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Abstract
Acoustic feature similarity between search results has been shown
to be very helpful for the task of spoken term detection (STD).
A graph-based re-ranking approach for STD has been proposed
based on the concept that search results, which are acoustically
similar to other results with higher confidence scores, should have
higher scores themselves. In this approach, the similarity between
all search results of a given term are considered as a graph, and
the confidence scores of the search results propagate through this
graph. Since this approach can improve STD results without any
additional labelled data, it is especially suitable for STD on lan-
guages with limited amounts of annotated data. However, its per-
formance has not been widely studied on benchmark corpora. In
this paper, we investigate the effectiveness of the graph-based re-
ranking approach on limited language data from the IARPA Ba-
bel program. Experiments on the low-resource languages, As-
samese, Bengali and Lao, show that graph-based re-ranking im-
proves STD systems using fuzzy matching, and lattices based on
different kinds of units including words, subwords, and hybrids.
Index Terms: Random Walk, Spoken Term Detection

1. Introduction
This paper focuses on spoken term detection (STD) [1, 2], in
which the query is a keyword1 in text form, and the goal is to
return the time span of all occurrences of the keyword in a spoken
archive. In word-based STD, two processing stages are used [3, 4].
The audio content is first transcribed into lattices, and when a user
enters a keyword, the STD system searches through the lattices,
and returns a list of time spans hypothesized to be the keyword.
Based on this approach, the retrieval performance is highly de-
pendent on the ASR output quality, so it works well when the
recognition accuracy is high, but becomes less adequate for re-
trieving spoken archives produced in languages without sufficient
resources for training a high quality ASR system [5].

Because different instances of a given keyword will have sim-
ilar pronunciations, and thus similar acoustic feature sequences,
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1Here a keyword can refer to a single word or a sequence of words.
This definition is used in the Babel program [2].

an STD system can augment ASR-based retrieval performance
by exploiting acoustic feature similarity between the time spans
hypothesized to be the same keyword [6, 7, 8]. Graph-based re-
ranking is one way to realize this idea [9, 10, 11, 12, 13, 14]. In
this approach, a graph is constructed for the hypothesized regions
of each keyword retrieved in the first pass, in which each node is a
hypothesized region, and the edges represent acoustic feature sim-
ilarity between different regions. Graph re-ranking is based on the
concept that a hypothesized region that is strongly connected to
other regions with high scores on the graph should have a higher
probability of being correct. Thus, in graph-based re-ranking, con-
fidence scores for hypothesized regions propagate over the graph
through the edges. In previous research [12], a semi-supervised
graph-based re-ranking approach using annotated data has shown
good improvements in the IARPA Babel program. However, this
approach cannot be applied to keywords that do not occur in the
training set. Therefore, for low-resource languages, a fully unsu-
pervised graph-based re-ranking method may be more preferred
than the semi-supervised version.

In this paper, we investigate the effectiveness of an unsuper-
vised graph-based re-ranking approach on data from limited lan-
guage packs of the IARPA Babel program. The experiments on
the low-resource languages, Assamese, Bengali and Lao, show
that the unsupervised graph-based re-ranking approach improves
STD systems using fuzzy matching, and lattices based on differ-
ent kinds of units including word, subwords, and word/subword
hybrids. The rest of this paper is organized as follows. In Section
2, we review the unsupervised graph-based re-ranking approach.
In Section 3, we present the details of our STD system used in the
IARPA Babel program. We describe our experimental setup and
results in Section 4. Finally, we conclude in Section 5.

2. Unsupervised Graph-based Re-ranking
using Acoustic Feature Similarity

In this section, we review unsupervised graph-based re-
ranking [10, 9]. Given a keyword, a STD system first searches
through a spoken archive, returning a set of time spans x that are
hypothesized to be the keyword. Each hypothesized region x has
a confidence scoreC(x) that is usually the posterior probability of
the keyword, as measured from a lattice [4]. For each keyword, a
graph is constructed from the first-pass keyword hit list, as shown
in Fig 1, in which each node represents a hypothesized region x
of the keyword, and the hypothesized regions that are acoustically
similar are connected. The acoustic feature similarity S(x, x′) be-
tween hypothesized regions x and x′ is defined as

