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ABSTRACT 

 
In this paper, a session variability subspace projection 
（SVSP）based model compensation method for speaker 
verification is proposed. During the training phase the 
session variability is removed from speaker models by 
projection, while during the testing phase the session 
variability in a test utterance is used to compensate speaker 
models. Finally, the compensated speaker models and UBM 
are used to recognize the identity of the test utterance. 
Compared with the conventional GMM-UBM system, the 
relative equal error rate reduction of SVSP is 16.2% on the 
NIST 2006 single-side one conversation training, single-
side one conversation test. 
 

Index Terms— Speaker recognition 
 

1. INTRODUCTION 
 
Though research in speaker recognition has made a great 
progress, mismatch caused by session variability is still a 
big factor leading to recognition errors. Session variability 
includes phenomena such as transmission channel effects, 
transducer characteristics, background noise, and intra-
speaker variability. 

Lots of methods have been proposed to solve this issue 
which can be categorized into three domains: feature 
domain, model domain and score domain. In the feature 
domain, typical methods are cepstral mean subtraction [1], 
RASTA filter [2], feature warping [3] and feature mapping 
[4], etc.; In the model domain, typical methods are speaker 
model synthesis [5], factor analysis [6,7] and nuisance 
attribute projection (NAP) [8], etc.; In the score domain, 
typical methods are Hnorm [9], Tnorm [10] and Znorm [11], 
etc.. 

Factor analysis and NAP are two recently proposed 
and now very popular methods that have provided 
impressive reductions in verification error rates [6-8]. 
Though NAP greatly reduces the complex of session 
variability computation compared with factor analysis, it 
cannot be used for GMM-UBM system directly. In this 
paper, the idea of projection in NAP and the idea of model 

compensation in factor analysis will be combined together 
to form a new method called session variability subspace 
projection (SVSP) based model compensation. The main 
idea of SVSP is to use the session variability in a test 
utterance to compensate speaker models whose session 
variability has already been removed during the training 
phase. On the one hand, it simplifies the computation of 
session variability by projection; on the other hand, it can be 
easily used for GMM-UBM systems. 

This paper is organized as follows. The SVSP based 
model compensation method will be presented in Section 2. 
In Section 3, experiments and results will be described. 
Finally, conclusions and perspectives will be given in 
Section 4. 
 

2. SVSP BASED MODEL COMPENSATION 
 
The basic idea of SVSP can be easily seen from Figure 1 
which consists of four steps: estimation of session 
variability subspace, speaker model training, speaker model 
compensation and test utterance verification. We will detail 
them in the following sections. 
 
2.1 Estimation of Session Variability Subspace 
 
Given a speaker’s Gaussian mixture model, a GMM 
supervector can be formed by concatenating the GMM 
component mean vectors [6-8]. The supervector is a sum of 
a session-independent supervector with an additional 
session-dependent supervector [8], which can be described 
as 

( ) ( ) ( ), ,= +M s i m s Uz s i .                      (1) 
In equation (1), the GMM supervector M(s, i) is dependent 
of the speaker s and the session i. z(s, i) is the latent factor 
which is assumed to belong to a standard normal 
distribution. U is a low-rank matrix from the constrained 
session variability subspace of dimension RC. The 
computation method of U can be found in [8]. Note that the 
eigenvectors used to form the U matrix are orthogonal. So 
the derived projection matrix P can be written as 

= tP UU  and = =tPU UU U U .                  (2) 
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2.2 Speaker Model Training 
 
Given a speaker utterance, the speaker model is trained from 
UBM by the conventional MAP adaptation [12] only with 
mean vectors changed. Then a GMM supervector M(s, i) is 
formed from this speaker model. After that, the session 
variability is removed from the GMM supervector by 
projection, which can be written as 

( ) ( ) ( )
( ) ( )

,′ = −

= −

M s I P M s i

I P m s
.                           (3) 

For a UBM, the derived supervector can be viewed as  
( ) =M ubm m                                              (4) 

where m is a speaker-independent supervector. Similarly, 
the session variability is also removed from the UBM 
supervector, which can be written as 

 ( ) ( )′ = −M ubm I P m                                  (5) 
 
2.3 Speaker Model Compensation 
 
Given a test utterance j by speaker t, firstly a speaker model 
is adapted from UBM by the conventional MAP method, 
then a GMM supervector M(t, j) is formed from it. After 
that, the session variability in the test utterance is calculated 
by 

( ) ( ) ( ) ( ), , ,= = +C t j PM t j Pm t Uz t j .           (6) 

Finally, the speaker model ( )′M s can be compensated 
with C(t, j) as  

( ) ( ) ( ) ( ) ( ), ,′ = − + +M s j I P m s Pm t Uz t j .     (7) 

Here, ( ),′M s j  can be regarded as the model of 
speaker s in the test utterance’s session condition. 

Similarly, the UBM ( )′M ubm  can be compensated 
with C(t, j) as 

( ) ( ) ( ) ( ), ,= − + +M ubm j I P m Pm t Uz t j             (8) 
where M(ubm, j) can be regarded as the UBM in the test 
utterance’s session condition. 
 
2.4 Test Utterance Verification 
 
As showed in Section 2.3, the compensated speaker model 
and UBM contain the same session variability as the test 
utterance. So the top-N log-likelihood ratio scoring [13], 
which is the basis of most current text-independent speaker 
verification systems, can be used to verify the identity of the 
test utterance. In the experiments of this paper, N is set to 4. 

