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ABSTRACT 
The previously proposed syllable-synchronous network search 
(SSNS) algorithm plays a very important role in the word 
decoding of the continuous Chinese speech recognition and 
achieves a satisfying performance. Several related key factors 
that may affect the overall word decoding effect are carefully 
studied in this paper, including the perfecting of the vocabulary, 
the big-discount Turing re-estimating of the N-Gram 
probabilities, and the managing of the searching path buffers. 
Based on these discussions, corresponding approaches to 
improve the SSNS algorithm are proposed. Compared to the 
previous version of SSNS algorithm, the new version decreases 
the Chinese character error rate (CCER) in the word decoding 
by 42.1% across a database consisting of a large number of 
testing sentences (syllable strings). 

KEYWORDS: large-vocabulary continuous Chinese speech 
recognition, word decoding, syllable-synchronous network 
search, word segmentation 

1. INTRODUCTION 

A large-vocabulary continuous speech recognition (LVCSR) 
system often consists of two primary parts: the acoustic model 
(AM) and the language model (LM). By the Bayesian rule, the 
aim of recognition is to find the most likelihood word string W* 
that satisfies 
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where A is acoustic signal and W, one possible word string, is 
one output candidate of the AM stage as well as the input of the 
LM stage. P(A|W) is the conditional probability of the utterance 
A given the word string W calculated by AM while P(W) is the 
word string probability calculated by LM. 

For LVCSR in Chinese, it is different. Chinese is a syllabic 
language. A Chinese sentence is a string of Chinese words. Each 
word consists of one or several Chinese characters, and mostly 
each character in a word with definite meaning corresponds to a 
unique Chinese syllable in pronunciation. 

The following three major reasons go against the use of 
Equation (1), i.e., taking words as the common units (output 
units of AM and input units of LM) between AM and LM as in 
western languages.  

Firstly, the homonym and homograph phenomena are common. 
There are just about 400 toneless or 1,300 toned syllables but 
more than 6,700 frequently used characters in Chinese. 
Therefore each syllable (the pronunciation) will be shared by 
several characters (the pictograph). On the other hand, each 
character may correspond to several different syllables 
depending on different word contexts. 

Secondly, although words are basic semantic units the word 
boundaries are hard to determine in a given sentence. A 
multiple-character word can be regarded as a concatenation of 
shorter words recursively. Different boundary assumptions 
sometimes just increases the word segmentation complexity 
when no semantic conflict arises, but sometimes causes semantic 
conflict due to the uncertainty of the word boundaries. This is a 
problem of Chinese word segmentation, or so-called “word 
decoding”. 

Thirdly, for real-world applications there are many kinds of 
accents in the Chinese language even for standard Chinese. For 
each accent, there possibly exists a set of syllable mappings 
between this accent and the standard Chinese. For example, a 
Hong Kong person often pronounces “zhi” as “ji”. 

Because of these factors, choosing words as the common units 
will result in much redundancy in acoustic searching paths. 
Instead, Chinese syllables are taken as the common units and an 
efficient algorithm, named syllable-synchronous network search 
(SSNS) algorithm, was proposed in our previous paper [1]. 

We will first overview the proposed SSNS algorithm in Section 
2, propose some methods to improve it in Section 3, give the 
experimental results in Section 4 and come to the  conclusion in 
Section  5.  

2. SSNS ALGORITHM 

The SSNS algorithm is based on such a two-stage continuous 
Chinese speech recognition structure described by the following 
equation 
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where S  stands for a syllable string as a result from AM stage, 
and C(W) for the concatenation of all syllable strings 
corresponding to every Chinese words in the word string W. This 
idea aims at taking the Chinese syllables instead of words as the 
common units between AM stage and LM stage. 

In this Chinese LVCSR structure, the output of the AM stage is 
the Chinese syllable lattice (CSL). A syllable based word search 
tree (WST) is used to describe the syllable hierarchy of the 
vocabulary (of Chinese words) while the tri-gram probabilities 
are used to reflect the relationship of every successive three 
Chinese words. The SSNS algorithm, via the accumulated tri-
gram probabilities for Chinese words, provides a maximum 
likelihood match between the CSL and the loop WST. 