S(x, x′) = 1− d(x, x′)− dmin

dmax − dmin
, (1)
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where d(x, x′) is the DTW distance between x and x′, and dmax

and dmin are the largest and smallest values of d(x, x′) for all pairs
of regions in the first-pass hit list. Eq. 1 normalizes the DTW dis-
tance d(x, x′), and transforms it into the similarity between 0 and
1. The hypothesized regions x and x′ are connected if x is among
the K-nearest neighbors of x′ (based on S(x, x′)), and if x′ is
among the K-nearest neighbors of x. If x and x′ are connected,
S(x, x′) would be the weight of the edge between them. After the
graph is constructed, a new set of graph-based confidence scores
G(x) is obtained, via score propagation on the graph, which can
be expressed as

G(x) = (1− α)C(x) + α
∑

x′∈N(x)

G(x′)Ŝ(x′, x), (2)

where C(x) is the original confidence score, α is an interpolation
weight between 0 and 1, N(x) is the set of all hypothesized re-
gions connected to x, and x′ is a node in N(x). Ŝ(x′, x) is the
normalized edge weight S(x′, x) over all edges connected to node
x′ on the graph:

Ŝ(x′, x) =
S(x′, x)∑

x′′∈N(x′) S(x
′, x′′)

, (3)

whereN(x′) is the set of hypothesized regions connected to x′. In
Eq. 2, the graph-based scoreG(x) depends on two factors interpo-
lated by α: the original confidence score C(x) from lattices (the
first term on the right hand side of Eq. 2, and score propagation
over the graph from all nodes x′ connected with x weighted by
Ŝ(x′, x) (the second term on the right hand side). In other words,
x will have a large graph-based score G(x), or a high confidence
based on the graph structure, under the following two conditions.
Either x is confident to be a keyword from the ASR system (with
high C(x)), or x is acoustically similar to other hypothesized re-
gions x′ which are confident to be the keyword based on the graph
structure (with high G(x′)). Random walk theory guarantees that
a unique set of G(x) satisfying Eq. 2 can be found [15]. Finally,
G(x) is combined with C(x) to produce new confidence scores
G′(x) for evaluation,

G′(x) = C(x)1−δG(x)δ, (4)

where δ is a parameter between 0 and 1.

Figure 1: The graph for each keyword. Each node represents a
hypothesized region of the keyword, and the hypothesized regions
that are acoustically similar are connected.

3. Spoken Term Detection (STD) System
Our STD system is described in this section. In Section 3.1, we
describe the corpora used, and the ASR system used to gener-
ate the lattices. The lattices could consist of words or subword
units, as will be described in Section 3.2. In Section 3.3, we de-
scribe how the STD system searches through these different lat-
tices, and generates sets of hypothesized regions. The hypothe-
sized regions from different lattices are individually re-ranked by
the graph-based approach in Section 2, producing the graph-based
confidence scores in Eq. 4. The final results were obtained by
merging the overlapped hypothesized regions from different lat-
tices, and summing their weighted graph-based scores to produce
the final confidence scores [16].

3.1. Data and Recognition Systems

The audio corpora that we used in our research were from the lim-
ited language pack condition of the IARPA Babel program. The
recognizers were trained using the Kaldi ASR toolkit [17]. The
acoustic features used in speech recognition were tandem features
consisting of 13 dimensional speaker-adapted PLP features and
stacked Deep Neural Network (DNN) bottleneck features. The
stacked DNN bottleneck architecture is a concatenation of two
DNNs, where the bottleneck outputs of the first DNN are used
as the inputs for the second DNN. Speaker adaptation was also
applied to the outputs of the first DNN before feeding it to the sec-
ond DNN [18]. HMMs were used for acoustic modeling, and dis-
criminative training was done using Minimum Bayes risk (MBR)
criterion [19]. The standard Appen lexicons were used, and the
language models were created from training data transcripts.

3.2. Generating Subword-based Lattices

In order to address out-of-vocabulary (OOV) terms, word lattices
and subword lattices were computed. Since it has been found
that integrating the results from lattices based on different kinds
of subword units outperforms individual lattices [20, 21, 22], dif-
ferent kinds of subword-based lattices were investigated.

• Syllable: Because the phoneme sequence of each syllable,
and the mapping between each word and its corresponding
syllable sequences were known from the Babel Appen lex-
icons, a lexicon composed of syllables was directly avail-
able. A language model composed of syllable n-grams was
trained from transcripts of the training data by transform-
ing the words into syllable sequences. With the syllable-
based lexicon and language model, lattices whose hypothe-
ses were syllables could be generated.