Given a sequence of features {fl, l=1,2,⋯, L} and the 
derived GMM supervector M(t, j), the l-th frame of feature fl, 
which is closest to the k-th mixture component in the GMM 
supervector, can be expressed as 

( ) ( ),= + + Σ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦l kk k
f m t Uz t j d .               (9) 

where [.]k means the k-th mixture component in a GMM 
supervector, Σk is the covariance matrix of k-th mixture 
component, and d is a variant belonging to a standard 
normal distribution. The score of fl on the k-th mixture 
component of the GMM supervector  M(s, i) is 
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score computation  
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Fig.1. The schematic diagram of SVSP based model compensation for GMM-UBM systems. 
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which mainly depends on  

( )( ) ( )( )1, ,−− Σ −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
t

l k lk k
f M s i f M s i .          (11) 

In equation (10), F is the dimension of the mixture 
component. In SVSP, the M(s, i) is replaced with the 
compensated speaker model ( ),′M s j , so equation (11) can 
be rewritten as 

( ) ( ) ( )( )( )
( ) ( ) ( )( )( )1−

⎡ ⎤− − + Σ⎣ ⎦

⎡ ⎤⋅Σ − − + Σ⎣ ⎦

t

kk

k kk

I P m t m s d

I P m t m s d
.             (12) 

As showed in equation (12), the session variability 
between a test utterance and a compensated speaker model 
is removed. Though there introduces a new item (I-P), it 
appears in the scoring procedure of every compensated 
speaker model and hence may not decrease the system’s 
performance. Experimental results in Section 3 show that 
this item does not decrease the performance of a speaker 
verification system, while compensating the speaker 
models with session variability in a test utterance really 
improves the performance of a speaker verification system. 
 

3. EXPERIMENTS AND RESULTS 
 
The experiments were performed on the 2006 NIST speaker 
recognition (SRE) corpus [14] and focused on the single-
side one conversation training, single-side one conversation 
test. 

The features were extracted from speech signal at a 
frame size of 20 milliseconds every 10 milliseconds. The 
pre-emphasis factor was set to 0.97. Hamming windowing 
was applied to each pre-emphasized frame. After that, a 
256-point FFT was calculated for each frame and a bank of 
30 triangular Mel filters was used. Finally DCT was 
performed and 16-dimensional MFCC coefficients with the 
delta coefficients were obtained for each frame. After that, 
an energy based voice active detection was applied to 
discard low-energy frames. To mitigate channel effects, 
mean and variance normalization was applied to the 
extracted features. 

Each gender-dependent UBM consisted of 1,024 
mixture components and was trained from NIST SRE04. 
For the MAP training, only mean vectors were adapted with 
a relevance factor of 16. The data used for Tnorm were 
from NIST SRE05, which consisted of 368 females and 245 
males. The data used for computing the U matrix were from 
the single-side 8 conversation training in NIST SRE05, 
which consisted of 295 females and 202 males. 

The baseline system is a conventional GMM-UBM 
based speaker verification system. 
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Fig.2. The DET plot for different test utterance lengths 
comparing baseline and SVSP. 
 
3.1. Session Variability Subspace Size 
 
An important part of SVSP is the size of session variability 
subspace which will affect the accuracy of the estimation of 
session variability. The results of different session 
variability subspace sizes are given in Table 1 where RC is 
the size of the session variability subspace. The system used 
in this experiment was based on SVSP with Tnorm. 
Experimental results show that the system achieves the best 
DCF and EER when RC = 50. 
 
Table 1. Minimum DCF and EER results for different 
session variability subspace sizes. 
 

RC DCF(×10-2) EER (%) 

10 3.9 10.8 

30 3.7 10.1 

50 3.6 9.3 

100 3.8 11.2 

 
3.2 Test Utterance Length 
 
Another important part of SVSP is the length of test 
utterance, which will also affect the accuracy of the 
estimation of session variability. Figure 2 shows the impact 
of reducing the test utterance length for SVSP and the 
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baseline system with a test utterance length of 5 seconds, 10 
seconds, 20 seconds, and all of active speech. Experimental 
results indicate that at least 10 seconds of speech is required 
to estimate the session variability, while 20 seconds tests 
produce a better result with about 9.9% of relative EER 
reduction compared with the baseline system. With a longer 
test utterance, for example the full length, about 23.4% of 
relative reduction for DCF and 16.2% relative reduction for 
EER can be achieved. Similar results can be found in [7].  
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Fig.3. The DET plot for the NIST 2006 single-side one 
conversation training, single-side one conversation test 
comparing baseline and SVSP. 
  
3.3 Comparison of different methods 
 
Figure 3 shows the performance comparison of four systems: 
baseline, baseline with Tnorm, SVSP, and SVSP with 
Tnorm. Compared with the baseline, SVSP achieves a 
relative reduction of 15.4% for EER and 9.4% for DCF. 
With Tnorm both, the relative reduction is 16.2% for EER 
and 23.4% for DCF. 
 

4. CONCLUSIONS 
 
The results presented in this paper show the effectiveness of 
SVSP. This method simplifies the computation of session 
variability by projecting a GMM supervector onto the 
session variability subspace. During the training phase it 
removes the session variability from speaker models while 
during the testing phase it compensates speaker models with 
session variability estimated from a test utterance. After 
these processing, the speaker models, the UBM and the test 
utterance are in the same session condition. 

Compared with the results of factor analysis and NAP 
methods in NIST 2006 SRE, SVSP seems not as effective as 
these two methods. This may be caused by the item (I-P) in 
equation (12) which may remove some useful speaker-
dependent information from a speaker model. Further 
investigation on this issue will be carried out in the future. 
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