2.1 CHINESE SYLLABLE LATTICE (CSL) 

The CSL is a kind of representation of the acoustic output 
candidates based on the Chinese syllables. The syllables are the 
common units connecting the acoustic processing stage and the 
language processing stage. 

As previously stated like in Equation (1), our LVCSR uses a 
two-stage Chinese syllable based structure. The CSL, see Figure 
1 as an example, is obtained by the Viterbi search [2] or frame 
synchronous network [3] based acoustic decoding procedure 
among a Syllable Search Tree (SST), whose nodes can be either 

22 Chinese initial plus 38 Chinese finals, or 40 Chinese 
phonemes [4]. 

The CSL should contain the correct path of the uttered sentence 
but it should be as small as possible so as to decrease the load in 
LM stage. Though it is a more important part, we won’t focus on 
it because it is nothing to do with the SSNS algorithm itself. 

2.2 VOCABULARY AND WORD SEARCH TREE 

Because the vocabulary contains the morphology information of 
the Chinese language, how the vocabulary words are chosen and 
how large the vocabulary is are very important. 

In our system, the vocabulary consists of two parts, the first part 
is called the system vocabulary (SVOC) and the second is the 
user vocabulary (UVOC). The design of the SVOC follows the 
following rules: 

(1) the words should not be too long (no longer than 4 
Chinese characters), of course the SVOC should not 
consist of monosyllable words only; 

(2) the compound words should be excluded as possible as 
you can because these words can be segmented into a 
sequence of sub-words that are also the SVOC words 
(but of course these sub-words should not be mainly 
monosyllable words); 

(3) not all 6,700 Chinese characters (mostly monosyllable 
words) are included, only the most frequently used 
monosyllable words are included in the system word set; 
and, 

(4) punctuation marks are treated as special SVOC words. 

 

 

 

wo men 

shi 

zhong 
guo ren wu men 

wo meng 

chi 

zong 

gu reng 

guo wo ren shi er 

CSLSeg1 CSLSeg2 CSLSeg3 CSLSeg4  

FIGURE 1. AN EXAMPLE FOR THE CHINESE SYLLABLE LATTICE (CSL). 

(The original spoken sentence is “wo3 men2 shi4 zhong1 guo2 ren2 (we are Chinese)”.) 

 

Based on the above principles, our system word set is designed 
to include 50,624 Chinese words, where there are 6,201 
monosyllable words (12.3%), 37,976 bi-syllable words (75.0%), 
1,615 tri-syllable words (3.2%) and 4,832 quad-syllable words 
(9.5%). This vocabulary is over two times bigger than our 
previous one [5][1]. 

The UVOC words can be as long as 10 Chinese characters, and 
currently the number is limited only by the memory. 

In order to improve the word decoding efficiency, the vocabulary 
is organized into a syllable-based word search tree (WST) [1][6]. 
It is designed to reflect the relations among all the in-vocabulary 
words so that the redundancy for both the vocabulary storage and 
the searching consumption are reduced. In this tree, all nodes 
except the virtual root node and the leaf nodes are called 
Syllable Nodes, because they each contain the information of a 
syllable of a word. This tree is established recursively by this 
rule: all words whose first n syllables are exactly the same will 



share a unique n-th level Syllable Node and the syllable stored 
in this node is exactly the n-th syllable of these words. The child 
node of the n-th level node (either the root node or any Syllable 
Node) is one possible successive syllable of the current node to 
form the first (n+1) syllables of a word, it can be either an 
Syllable Node (word length exceeding n syllables) or a Leaf 
Node (word length exactly n syllables). A Leaf Node does not 
contain syllable information but the information of the word 
whose corresponding syllable string is exactly the same as the 
string of sequential syllables contained in the corresponding 
Syllable Nodes covered by the route travelling from the root 
node to its parent Syllable Node. Because a Leaf Node has no 
child node, reaching a Leaf Node causes an accumulation of 
word N-Gram probabilities and an extended search from the 
Root Node during the word decoding. Figure 2 is an example of 
WST, where there are only 7 words. 

