issue in SDPBMM is that when perform-
ing model merging, the number of Gaussian mixtures in a
merged state of SDPBMM is increased significantly. For
example, in our study, the number of Gaussian mixtures
is increased by 53% while time cost for decoding procedure
is increased by almost 60%. We refer to this issue as Gauss-
ian mixture expansion problem. How to select the Gauss-
ian mixtures with strong discriminative ability to involve
in merging process is a potential debate for future.

Another issue is that all the experiments were performed
based on read speech. In our next step research on sponta-
neous/conversational speech will be carried out. Because
more complicated pronunciation variability exists in
spontaneous dialectal Chinese, more robust Putonghua
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recognizer would be required to work in integration with
SDPBMM to reap its benefits.
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