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Abstract
In this paper we propose a back-off discriminative acoustic
model for Automatic Speech Recognition (ASR). We use a set
of broad phonetic classes to divide the classification problem
originating from context-dependent modeling into a set of sub-
problems. By appropriately combining the scores from clas-
sifiers designed for the sub-problems, we can guarantee that
the back-off acoustic score for different context-dependent units
will be different. The back-off model can be combined with
discriminative training algorithms to further improve the per-
formance. Experimental results on a large vocabulary lecture
transcription task show that the proposed back-off discrimina-
tive acoustic model has more than a 2.0% absolute word error
rate reduction compared to clustering-based acoustic model.
Index Terms: context-dependent acoustic modeling, back-off
acoustic models, discriminative training,

1. Introduction
Over the years, context-dependent acoustic modeling has been
shown to be effective for Large Vocabulary Continuous Speech
Recognition (LVCSR) tasks. Considering nearby contexts of
phonetic units can provide acoustic level constraints for the
speech recognizer, and thus can potentially increase the recogni-
tion accuracy. However, considering acoustic contexts can also
exponentially increase the size of possible labels of the acous-
tic model. For example, given a set of 60 basic phonetic units,
a diphone model that considers the left (or right) context of a
basic phonetic unit can have 602 = 3, 600 possible labels; a tri-
phone model that considers both left and right context can have
603 = 216, 000 possible labels. Because the size of the label
set can grow very large, many context-dependent units may be
of very limited occurrence (or even unseen) in the training data,
resulting in significant data sparsity. To have a robust parame-
ter estimation for context-dependent models, this data sparsity
problem must be dealt with appropriately.

One common way to deal with the data sparsity prob-
lem embedded in context-dependent modeling is clustering.
By clustering a sufficient amount of similar context-dependent
acoustic units together, the resulting cluster can have enough
training data for robust parameter estimation. Such clustering
can be applied to phone-level or state-level acoustic units [1],
and the clustering is generally guided by a decision tree con-
structed using acoustic phonetic knowledge [2]. Although the
clustering approach solves the data sparsity problem, it has an
intrinsic disadvantage; that is, if two acoustic units are clustered
together, the scores returned by the acoustic model will always
be the same. As a result, the clustered units become acousti-
cally identical to the speech recognizer, and it has to rely on
other constraints such as lexicon or language models to identify
the clustered acoustic units.

Another way of dealing with the data sparsity problem is
to reduce the problem of modeling a long context-dependent
acoustic unit into a problem of modeling a composition of a set
of shorter units. One example of this reduction-based approach
is the quasi-triphone modeling proposed in [3], where a Hid-
den Markov Model (HMM) for a triphone is decomposed into
a left context sensitive diphone state at the beginning, several
context independent states in the middle, and a right context
sensitive diphone state at the end. Another way of decompos-
ing the triphones is using the Bayesian approach proposed in
[4]. In the Bayesian approach, the left context of a triphone is
assumed to be independent of the right context given the center
phonetic unit of the triphone. Under such an assumption, the
probability of a triphone can be represented by a product of two
diphone probabilities divided by the monophone probability of
the center unit. By using an appropriate reduction, the data spar-
sity problem can be solved while keeping the context-dependent
units acoustically distinguishable to the recognizer. However, a
pure reduction-based approach does not consider the fact that
if a context-dependent unit u has a sufficient amount of occur-
rences in the training data, it would be beneficial to incorporate
a sub-model that directly models the occurrences of u into the
acoustic model.

In this paper, we propose a back-off acoustic modeling
that utilizes a set of broad phonetic classes derived from
acoustic-phonetic knowledge. By using the broad phonetic
classes, we can divide the classification problem originating
from the context-dependent acoustic modeling into a set of sub-
problems. The classification scores of the sub-problems can be
combined with the score of the original problem to form a back-
off acoustic score for each context-dependent unit. By using an
appropriate combination, the back-off scores can be guaranteed
to be distinguishable and robust against data sparsity. The back-
off models can be easily combined with discriminative training
methods such as Minimum Classification Error (MCE) training
[5] to further improve the performance. The proposed modeling
scheme is evaluated by a large vocabulary lecture transcription
task on the MIT Lecture Corpus [6].

The organization of the paper is as follows. Section 2 in-
troduces the formulation of the proposed back-off modeling
scheme. Section 3 gives a brief overview of discriminative
training and illustrates how to combine the model with discrim-
inative training. Experimental results of the proposed model on
the MIT Lecture Corpus are reported in Section 4, followed by
some concluding remarks in Section 5.