By travelling through the WST, any word segmentation, i.e. 
word-decoding, for a given word string can be easily covered, for 
example, “ �Ñ  ” can be covered by travelling along Route 
“Root Node→ ‘zhong’ → ‘guo’ → Φ(�Ñ)” (as a single word) 
or along Route “Root Node → ‘zhong’ → Φ (�) → Root Node 
→ ‘guo’ → Φ(Ñ )” (as a concatenation of two words). As 
illustrated in this example, the WST is looped during word 
decoding procedure. 

 

              Root Node
                (Logical)

     zhong            ��         guo

guo        xin     Φ      Φ      jia      Φ    
                   �       ´              Ñ
                   (Middle) (Faithful)     (Country)
 Φ    Φ     Φ                Φ
   �Ñ    ��   ´�               Ñ�
  (China) (Center) (Loyalty)         (Country)

½ÖSyllable Node
ßÖLeaf(Word) Node

FIGURE 2. A PARTIAL WORD SEARCH TREE (WST). 

 

An actual WST is more complicated, for the vocabulary is very 
large and contains many relatively long Chinese words. In such 
a tree the travelling direction is always from the parent node to 
its child node(s), so it can be stored in a linear data structure, 
i.e., an array of nodes. By using a well-designed algorithm, it 
takes only several seconds to establish a WST for 50,000 words, 
and takes almost no time to incrementally establish such a tree 
when users insert or delete user words. 

2.3 N-GRAM BASED LANGUAGE MODELING 

Given a definite Chinese syllable string { }LssS ,,1 �= , there 

would be many Chinese word string candidates due to the 

uncertainty of the Chinese word boundaries. Among these word 
string candidates { }SWCW =)( , there should be only one 

correct word string. We take the word string with most 
likelihood score (MLS) as the final word string corresponding to 
the given syllable string. (The word decoding among the CSL 
will be more complicated.) Assume a word string is 

{ } N
def

N wwwW 11 ,, == � , its MLS is defined as the probability 

of the word string, which is simplified as 
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This is the well-known tri-gram model. In the Chinese language, 
there are about 50K commonly used words. For such a large 
vocabulary, the probability matrix is quite sparse due to the lack 
of training data.  Some tri-grams which might make sense but do 
not occur in the training data are regarded as impossible, a case 
which may degrade the recognition rate greatly. In order to give 
the unseen word combinations reasonable probability estimation, 
we employ a Turing’s method [7] and modify it to be more 
practical one [8]. The modification of Turning’s method greatly 
reduces the perplexity of language model. 

2.4 SYLLABLE-SYNCHRONOUS NETWORK 

SEARCH (SSNS) 

In this section, we will briefly describe the SSNS algorithm. For 
convenience, we will define a data structure named as the search 
path to remember the instantaneous matching information 
between the already-processed partial syllable string and its 
corresponding partial word string. Mainly, each search path 
contains the following fields: 

•  CSLNode – pointer to current node in the CSL; 
•  WSTNode – pointer to current node in the WST; 
•  PartWordString – partial word string already decoded; 

and 
•  LLScore: the accumulated log likelihood N-gram score 

of the partial word string. 
 

The SSNS algorithm has the following steps (there will be some 
practical modifications in implementation). 

STEP 1. INITIALIZATION. 

Creating one search path, with WSTNode pointing to the 
root node of WST, CSLNode pointing to the very beginning 
of the CSL, and PartWordString and LLScore reset. 

STEP 2. FORWARDING ONE SYLLABLE. 

(1) Checking each search path: if the CSLNode is still 
inside the same CSLSeg (as illustrated in Figure 1), it has 
one unique CSL node successor; if the CSLNode just passes 
across the end of the path in the CSLSeg, it takes all the 
starting nodes in each parallel CSL paths of next CSLSeg 
as its CSL node successors. 
(2) Forwarding CSLNode to each of its successors, and one 
new search path is generated for each successor. 



