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Abstract 
To make full use of a small development data set to build a 
robust dialectal Chinese speech recognizer from a standard 
Chinese speech recognizer (based on Chinese Initial/Final, IF), 
a novel, simple but effective acoustic modeling method, 
named state-dependent phoneme-based model merging 
(SDPBMM), is proposed and evaluated, where a shared-state 
of standard tri-IF is merged with a state of dialectal mono-IF 
in terms of pronunciation variation modeling. Specifically, in 
order to deal with phonetic-level pronunciation variations in 
SDPBMM, distance-based pronunciation modeling is 
proposed based on a small dialectal Chinese data set. With a 
40-minute Shanghai-dialectal Chinese data set, SDPBMM 
can achieve a significant syllable error rate (SER) reduction 
of 14.3% for dialectal Chinese with almost no performance 
degradation for standard Chinese. Experimentally, SDPBMM 
can also outperform the maximum likelihood linear 
regression (MLLR) adaptation and the pooled retraining 
methods with relative SER reductions by 2.8% and 10.6%, 
respectively. If SDPBMM is combined with the MLLR 
adaptation, another relative SER reduction of 3.3% can be 
further achieved. 
Index Terms: dialectal Chinese, speech recognition, accented 
speech, pronunciation modeling, acoustic modeling 

1. Introduction 
Accent is one of the challenges in current automatic speech 
recognition (ASR) systems. Dialectal speech is the speech 
with similar or identical accent which is of some regional 
characteristics. Nowadays, as for accented/dialectal speech 
recognition, there are several aspects on which a great deal of 
research has been carried out. 1) Pronunciation modeling. The 
pronunciation lexicon is one of the principal targets on which 
most work has been focused [1]. Specifically, some state-
level pronunciation modeling efforts have also been made [2]. 
2) Retraining [3]. Some retraining mechanisms have been 
proposed where standard speech and dialectal/accented 
speech are pooled together to build a robust ASR system. 3) 
Adaptation [4]. The adaptation technique is an extremely 
effective way to improve system performance on accented 
speech recognition. 4) Decoder tuning [5]. Modifications are 
made to the decoder to better characterize accented/dialectal 
speech. 5) Accent classification [6]. It is usually employed as 
a front-end for ASR systems. In practice, the aforementioned 
approaches are often combined to build a robust ASR system. 

In China, Putonghua (standard Chinese) is an official 
language through which Chinese people from different 

regions can be mutually understood. Putonghua spoken by 
most Chinese people is usually influenced by their native 
dialect more or less. In this paper, Putonghua influenced by a 
certain Chinese dialect is referred to as dialectal Chinese. In 
general, it is impractical to collect a large amount of data to 
build a recognizer for each dialectal Chinese due to its 
diversity, therefore one of our motivations here is to build a 
robust recognizer for a dialectal Chinese based on a handy 
Putonghua recognizer along with a small dialectal Chinese 
data set (less than one hour). Another important motivation 
here is to make the built recognizer work well for both 
dialectal and standard speech recognition simultaneously. 

To address these issues, we propose an acoustic modeling 
approach named state-dependent phoneme-based model 
merging (SDPBMM) where based on a certain Chinese Initial 
or Final (IF), Gaussian mixtures at state level from a context-
dependent Putonghua tri-IF HMM and its IF-related context-
independent dialectal mono-IF HMM(s) are merged 
according to pronunciation variation modeling between them. 
To a great extent, the newly-merged HMM can represent both 
dialectal and standard speech characteristics acoustically. 
Acting as a merging criterion, the state-level pronunciation 
modeling plays an important role in SDPBMM. Accordingly, 
how to capture the pronunciation variants and precisely 
evaluate their pronunciation variation probability based on a 
small amount of data is an issue due to the fact of data 
sparseness. Accordingly, a distance-based pronunciation 
modeling method based on a small data set is proposed. In 
addition, as a side effect of SDPBMM, the number of 
Gaussian mixtures within the merged states will be increased 
definitely, which is referred to as the Gaussian mixture 
expansion problem. To downsize the scale of Gaussian 
mixtures while without causing any degradation on dialectal 
Chinese speech, the states that need merging must be 
differentiated from those that do not need merging in 
SDPBMM. Therefore, a distance measure, named pseudo-
divergence based distance measure (PDBDM), is proposed to 
solve it. . 