2. Back-off Acoustic Models
This section introduces the formulation of the proposed back-
off acoustic model. We first present how to construct back-off
models for diphones and then we show how to generalize the
idea to triphones or higher order context-dependent units.



2.1. Back-off diphone models

Given an acoustic feature vector x, the goal of an acoustic
model is to return an acoustic score aλ(x, p) for each possi-
ble label p considered by the model. One common choice for
the acoustic score aλ(x, p) is the log-likelihood of a Gaussian
Mixture Model (GMM). For each p, the log-likelihood can be
computed by

lλ(x, p) = log(

Mp∑
m=1

wp
mN (x, µp

m, σp
m)), (1)

where m is the index of mixture components, Mp is the to-
tal number of Gaussian mixture components of p, wp

m is the
mixture weight of the mth component, and N (x, µp

m, σp
m) is

the multivariate Gaussian density function of x with respect to
mean vector µp

m and standard deviation σp
m.

For a diphone acoustic model, a label p in (1) can generally
be denoted by 〈sl|sr〉, where sl and sr are strings that repre-
sent the basic phonetic units in the left context and in the right
context respectively. For example, let sl be ‘k’ and sr be ‘oy’,
and the label 〈k|oy〉 can represent the acoustic context occur-
ring in the word “coin”. From a classification point of view, the
log-likelihood lλ(x, 〈sl|sr〉) can be thought of as the model’s
confidence on answering “yes” to the problem “Does x repre-
sent a context-dependent acoustic unit with left context being
sl and right context being sr?” However, such confidence may
not be always reliable due to the potential data sparsity problem
intrinsic in context-dependent modeling.

Instead of asking the above question directly, we can con-
sider examining a pair of sub-problems that are related to broad
phonetic class identifications of the left and the right context.
For example, instead of directly asking the question “Does x
represent a context-dependent unit with left context being ‘k’
and right context being ‘oy’?”, we can ask the following pair of
sub-problems “Does x represent a context-dependent unit with
left context being ‘k’ and right context being a vowel?” and
“Does x represent a context-dependent unit with left context
being a stop consonant and right context being ‘oy’?” If the
model answers “yes” to both of the sub-problems, we can still
identify the context-dependent unit in question as 〈k|oy〉. In
this way, we can reduce the original classification problem into
a pair of sub-problems with less context resolution. As a result,
we can construct a back-off modeling scheme based on broad
phonetic classes as follows.

Let B(s) denote the broad phonetic class of basic phonetic
unit s, where the mapping function B(·) can be constructed ac-
cording to some acoustic phonetic properties, such as manner
of pronunciation or articulation place. Given the broad pho-
netic class assignments, the acoustic score aλ(x, 〈sl|sr〉) of a
back-off model can be computed as:

aλ(x, 〈sl|sr〉) = ω0lλ(x, 〈sl|sr〉) + ωllλ(x, 〈sl|B(sr)〉)
+ωrlλ(x, 〈B(sl)|sr〉),

(2)
where lλ(x, 〈sl|B(sr)〉) denotes the log-likelihood of a GMM
trained for all context-dependent units with the left context
being sl and the right context belonging to class B(sr), and
lλ(x, 〈B(sl)|sr〉) denotes the log-likelihood of another GMM
trained for all context-dependent units with the left context be-
longing to class B(sl) and the right context being sr . Note that
the combination weights in (2) should satisfy some constraints.
For example, the three weights w0, w1, and wr should sum
to 1 to make the acoustic score a convex combination of log-

likelihood. Also, in this work, we assume the left and the right
context are contexts are equally important, so we set wl = wr .

Adjusting the weights appropriately can ensure the acoustic
score in (2) is robust against data sparsity. For example, if the
number of occurrences of 〈sl|sr〉 in the training data is smaller
than a threshold, we can set the weight ω0 to 0. Also, because
any two different diphones differ at least in one of the left or
right contexts, there will be at least one different term in (2) for
the two diphones, making the back-off acoustic score always
distinguishable to the recognizer.