Meanwhile, old search paths are removed. (This is the 
syllable-synchronous forwarding operation in CSL.) 
(3) Forwarding the WSTNode according to the current 
syllable contained in each new-generated search path's 
CSLNode (just updated in Sub-Step (2)): (a) if WSTNode is 
not a leaf node and we can find the current syllable among 
its child nodes, forward it to this node, otherwise remove 
this path; (b) if WSTNode is a leaf node, a new word is 
generated, so we first append this word into the 
PartWordString and update LLScore according to the N-
gram calculation, and then warp the WSTNode back to the 
root so as to perform the (3.a) operation. (This is the 
syllable-synchronous forwarding operation in WST.) 

STEP 3. PRUNING PATH. 

Pruning all those search paths that are less competitive 
(with lower LLScore, can be predicted to be pruned in the 
next forwarding operation, and so on.) 

STEP 4. CHECKING FOR END OF CSL. 

If all paths stop at the end of the CSL go to Step 5, 
otherwise go back to Step 2 for next search. 

STEP 5. FINALIZATION OF THE SEARCH. 

The search path whose WSTNode ends at one WST leaf 
node and who has higher LLScore value is one of the final 
candidates. The PartWordString contains the resulted word 
string. 

The SSNS algorithm together with WST and N-gram based 
language model can easily solve the homonym and word 
segmentation problem in Chinese syllable-to-word conversion of 
the Chinese LVCSR as well as in the character-to-word 
conversion of the Chinese optical character recognition. Its idea 
is also useful in the word segmentation for Chinese sentences. 

2.5 SOLUTION TO ACCENT ROBUSTNESS 

In Chinese, there are many kinds of regional accents all 
over China and overseas even the speakers themselves 
tend to speak in standard Chinese (Mandarin). Figure 3 
shows two examples of accents, where A and B stand for 
two different syllables. Case I is something like the 
different speaker issue, which is easy to be solved via an 
embedded multiple-model (EMM) scheme [9] or context-
dependent modeling techniques in the acoustic processing 
layer. But Case II is possibly Chinese accent specific. In a 
certain accent for Case II, some syllables are mapped into 
quite different syllables (not just similar as in Case I), for 
example, a southern Chinese speaker may pronounce 
syllable ‘zhi’ completely into ‘zi’. So we propose different 
approach to the second case. 

 

A1 A2=B A1 Common A2 

Case I            Case II  

FIGURE 3. TWO KINDS OF ACCENT EXAMPLES IN CHINESE. 

 

The Case II accent problem can not be solved in the acoustic 
layer. Our proposed solution is to apply the concept of the 
Chinese fuzzy syllable set to the SSNS algorithm in the 
language-processing layer.  

For clarification, we define FSS(X), the Fuzzy Syllable Set of a 
syllable X, as a set of syllables that may be pronounced into X in 
a specific regional accent. By using the knowledge of regional 
accents, we can list a group of accent-syllable/initial/final to 
Mandarin-syllable/initial/final mapping pairs as shown in Table 
1 for the user to check/uncheck these options one by one. Once 
the user checks any pairs of fuzzy syllables/initials/finials, the 
fuzzy syllable set generation processor will generate all the 
possible fuzzy syllable pairs. E.g., if “zhi→ji” is checked then 
FSS(“ji”) = {“zhi”, “ji”}; if “z↔zh” is checked then 
FSS(“zhe”)={“zhe”, “ze”}, FSS(“za”) = {“zha”, “za”} and so on. 
The Case II accent problem can be solved by the arc-splitting 
technique in the SSNS algorithm. 