• Word-Syllable Hybrid: To generate lattices composed of
both word and syllable hypotheses, the word lexicon and
syllable lexicon were merged to form a word-syllable hy-
brid lexicon. A hybrid language model was trained by con-
catenating the conventional word-based transcripts of the
training data with a second copy that contained both words
and syllable sequences. To ensure that the language model
had seen n-grams that include transitions between words
and syllables, half of the words in the second copy were
randomly selected to be transformed into syllables. The
original transcripts and the two copies were used together
to train the hybrid language model.

• Morpheme: To generate morpheme-based lattices, we em-
ployed Morfessor [23, 24], a language-agnostic unsuper-
vised system, to do the morphological segmentation. Given
the word lexicon as training data, it derived a model which
can segment a word into a morpheme sequence. We used
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the model to segment all the words in the transcripts of the
training data into morphemes. The resulting morphemes
were used to create a morpheme lexicon, and the data were
used to train a morpheme language model. Pronunciations
for morphemes that happened to be a word were extracted
directly from the word lexicon. To estimate the pronun-
ciations of the remaining morphemes, we used Sequitur
grapheme-to-phoneme (G2P) converter [25] to train a G2P
model from the word lexicon, and used the model to esti-
mate the pronunciations of the morphemes which did not
happen to be a word. Since G2P is imperfect, we generated
M -best pronunciations for each morpheme. Each pronun-
ciation had a weight from the G2P model representing the
confidence of correctness, and the weights were normal-
ized such that the summation of the weights of the M pro-
nunciations of a morpheme would be one. All M possible
pronunciations of a morpheme and their weights were in-
cluded in the morpheme lexicon for generating lattices.

• Word-Morpheme Hybrid: To generate word-morpheme hy-
brid lattices, a word-morpheme hybrid lexicon was ob-
tained by merging a morpheme and a word lexicon, and a
word-morpheme hybrid language model was trained in the
same manner as the word-syllable hybrid language model.

• Phoneme: Three sets of phoneme-based lattices were ob-
tained in different ways. One set of phoneme-based lat-
tices was generated directly using a phoneme lexicon and
language model composed of phoneme n-grams. The other
two sets were transformations of the syllable and mor-
pheme lattices by mapping each syllable or morpheme into
its corresponding phoneme sequence.

3.3. Search

In Section 3.3.1, the fuzzy matching [26, 27, 28, 29, 30, 31, 32, 33]
used in our system is described. The details of searching different
kinds of lattices are described in Section 3.3.2.

3.3.1. Fuzzy Matching

Fuzzy matching is used in spoken term detection to compensate
for inevitable ASR errors that will result in missing terms in the
word or subword lattices. Requiring an exact match of a multi-
word sequence will result in a low recall rate. To address this
issue, the time spans of the word sequences which do not match
exactly, but are lexically similar to the keyword should also be
returned. In the actual implementation, our STD system gener-
ates a set of word sequences by substituting and inserting words
into the input keyword2, and uses the set of word sequences to
search the word lattices. The confidence scores of the hypothe-
ses found by these word sequences are penalized by multiplying
a factor λ smaller than one. For a word sequence obtained by A
substitutions, and B insertions from the input keyword, λ would
be λsA × λiB , where λs and λi were the respective penalties for
substitution and insertion. The search of the word sequence set
was efficiently implemented by WFST-based indexing [34]. In
our system, there was no limitation on the numbers of substitu-
tions and insertions, but a substitution and an insertion were not
allowed to happen consecutively3, and fuzzy matching was not

2Deletion is not considered in this paper because it was not helpful in
our preliminary experiments.

3If insertions could happen consecutively, infinitely long word se-
quences would be generated by inserting an infinite number of words be-
tween two words; if substitutions could happen consecutively, by substi-
tuting all words in the input keyword, the STD system would lose all in-
formation from the input keyword.

applied if the original term was a single word.

3.3.2. Searching Subword-based Lattices

When searching subword lattices, the input keyword was trans-
formed into multiple token sequences, where the tokens could be
words or subwords. Fuzzy matching was applied based on each
token sequence in the manner described in Section 3.3.1, except
that the input word sequence in the description of Section 3.3.1 is
replaced by a token sequence. The ways of transforming an input
keyword into multiple token sequences depended on the particular
subword unit, and are described below.

• Syllable: To search lattices composed of syllable hypothe-
ses, the entire keyword was first transformed into a phone
sequence. G2P would be used to estimate the M most
possible phoneme sequences for each OOV word, and if
there were n OOV words in a keyword, the keyword would
be transformed into Mn phone sequences. For some lan-
guages, the syllabic segmentation of a phone sequence is
not unique (that is, different syllable sequences can corre-
spond to the same phone sequence). In these cases, all pos-
sible syllabic segmentations of the phone sequence were
enumerated and used in the fuzzy search4.