2.2. Back-off triphone models

Given a feature vector x and a triphone label 〈sl|sc|sr〉, the
acoustic score aλ(x, 〈sl|sc|sr〉) can be computed by:

aλ(x, 〈sl|sc|sr〉) = ω0lλ(x, 〈sl|sc|sr〉)
+ωlaλ(x, 〈sl|sc|B(sr)〉)
+ωraλ(x, 〈B(sl)|sc|sr〉),

(3)

where the two back-off scores aλ(x, 〈sl|sc|B(sr)〉) and
aλ(x, 〈B(sl)|sc|sr〉) can be further decomposed simi-
larly, as in (2). For example, aλ(x, 〈sl|sc|B(sr)〉) can
be decomposed into a linear combination of three log-
likelihoods lλ(x, 〈sl|sc|B(sr)〉), lλ(x, 〈B(sl)|sc|B(sr)〉),
and lλ(x, 〈sl|B(sc)|B(sr)〉).

Depending on the tasks, sometimes we may want to drop
some context resolution to reduce the number of log-likelihoods
needing to be evaluated. In this case we can drop the con-
text dependencies retained by the broad phonetic classes in (3);
that is, replace aλ(x, 〈sl|sc|B(sr)〉) with aλ(x, 〈sl|sc|·〉) and
aλ(x, 〈B(sl)|sc|sr〉) with aλ(x, 〈·|sc|sr〉).

The back-off modeling scheme can be generalized be-
yond triphones. For example, 〈sll|sl|sr|srr〉 can be re-
duced by 〈sll|sl|B(sr)|B(srr)〉, 〈B(sll)|B(sl)|sr)|srr〉, and
〈B(sll)|sl|sr|B(srr)〉; for each of the three reduced ones, the
diphone back-off scheme can be applied.

3. Discriminative back-off models
Here we show how to combine the back-off models with dis-
criminative training. We first introduce a brief overview of dis-
criminative training, and then we show how we can combine the
back-off modeling with discriminative training algorithms.

3.1. Discriminative training

Discriminative training methods seek model parameters that can
reduce the confusions in the training data made by the model.
In general, an objective function that reflects the degree of con-
fusion is constructed, and the optimal parameter setting is ob-
tained by minimizing the objective function over the parameter
space. One commonly used discriminative training method is
Minimum Classification Error (MCE) training [5].

The goal of MCE training is to seek model parameters λ
that can minimize the number of incorrectly classified utter-
ances. Given the acoustic feature vectors Xn of the nth train-
ing utterance and a label sequence S, let Lλ(Xn,S) be the
joint log-likelihood of Xn and S computed by the recognizer.
In general, Lλ(Xn,S) can be computed by summing all the
acoustic, pronunciation, and language model scores related to
the sequence S. Given the correct label sequence Yn for each
utterance, the MCE loss function can be expressed by

Nerr =

N∑
n=1

sign[−Lλ(Xn,Yn))+ max
S 6=Yn

Lλ(Xn,S))], (4)



where the function sign[d] equals 1 for d > 0 and equals 0 for
d < 0. However, because the sign function in (4) is not differ-
entiable, a differentiable sigmoid function `(d) = 1

1+exp(−ζd)

with a positive ζ is often utilized to smooth the loss function.
In our experiments, an N-Best version of MCE training is

implemented; that is, given a training set of N utterances, the
loss function can be expressed by

L =
∑N

n=1 `[−Lλ(Xn,Yn)+

log([ 1
C

∑
S∈Sn

exp(ηLλ(Xn,S))]
1
η )],

(5)

where Sn is the set of best C competing hypotheses and η is
a positive constant to adjust the importance weight of the hy-
potheses in Sn. In our experiments, we set η to 1.0, which
enables the hypotheses to contribute equally to the loss func-
tion. Given the loss function in (5), the model parameters can
also be updated by gradient-based optimization methods such
as the Quickprop algorithm [5].

3.2. Discriminative training of back-off models

To optimize a loss function L over the parameter space, it often
requires the computation of the gradient of L with respect to
the acoustic model parameter vector λ. Once the gradient ∂L

∂λ
is computed, various optimization methods can be applied to
find the optimal parameters. In general, ∂L

∂λ
is computed by first

taking the partial derivative of L with respect to each acoustic
score and then summing up the contribution of gradient with
respect to each acoustic score:

∂L
∂λ

=

N∑
n=1

∑

x∈Xn

∑
p

∂L
∂aλ(x, p)

∂aλ(x, p)

∂λ
, (6)

where aλ(x, p) denotes the acoustic model score for feature x
and context-dependent label p. For a dihphone back-off model,
p is of the form 〈sl|sr〉 and aλ(x, p) can be expressed by (2).
As a result, the gradient ∂aλ(x,〈sl|sr〉)

∂λ
can be decomposed into

∂aλ(x,〈sl|sr〉)
∂λ

= ω0
∂lλ(x,〈sl|sr〉)

∂λ
+ ωl

∂lλ(x,〈sl|B(sr)〉)
∂λ

+ωr
∂lλ(x,〈B(sl)|sr〉)

∂λ
.