 

TABLE 1. EXAMPLES OF FUZZY SYLLABLE/INITIAL/FINAL MAPPING 

Whole Syllable Initial Final 
ZHI →  JI Z ↔ ZH AN ↔ ANG 
CHI → QI C ↔ CH EN ↔ ENG 
SHI → XI S ↔ SH IN ↔ ING 

WANG ↔ HUANG F ↔ H   
WEN ↔ WENG N ↔ L   
GUO → GUI W ↔ HU   

  Y ← R   

3. IMPROVING SSNS ALGORITHM 

It is obvious that the CSL, the WST and the estimated accuracy 
of the word tri-grams are three key factors in the SSNS 
algorithm that may affect the final performance of a LVCSR 
system. The searching strategy of the SSNS itself is also another 
factor. In this paper, we propose some approaches to improve the 
SSNS algorithm based on the above discussion. 

In this section, the key factors will be discussed in details. The 
improvement methods are also given upon these discussions. 

3.1 PERFECTING OF VOCABULARY 

3.1.1 Size of Vocabulary 
It is obvious that the size of the vocabulary is one of the key 
factors that may affect the performance of the Chinese LVCSR.  



If the size is small the word decoding procedure will be fast and 
the accuracy will be high but the spoken sequence words is 
limited by the small vocabulary, and vice versa. The vocabulary 
can be neither too large nor too small. A best solution is to 
maintain a medium-size vocabulary consisting of most common 
used words with a flexible mechanism so that the users can add 
words freely and easily according to different application 
domains. The SVOC’s Design Rule 2 helps to do this. That is 
why the words in our vocabulary are mostly bi-syllable words. 

3.1.2 Monosyllable Words 

According to the SVOC’s Design Rule 3, we don’t need to 
include all monosyllable words into our vocabulary. This 
perhaps gives rise to a mismatch between the CSL and the 
looped WST when there is a (true) recognized syllable that can 
neither match any monosyllable words nor match the syllable 
context in any multi-syllable words, resulting in the false path 
pruning in the word decoding algorithm. This case may be met 
frequently when the person and/or place names are spoken in the 
sentences. So the deletion of monosyllable words from the 
vocabulary should not only be based on the occurrence frequency 
unconditionally. 

Our solution to this problem is the concept of the Filler Syllable. 

We follow the below steps to do the special processing over the 
monosyllables words. 

(1) List all the 418 Chinese syllables; 
(2) For each syllable find a corresponding most frequently 

used monosyllable words; 
(3) All the 418 monosyllable words can be divided into 

four types. Type (0) Normal monosyllable words: 
neither the Chinese characters (Hanzis) nor the 
syllables of these words have their particularity. There 
are 400 normal monosyllable words. Type (1) Filler 
monosyllable words: these syllables can be acoustically 
modeled but the corresponding characters can not be 
found in the GB2312 character set. There are 10 such 
words. Type (2) Acoustically unseen monosyllable 
words: these syllables are difficult or even impossible 
to be modeled acoustically, and they will never appear 
in the syllable lattice in the acoustic layer. There is no 
need for all the three such words to present in the 
vocabulary. Type (3) Spoken monosyllable words: these 
syllables have more reasons to present in the 
vocabulary because they are frequently used in the 
spoken language. They can be regarded as special 
syllables. These syllables include ‘dei3’ (‘k’, to need, 
to have to, must), ‘lia3’ (‘½’, two/both, not many), 
‘shei2’ (an alternative pronunciation for ‘Õ shui2’, 
who), ‘tei1’ (‘ ¦ ’), and ‘zhei4’ (an alternative 
pronunciation for ‘ zhe4’, this). 

 

Except the normal monosyllable words, most of them have no 
homophonic monosyllable words. 

Type (2) words are unseen in the vocabulary. Type (0) and Type 
(3) words are included in the vocabulary. Type (1) words, whose 

corresponding syllables are called filler syllables, are included 
in the vocabulary without displayable Chinese characters. They 
are used to prevent the false pruning of the paths in the SSNS 
word decoding procedure, and they will be deleted from the final 
sentences. 

3.1.3 Polyphonic Words 

The polyphonic-word phenomenon is an issue that must be faced 
because there are many polyphonic words (especially 
monosyllable words) in Chinese language. 