• Word-Syllable Hybrid: When searching the word-syllable
hybrid lattices, the in-vocabulary (IV) words in the key-
word were preserved, but the OOV words were transformed
into all possible syllable sequences.

• Morpheme: Given a keyword, all possible morphologi-
cal segmentations were enumerated and used in the fuzzy
search.

• Word-Morpheme Hybrid: In this case, OOV words in a
keyword were transformed into all possible morpheme se-
quences, while IV words were segmented into morpheme
sequences or remained unchanged (both cases were used in
search) 5.

• Phoneme: To search phoneme-based lattices, a keyword
would be transformed into a set of phoneme sequences by
the G2P model as mentioned in the syllable case.

4. Experiments
The languages considered in this paper were Lao, Assamese,
and Bengali from releases IARPA-babel203b-v3.1, IARPA-
babel102b-v0.4, and IARPA-babel103b-v0.3, respectively. The
number of official evaluation keywords were 3360 for Lao (535
of which were OOV keywords6), 3324 for Assamese (739 OOV
keywords) and 3352 for Bengali (831 OOV keywords). For better
parameter tuning during development, we augmented the official
keyword lists with automatically generated keywords [35]. The
sizes for the keyword lists used for development were 5132 for
Lao (790 OOV keywords), 5053 for Assamese (1298 OOV key-
words) and 5053 for Bengali (1488 OOV keywords). For the ex-
periments in each language, we used the standard 10-hour train-
ing set from the limited language pack for training acoustic and
language models. The size of the dev and eval sets are 10 and

4Any phone sequence that could not be parsed into a syllabic segmen-
tation was ignored.

5A different strategy from the word-syllable hybrid was applied here
because preliminary experiments showed that transforming IV words into
subword sequences helped the word-morpheme hybrid but hurt the word-
syllable hybrid.

6Keywords containing one or more OOV words are considered to be
OOV keywords.
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Table 1: MTWV(%) results on Lao’s development set using the
augmented keyword list. The columns labelled First and Graph
are respectively the results before and after re-ranking. The rows
(A) to (H) are for the results based on different kinds of lattices
described in Section 3.2. The results in row (I) are the integration
of the results from rows (A) to (E), while the results in row (J) are
the integration from rows (A) to (H). The superscripts ∗ indicate
that the results after re-ranking are significantly better than the
results before re-ranking.

IV Keywords OOV Keywords
Lao First Graph First Graph

(A): Word 36.87 37.50 3.27 3.65∗

(B): Syllable 33.99 35.55∗ 16.66 17.31
(C): Word+Syllable 36.31 36.41 13.62 15.77∗

(D): Morpheme 26.65 28.47∗ 12.78 13.50
(E): Word+Morpheme 37.26 38.42∗ 15.11 16.38
(F): Phoneme 25.95 29.51∗ 13.94 18.53∗

(G): Phoneme (from (B)) 31.41 33.91∗ 16.08 19.08∗

(H): Phoneme (from (D)) 25.87 28.31∗ 15.70 19.41∗

(I):Integrate w/o phoneme 39.34 40.24∗ 19.34 21.43∗

(J):Integrate with phoneme 39.23 40.43∗ 21.11 24.43∗

Table 2: ATWV(%) results on the evaluation sets of Assamese,
Bengali and Lao for the official evaluation keyword lists. The
rows labelled First and Graph are respectively the results before
and after re-ranking.

Assamese Bengali Lao
First 32.88 26.88 32.67

Graph 34.37 29.30 34.29

75 hours respectively. Tied-state triphone CD-HMMs with 2.5K
states, and 18 Gaussian components per state were used for acous-
tic modeling. A description of the acoustic features used in both
speech recognition and re-ranking can be found in [36]7. BBN’s
VAD system was used to segment the spoken archive into seg-
ments for speech recognition [40]. The WERs on the development
set of Lao, Assamese and Bengali were 62.7%, 63.5% and 66.1%,
respectively. Before the evaluation, the confidence scores were
normalized by Exponential Normalization with Keyword-specific
Thresholding [41].