In this paper, only 40-minute Shanghai-dialectal speech 
data is adopted to build a cost-effective acoustic model for the 
Shanghai-dialectal Chinese from a Putonghua recognizer via 
the proposed methods. 

2. State-dependent phoneme-based model 
merging 

To take both Putonghua and dialectal Chinese into account at 
state level, the SDPBMM is performed. Most of the state-of-
the-art Chinese ASR systems tend to use context-dependent 
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tri-IF (similar to triphone in English) HMMs and a decision 
tree based state sharing method to build robust acoustic 
models [7]. Keeping the topology of a decision tree 
unchanged, we attempt to merge Gaussian mixtures from 
context-independent HMM(s) for dialectal Chinese into its 
IF-related context-dependent HMM for Putonghua at state 
level within a decision tree, this is the so-called SDPBMM. 
The basic idea of SDPBMM can be illustrated in Figure 1. In 
the left part of Figure 1, taking a Chinese Final an as an 
example, the 2nd states from an-centered tri-IFs are presented 
by a decision tree. To accomplish the merging process, the 2nd 
states from the dialectal mono-IF an and one of its 
pronunciation variants ang are merged with the leaf nodes of 
an-centered decision tree, i.e. the shared-states. In that case, 
whether a pronunciation variant, ang of an, should be 
involved in the merging or not is determined by the 
pronunciation modeling which will be introduced in Section 3. 
The merging process is depicted in the right part of Figure 1. 
As a result, a merged shared-state consists of multiple 
Gaussian mixtures from both a state of Putonghua tri-IF 
HMM and its corresponding state of dialectal mono-IF HMM, 
as denoted by thin black curves and thick black curves in 
Figure 1, respectively. 
 

 
 

Figure 1: The basic idea of SDPBMM. 
 

Theoretically, SDPBMM is formulated as follows. Let x 
and si be an input vector and the i-th state in a HMM, 
respectively, then a probability density function (pdf) for a 
continuous HMM p(x|si) is formulated by Equation 1. For 
simplification, Nik(⋅) will be used to denote N(x; μik; ∑ik) for 
the i-th state hereinafter. 
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Let p'(x|si) be the modified pdf for a merged shared-state 
after applying SDPBMM, which can be represented as 
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where ( )s

is  is the i-th shared-state in a standard triphone 
HMM, M is the number of pronunciation variants occurring in 

dialectal speech for ( )s

is , ( )d

ims is the i-th state in the m-th 

dialectal monohone HMM, and parameter λ is a interpolating 
coefficient between standard and dialectal acoustic models. In 

fact,  ( ( ) ( )d s

im i
p s s )  is the probability of the m-th pronunciation 

variant at state level in dialectal speech given a standard state. 
Afterwards, Equation 2 can be further simplified and 
expanded as 
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where K and N are the numbers of Gaussian mixtures of states 
( )s

is  and ( )d

ims , respectively.  ( ) ( )' s s

ik ikw wλ= and 
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w  are new mixture weights for standard 
and dialectal Gaussian mixtures respectively in the merged 

state of SDPBMM. ( )s

kw  is controlled by both the original 

weight and λ; likewise, the new weight from dialectal speech, 

, is controlled by the original weight, pronunciation 

variation probability 

( )' d

imnw

( )( ) ( )d s

im i
p s s  and λ. Normally, ( ) ( )' 's d

ik imnw w , 
that is to say, a standard state has a greater effect on the 
output pdf in the merged state. It indicates that SDPBMM can 
be essentially regarded as an extension of standard speech 
based acoustic model into one with richer acoustic coverage 
on dialectal speech, and therefore it can be expected to 
achieve good recognition performance for both dialectal 
speech and standard speech. 