In our N-Gram estimation, we can see only the words’ Chinese 
character strings (or word texts, word forms) instead of the 
words’ syllable strings (pronunciations). No matter how many 
pronunciations a word has the word (or word gram) occurrence 
times are difficult to be distributed to these different 
pronunciations of the word. In this situation, the statistics is 
based on the word form (i.e. word text). 

There is an almost irrealizable solution, which is to label all 
words in the training materials with their corresponding syllable 
strings (pronunciations) according to the sentence context so that 
all polyphonic words can be distinguished by their pronunciation. 
But the labeling would be extremely time-consuming. 

It is difficult to find a realizable and satisfying solution to this 
problem but it is a must to solve it. As a matter of fact, there is 
no need to do the labeling. The aim here is only to offer a 
possible pronunciation-to-text mapping so that the paths 
including these words will not be pruned when their alternative 
pronunciations are present. A sub-optimal method follows these 
steps. (1) When counting the occurrence of words (word grams) 
to estimate the N-Gram probabilities, treating the words that 
share the same Chinese character strings (word text) as one 
same word with a unique word ID by which the N-Gram 
probabilities are accessed. (2) When building the WST, treating 
words that share the same word text but are different in 
pronunciation as different words and adding them all to this 
WST. (3) Assigning the same word ID to all these polyphonic 
words with the same word text so that they share the same N-
Gram probabilities. 

As a matter of fact, in this method, all the occurrence counts of a 
word with different pronunciations are summed up and assigned 
to the representative word. So it is not perfect but practical. 

3.2 RE-ESTIMATION OF N-GRAM PROBABILITIES 

Which paths should be kept and which should be pruned when 
the CSL is being matched with the loop WST are determined by 
the Accumulated Log Likelihood N-Gram Probability (referred 
to as ALLP score from this point forward) of each path. The 
bigger ALLP score a path has, the more possible it will be kept. 
ALLP score is accumulated at word boundaries, that is to say, 
when the CSL is just arriving at any leaf in the WST. 

Let us denote the word sequence nm ww ,,�  as n
mw . Assume the 

word sequence already decoded and stored in a path is kw1 , then 

the ALLP score of this path is 
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( ) ( )11 wPwUni = . This is the well-known tri-gram model. In the 

Chinese language, there are about 50~60K commonly used 
words. For such a large vocabulary, the probability estimate 
matrix is quite sparse due to the sparseness of the training data. 
In order to give every unseen word sequence a reasonable 
probability estimate, we employ a Turing’s method [7] and 
modify it to be a more practical one [8]. The modification of 
Turing’s method greatly reduces the perplexity of language 
model. The language model based on this method is the baseline 
in this paper. 

For a vocabulary of 50~60K words, the tri-gram computation 
(either directly accessed or re-estimated by means of Turing’s 
method) takes a very long time and makes the LVCSR not in 
real-time. So a more practical and efficient method is proposed 
in this paper. In consideration of the sparseness of the tri-gram 

probability matrix, if the number of times a tri-gram 3
1w  

occurred in the training text )( 3
1wc  is not greater than a constant 

5=k , we will re-estimate its occurrence probability as a 
“discounting” of that of the corresponding lower level bi-gram 

3
2w . The discount coefficient )(' 2

1wdr  related to this tri-gram is 

pre-calculated according to the distribution of all the counts that 
are less than or equal to k . The idea can be described by 
Equations (5) and (6). 
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It is referred to as a Big-Discount re-estimation because those 
grams with occurrence counts not greater than a predefined big 
constant 5=k  are regarded as unseen ones. It not only makes 
the word decoding procedure much faster, but also improves the 
decoding accuracy. The details of this Big-Discount Turing’s 
method will be present in other paper. 

3.3 SEARCHING ALGORITHM 

We refer to the word decoding procedure as a search in the CSL. 
The SSNS algorithm makes the CSL travel in the loop WST 
circularly and at last gives the word decoding sequence with the 
maximum ALLP score as the final decoded sentence[1]. It is very 
similar to the frame synchronous network search (FSNS) 
algorithm used for the state decoding in the acoustic stage[3]. In 
this section, several improvements will be made to the searching 
algorithm. 