The results on Lao are shown in Table 1. The rows (A) to (H)
are for the results based on different kinds of lattices described in
Section 3.2. The G2P model generated 10-best pronunciations (or
M = 10 in Section 3.2 and Section 3.3.2). The results of their
integrations are in rows (I) and (J). For integration, the weights
of the results from different kinds of lattices were always set to
be equal. Fuzzy matching was used, and both λs and λi in Sec-
tion 3.3.1 were set to be 0.1. The results of IV and OOV key-
words are reported separately in Table 1. The columns labelled
First and Graph are the results before, and after re-ranking, re-
spectively For re-ranking, the parameter K in Section 2 was 10,
and α in Eq. 2, and δ in Eq. 4 were both set to be 0.9 to give
the graphs larger influence. The superscripts ∗ indicate that the re-
sults after re-ranking are significantly better than the results before
re-ranking. Significance was performed using a pair-wised t-test
with a significance level of 0.05.

We analyze the results in Table 1 by first considering the first-
pass results (those shown in columns labeled First). Row (A) is for

7There were some modifications. The filterbank inputs were processed
with VTLN warping factors, and Kaldi’s pitch extractor [37] and Fun-
damental Frequency Variation (FFV) features [38] were used instead of
Subband Autocorrelation Classification pitch tracker (SAcC) [39].

the results of word lattices. Due to fuzzy matching, the MTWV
of OOV keywords was not zero, but it was still very poor. Row
(B) is for the lattices composed of syllables. Although the per-
formance of syllable was not as good as word-based lattices for
IV keywords, syllable-based lattices greatly outperformed word-
based lattices for OOV keywords (rows (B) vs. (A)).

The results of the hybrid word/syllable lattices compared with
those from syllable-based lattices (rows (C) vs (B)) show that
the word/syllable hybrid yielded better performance for IV key-
words, but performed worse for OOV keywords. Comparing the
results of syllables with morphemes (rows (B) vs (D)) shows that
syllable-based lattices outperformed morpheme-based for both IV
and OOV keywords. This result indicates that the syllable is very
suitable unit for STD on Lao. However, the word-morpheme hy-
brid performed better than the word-syllable hybrid for both IV
and OOV keywords (rows (E) vs (C)). Since a large portion of
morphemes were actually words, the number of different n-grams
for the word-morpheme hybrid language model was much smaller
than the word-syllable hybrid, which makes the language model
estimated from the same size of training data more reliable. There-
fore, morpheme and word units may be more compatible to each
other than syllable.

Row (F) is for phoneme lattices generated directly from a
phonemic lexicon and language model, while rows (G) and (H)
are phoneme lattices from syllable and morpheme lattices respec-
tively. Among the three sets of phoneme lattices (rows (F), (G) and
(H)), the phoneme lattices derived from syllable lattices yielded
the best performance on both IV and OOV keywords.

Rows (I) and (J) were the integration without and with
phonemes respectively (that is, the results in row (I) are the in-
tegration of the results from rows (A) to (E), while the results in
row (J) are the integration from rows (A) to (H)). The phoneme
lattices improved OOV keywords in integration, but not IV key-
words (rows (J) vs (I)).

For the results of re-ranking in Table 1, we found that re-
ranking improved the performance no matter what units or types
of keywords were used (columns Graph vs First). Re-ranking was
especially helpful for the results of phoneme-based lattices (rows
(F) to (H)). The phoneme-based search had larger potential for im-
provement because the results from phoneme-based lattices were
usually noisier due to the lack of lexical constraint. We also ob-
served that, although in the first pass, including the results from
phoneme-based lattices for integration was not helpful for IV key-
words (rows (J) vs (I) for column First of IV keywords), with
re-ranking, including phoneme-based lattices benefits the overall
system (rows (J) vs (I) for column Graph of IV keywords).

Finally, the ATWV(%) results for Assamese, Bengali and Lao
on the evaluation sets using the official evaluation keyword lists
are shown in Table 2. Due to space limitations, only the ATWVs
of the integrated results from all units are reported. We observed
that graph-based re-ranking consistently improved the STD per-
formances for the three languages on the evaluation sets.

5. Conclusion
This paper investigated the effectiveness of a graph-based re-
ranking approach on three low-resource languages from the lim-
ited language packs of the IARPA Babel program. The experi-
ments showed that graph-based re-ranking improved the MTWV
and ATWV performance of both IV and OOV keywords on As-
samese, Bengali and Lao regardless of units were used for search.
In the future, we are planning to explore substitution and insertion
penalties that are based on confusion matrices [42], and exploit
other information, such as word bursts [43], for re-ranking.
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