3. Pronunciation modeling based on a 
small amount of dialectal speech data 

In Equations 2 and 3, ( )( ) ( )d s

im i
p s s  is the pronunciation modeling 

at state level. One of the challenges that SDPBMM has to 
face is how to more precisely estimate the probability for 
each pronunciation variant given a small amount of dialectal 
speech data. Because of the data sparseness issue, 
pronunciation modeling at phonetic level is used to estimate 
the probability at state level. Generally speaking, knowledge 
could be more useful for pronunciation modeling especially 
when no or only limited development data is available [8]. 
However here for SDPBMM, it is hard to obtain a precise 
probability for each pronunciation variant. Another 
pronunciation modeling approach is data-driven where 
forced-alignment or phoneme recognition is widely used [8]. 
As for the forced-alignment, a constrained recognition 
network is necessary and thereby some likely pronunciation 
variants are under its constraints. One advantage of the 
forced-alignment method is that fewer errors could be 
introduced by a recognizer; nevertheless, sometimes under-
coverage for development data might take place [9]. For the 
phoneme recognition, a phoneme-loop network is used. 
Though it can deal well with the under-coverage issue, more 
errors are usually introduced by the recognizer [9]. This 
problem is even more severe when only a limited amount of 
development data is available. 

Taking these factors into account, we choose the forced-
alignment pronunciation modeling approach in SDPBMM. 
An issue here is how to construct a network that can not only 
cover some likely pronunciation variants but also reduce 
errors introduced by the recognizer. Consequently, a distance-
based pronunciation modeling approach is proposed as a 
solution.  

It is assumed that the similarity between a Putonghua 
HMM and a dialectal HMM can be measured by their 
acoustic distance. The closer they are, the more similar they 
are; or equally two less similar HMMs will have a bigger 
acoustic distance. Some major steps for the distance-based 
pronunciation modeling are described as follows. 

1. Generation of distance matrices. The distance between 
any one mono-IF HMM from Putonghua and any mono-IF 
HMM from dialectal speech is calculated based on the 
Bhattachyaryya distance measure. Two distance matrices are 
generated for Chinese Initial and Final sets, respectively 
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under the assumption that an Initial and a Final are not 
mutually confusable in reality. The adoption of 
Bhattachyaryya distance measure lies in the assumption that it 
can evaluate the distance between dialectal and standard 
Chinese mono-IF symmetrically and precisely [2]. The 
Bhattachyaryya distance measure is defined as 
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2. Construction of the constrained network. Usually, the 
first N dialectal IFs with shortest distances are selected to 
construct the constrained network. In most cases, an IF from 
Putonghua is often closest to the same IF from dialectal 
speech. Accordingly, the final pronunciation variants most 
suitable for the dialectal speech of interest will be derived 
from these N candidates in terms of the resulted network.  

After the constrained network required by the forced-
alignment has been constructed according to acoustic distance, 
the conventional forced-alignment on the basis of constrained 
network in combination with a Putonghua recognizer will be 
performed to complete the phonetic-level pronunciation 
modeling [8].  

4. Gaussian mixture expansion problem 
Though SDPBMM is effective for dialectal Chinese speech 
recognition, it will also introduce a Gaussian mixture 
expansion problem, which will certainly lead to much time-
consumption during decoding. To solve it, the differentiation 
of some states that need merging from those that need no 
merging is necessary in SDPBMM. Therefore, a distance 
measure, named pseudo-divergence based distance measure 
(PDBDM) [13] is proposed. Practically, a state from a 
dialectal mono-IF HMM and its corresponding state on a 
basis of the same IF from a standard tri-IF HMM form a pair 
for the calculation of distance. The distances of all pairs are 
computed using PDBDM. Subsequently, a certain percentage, 
i.e., 70% relative to the amount of pairs, is set as a threshold 
in the descending order of distance so that the pairs with a 
large distance have a higher priority to be chosen to 
participate in the merging under the assumption that in doing 
so greater acoustical coverage for dialectal Chinese can be 
achieved. In addition, the threshold in PDBDM is usually 
defined experimentally.  