3.3.1 Number of Paths 

Paths are used to remember the current matching status between 
the CSL and the loop WST when forwarding the CSL among the 
WST syllable-by-syllable. If the number of paths is large enough, 
the SSNS algorithm may almost be able to perform the full 
search and the word decoding result will be near to being 
optimal but time-consuming, otherwise the result will be less 
time-consuming but (a little bit) far from being optimal. 

The number should be suitable. A compromise should be made 
to balance the efficiency and the result. 

3.3.2 Managing the Path Buffers 

Unlike in the FSNS procedure where the acoustic matching 
probabilities are accumulated at each frame, in the SSNS 
procedure the ALLP score (of course of words) are not always 
accumulated at each syllable but only at the leaf nodes (or in the 
other words, at word boundaries). The situation is quite different 
from that in the FSNS algorithm. This results in the unfair 
probability comparisons among paths. 

Here is an example to show such an inequality. 

Given a syllable string as a degenerated CSL to be decoded into 
word sequence, say “wai dian ping shu cheng zhong guo ren min 
zu yi shi qiang (ê	�ÄÄ�Ñ�å£ã��)”, two partial 
paths are as follows (the item on the right of ‘⇒ ’ stands for the 
next syllables/words to be matched): 

(1) ‘wai’ → ‘dian’ → Φ (ê	) → ‘ping’ → ‘shu’ → Φ (�
Ä) → ‘cheng’ → Φ (Ä) → ‘zhong’ → ‘guo’ →  ‘ren’ 
→ ‘min’ ⇒  Φ(�Ñ�å) + ‘zu’ … 

(2) ‘wai’ → ‘dian’ → Φ (ê	) → ‘ping’ → ‘shu’ → Φ (�
Ä) → ‘cheng’ → Φ (Ä)→ ‘zhong’ → ‘guo’ → ‘ren’ → 
Φ (�Ñ�) → ‘min’ ⇒  ‘zu’ … 

The ALLP scores for Paths 1 and 2 are 

  ),,()1( CBALnTriALLP = , and 

  ),,(),,()2( ECBLnTriCBALnTriALLP +=  

respectively, where A=‘ê	’, B=‘�Ä’, C=‘Ä’, D=‘�Ñ�
å’, E= ‘�Ñ�’. It is obvious that )2()1( ALLPALLP > . But 
Path 1 may lead to a wrong result because paths with lower 
ALLP scores take the risk to be pruned and the probability 
accumulation takes place at word boundaries gives higher 
priority to the long words in the path sorting. 

A Dual-Path-Buffer scheme offers a good solution. In this 
scheme, one path buffer is used to store those sorted paths that 
end at word boundaries and another is used for those sorted 
paths that is still wandering inside words. The first buffer is 
called the Complete-Word Path Buffer (CWPB) and the latter 
the Partial-Word Path Buffer (PWPB). Paths in two buffers are 
compared and pruned individually. 



4. EXPERIMENTAL RESULTS 

4.1 EXPERIMENTAL CONDITION 

In our experiments, the size of system vocabulary is 50,624 
Chinese words of length ranging from 1 to 4 Chinese characters 
(syllables). The N-Gram statistics is also based on such a large 
vocabulary.   

In order to evaluate the performance of the word decoding only, 
the testing data are sentences with their corresponding unique 
syllable strings labeled. That is to say, each time the input CSL 
is degenerated into an exact syllable string. 

There are 1,559 sentences consisting of totally 22,083 Chinese 
syllables (characters). These syllable strings form the testing bed. 

The accuracy is the percentage of how many correct (i.e. 
matched) words out of the original words are outputted. 

4.2 EXPERIMENTAL RESULTS 

In this section, we give the results of our step-by-step 
incremental experiments. 

4.2.1 Baseline & Big-Discount Re-estimation 

The baseline experiment is conditioned on (1) the original SSNS 
algorithm and (2) the standard Turing’s tri-gram re-estimation 
[10][8]. Table 2 lists the experimental result of the baseline 
experiment as well as the result of the experiment where the 
Big-Discount Turing Re-estimation is adopted where the size of 
the path buffer is 20 for both experiments. The experiments are 
done under the Pentium II 450MHz PCs. 

TABLE 2. BASELINE AND BIG-DISCOUNT RE-ESTIMATION 

EXPERIMENTS 

Experiment Accuracy Processing Speed 
(syllables per second) 

Baseline 93.49% 12 
Big-Discount 93.90% 75 

 

4.2.2 Dual-Path-Buffer Scheme 
This experiment is based on the Big-Discount Turing’s Re-
estimation and designed to test the effect of the use of the dual 
path buffer scheme. We distribute the original 20 paths into two 
buffers, one is for the complete-word path buffer (CWPB) and 
the other is for the partial-word path buffer (PWPB). The total 
size of the two buffers is the same as that in the original 
experiments, i.e 20. Table 3 gives the results. Obviously any of 
the three kinds of path distributions can achieve a better word 
decoding performance, but the path distribution of equal buffer 
sizes reaches the highest accuracy. 

In this experiment, the total buffer size remains the same, 
therefore any kind of Dual-Path-Buffer scheme does not result in 
extra time complexity. 

 

TABLE 3. DUAL-PATH-BUFFER EXPERIMENT 

Size of Buffer (# of paths in buffer) 
CWPB PWPB 

Accuracy 

10 10 95.41% 
15 5 95.38% 
5 15 95.16% 

 

4.2.3 Perfecting the Vocabulary 

According to the discussion in Section 2.2, we consider the filler 
monosyllable words so that the least frequently used 
syllables/characters (often seen in person/place names) can be 
matched without false pruning of paths during the SSNS 
procedure. We also add polyphonic words to the vocabulary so 
that different pronunciations of words can be considered. These 
meticulous steps improve the overall word decoding accuracy, 
see Table 4 for the result. 

Obviously, although we add filler monosyllable words and 
polyphonic words to the vocabulary, the WST data structure 
ensure that the size of WST is not enlarged too much, and the 
added parts can be ignored if considered in percentage. This 
makes no more time consumption in SSNS search. 

TABLE 4. VOCABULARY PERFECTING EXPERIMENT 

Perfecting the Vocabulary: Accuracy 
Using filler monosyllable words and 

polyphonic words 
96.23% 

 

5. CONCLUSION 

In closing, we come to the following conclusions: 

(1) At least one corresponding monosyllable word of each 
Chinese syllable should be kept in the vocabulary, if the 
vocabulary can not include all possible words, so as to 
ensure those paths that may stop by such syllables will not 
be falsely pruned. If there is no such Chinese character 
(namely unseen in computer), the filler syllables should be 
used to filter these least frequently used monosyllable 
words and to ensure such paths to forward smoothly. 

(2) Before polyphonic words can be considered in the statistics 
of the N-Gram probabilities, these words should be added 
to the word search tree and share the same gram 
probabilities. 

(3) The Big-Discount Turing’s Method can be used to speed up 
the word decoding procedure and to improve the accuracy. 
In this method proposed in this paper, the tri-grams with 
observed occurrence in the sample text less than a given big 
constant are regarded as “unseen”, and the tri-gram 
probability estimates are discounted from the corresponding 
lower level bi-gram probabilities. 

(4) During the syllable synchronous network search procedure, 
those paths that are just travelling by the word boundaries 
and those paths that is travelling inside the words should be 



compared and pruned individually in two buffers (referred 
to as Dual-Path-Buffer in this paper). This can make the 
path pruning a little bit far from being unfair where the long 
words are given higher priority to be kept. Because the total 
buffer size remains the same, this modification will not 
cause extra loads in the search. 

The above means are proved helpful to improve the overall 
SSNS performance, and the experimental results show that the 
Chinese character error rate (CCER) in the word decoding can 
be decreased by 42.1%. 
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