5. Experiments and results 

5.1. Experimental setup 

The Mandarin Broadcast News (MBN) database (Hub4NE) [6] 
was used to train a Putonghua recognizer, taken as the 
baseline in this paper. The acoustic model of the baseline was 
shared-state cross-word standard tri-IF HMMs using HTK3.2 
[10]. Each tri-IF was modeled using a left-to-right 3-state 
continuous HMM, with 14 Gaussian mixtures per state. 
Features were 39-dimensional standard MFCC coefficients. 
The Wu dialectal Chinese database (WDC) [4] with speech 
recorded under a similar condition to MBN from 50 male and 
50 female Shanghai native speakers was also used in the 
experiments. The WDC was composed of read-style speech 
from medium and strong Shanghai-accented speakers.  

Two data sets, Train_MBN (30-hour speech) and 
Test_MBN (1.2-hour speech), were selected from MBN for 
training and testing, respectively. A 40-minutue dialectal 
Chinese development set, Dev_WDC, and a 1.0-hour test set, 

Test_WDC, were selected from WDC. The Dev_WDC was 
used to build 65 context-independent dialectal mono-IF 
HMMs for SDPBMM, the mono-IF HMMs was of the same 
topology as that of Putonghua tri-IFs except that there were 6 
Gaussian mixtures per state. No language model was used 
because this paper focuses on acoustic modeling only. 
Experimental results were evaluated at Chinese syllable level 
and the Chinese SER reduction was used as a measure for 
system improvement. A recognition lexicon of 406 toneless 
Chinese syllables was adopted. The overall procedure is 
depicted in Figure 2. A series of experiments were designed 
and conducted according to this figure. 
 

 
 

Figure 2: Procedures for SDPBMM-related evaluations 
 

In the distance-based pronunciation modeling, the 
standard context-independent mono-IF HMMs were built 
using MBN_Train while the dialectal mono-IF HMMs using 
Dev_WDC. The constrained network contained 4 most likely 
candidates with shortest distances for each canonical 
pronunciation. The Putonghua recognizer in combination 
with the constrained network was used to perform the forced-
alignment on Dev_WDC to obtain surface form transcriptions 
for dialectal Chinese. In our study, a relative probability of 
15% was used as a threshold for pruning. By following the 
steps described in Section 3 and [8], finally there were 18 IFs 
each with two pronunciation variants while others each with 
only one. In fact, the resulted pronunciation variants were 
quite consistent with the phonetic knowledge about Shanghai-
dialectal Chinese [11]. 

5.2. Evaluations on acoustic models 

The corresponding results evaluated on Test_MBN and 
Test_WDC for those acoustic models listed in Figure 2 are 
presented in Figure 3. In Figure 3, Column Baseline is 
denoted by AM0. Initially, AM0 achieved the SERs of 30.5% 
and 49.8% on Test_MBN and Test_WDC, respectively. 
Column SDPBMM is represented by AM1. For AM1, the 
dialectal 65 mono-IF HMMs was built based on Dev_WDC. 
In SDPBMM, the interpolating coefficient λ was determined 
experimentally and was optimally set to 0.72 in this paper. In 

addition, the pronunciation modeling weight, ( ( ) ( )d s

im i
p s s ) , was 

also integrated into SDPBMM with the pronunciation 
variation probabilities obtained via the distance-based 
pronunciation modeling. Considering that adaptation is one of 
the most effective methods for accented speech recognition 
and that MLLR is much beneficial when only a small amount 
of data available [12], we adopted MLLR for adaptation 
method based on Dev_WDC and AM0. The resulted acoustic 
model is denoted by AM2 in Figure 2 and represented by 
Column MLLR in Figure 3 accordingly. It is reported in [12] 
that significant improvement on non-native speech was 
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achieved by the pooled retraining. For comparison, 
Train_MBN pooled with Dev_WDC was used to perform 
retraining which is denoted by AM3 and Column Pooled 
Retraining in Figures 2 and 3, respectively.  
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Figure 3: Evaluations on acoustic models built on Dev_WDC. 
 

From Figure 3, it can be seen that: 1) SDPBMM could 
achieve the best performance on Test_WDC with a significant 
relative SER reduction of 14.3% compared with the baseline. 
It outperformed the MLLR adaptation and the pooled 
retraining with relative SER reductions of 2.8% and 10.6%, 
respectively; 2) For Test_MBN, as expected, the best 
performance was achieved by the baseline. However 
SDPBMM and the pooled retraining also showed good 
performance on Putonghua with absolute SER increases of 
0.9% and 0.8% only, respectively. Adaptation method leaded 
to severe performance degradation on Putonghua with an 
absolute SER increase of 13.3%. It is shown statistically that 
SDPBMM can achieve good performance on dialectal 
Chinese without decreasing the performance on Putonghua.   

5.3. Integration of SDPBMM with adaptation 

SDPBMM is primarily proposed to concentrate on addressing 
the issues of phonetic mismatch between dialectal speech and 
Putonghua. Because the adaptation has been an effective 
solution to channel mismatch, it is expected that SDPBMM in 
combination with a certain adaptation method can potentially 
further improve the recognition performance for dialectal 
speech. To verify the assumption, Dev_WDC, was further 
used for adaptation and an acoustic model named AM4 was 
obtained via MLLR adaptation from AM1. An SER of 41.3% 
on Test_WDC was achieved with another relative SER 
reduction of 3.3% compared with AM1. It is shown that 
SDPBMM can act as a complement procedure for adaptation, 
to some extent it can be a front-end component for adaptation. 

5.4. Downsize Gaussian mixtures in SDPBMM 

To deal specifically with the Gaussian mixtures expansion 
problem where the overall number of Gaussian mixtures in 
AM1 was, for example, about 53% more than that in AM0, 
the PDBDM was adopted and a threshold is set to 0.7. The 
resulted acoustic model corresponds to AM5 in Figure 2. The 
results for downsized-SDPBMM are listed in Table 1. 
 

Table 1. Evaluations for downsized-SDPBMM AM5 
 

SER test set 
model Test_MBN Test_WDC 

AM5 31.4% 43.0% 
 

Experimentally, the scale of Gaussian mixtures was 
decreased by an optimal percentage of 30% with a slight SER 
increase of 0.3% absolutely on Test_WDC; meanwhile, there 
was no degradation on Test_MBN .  

6. Conclusion 
In the paper, to make full use of a small development data set 
in dialectal Chinese speech recognition, SDPBMM is 
proposed. To obtain new mixture weights for SDPBMM 
constrained by pronunciation modeling, the distance-based 
pronunciation modeling is proposed specifically based on a 
small amount of dialectal speech data. To deal with Gaussian 
mixture expansion problem, PDBDM is used as a method to 
downsize the scale of Gaussian mixtures in SDPBMM which 
brings almost no degradation in performance. From a series of 
experiments, it can be concluded that the SDPBMM has the 
following advantages: 1) It is a simple but effective acoustic 
modeling method for dialectal speech given only a small 
amount of data; 2) It can make a significant performance 
improvement for dialectal speech recognition with almost no 
degradation for Putonghua recognition; 3) It can work well 
with other existing adaptation methods to further improve the 
performance on dialectal Chinese.  
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