(7)
Note that the above decomposition can be applied to triphone
or higher-order context-dependent back-off models. Therefore,
the discriminative training of a back-off model can be reduced
to first computing the gradients with respect to all acoustic
scores, as would be done in the training of clustering-based
models, and then distributing the contribution of the gradi-
ent into different levels of back-off according to the back-off
weights.

While maximum-likelihood training will train the two
back-off terms in (2) independently, discriminative training can
couple the two terms through the objective function. As a re-
sult, the two back-off terms may gradually learn to complement
each other via discriminative training, and can potentially fur-
ther improve the model performance.

4. Lecture transcription experiments
In this section we evaluate the performance of the proposed
back-off acoustic modeling scheme on a large vocabulary lec-
ture transcription task. We first introduce the MIT Lecture Cor-
pus and the SUMMIT landmark-based speech recognizer used
in the experiments. Then, we compare the Word Error Rate
(WER) of the proposed back-off model and that of clustered-
based acoustic models on the test lectures.

4.1. MIT Lecture Corpus

The MIT Lecture Corpus contains audio recordings and man-
ual transcriptions for approximately 300 hours of MIT lectures
from eight different courses and nearly 100 MITWorld sem-
inars given on a variety of topics [6]. The audio data was
recorded with omni-directional lapel microphones and was gen-
erally recorded in a classroom environment. The recordings
were manually transcribed in a way that, in addition to spoken
words, disfluencies such as filled pauses, false starts, and par-
tial words are labeled. The lecture corpus is a difficult data set
for ASR systems because it contains many disfluencies, poorly
organized or ungrammatical sentences, and lecture specific key
words.

Among the lectures in the corpus, a 119-hour training set
that includes 7 lectures from 4 courses and 99 lectures from 4
years of MITWorld lectures covering a variety of topics is se-
lected for the acoustic model training. Two held-out MITWorld
lectures (about 2 hours) are used for model development such
as deciding when to stop the discriminative training. The test
lectures are composed of 8 lectures from 4 different class sub-
jects with roughly 8 hours of audio data and 7.2K words. There
is no speaker overlap between the three sets of lectures.

4.2. SUMMIT Landmark-Based Speech Recognizer

Instead of extracting feature vectors at a constant frame-rate
as in conventional Hidden Markov Model (HMM) speech rec-
ognizers, the SUMMIT landmark-based speech recognizer [7]
first computes a set of perceptually important time points as
landmarks based on an acoustic difference measure, and ex-
tracts a feature vector around each landmark. The landmark
features are computed by concatenating the average values of
14 Mel-Frequency Cepstrum Coefficients in 8 telescoping re-
gions around each landmark (total 112 dimensions), and are
reduced (and whitened) to 50 dimensions by Principal Com-
ponent Analysis. For each landmark, because it can either be a
transition point between two adjacent phonetic units or a time
point within a phonetic unit, it is natural to represent the land-
marks by a set of diphone labels to model the left and right
contexts of the landmarks.

For recognition, the set of diphones are modeled by a set of
GMM parameters. All the other constraints used for the recog-
nition, including pronunciation rules, lexicon, and language
models are represented by a Finite-State Transducers (FST), and
speech recognition is conducted by performing path search in
the FST [8].

4.3. Clustering-based Models

As in a conventional setup for LVCSR tasks, diagonal GMMs
were used for acoustic modeling. In order to model background
noise and speech artifacts in the lectures, we extend the size of
basic phone set into 74, resulting in 5,549 diphone labels (5,476
for transition and 73 for internal). The 5,549 diphone labels
used by SUMMIT were clustered into 1,871 diphone classes us-
ing a top-down decision tree clustering algorithm. For each di-
phone class, the model is allowed to add one Gaussian mixture
component per 50 training exemplars until the maximum num-
ber of mixture components is achieved. To investigate how the
number of parameters affects the WER, we trained 3 sets of ini-
tial models, ML-C30, ML-C60, and ML-C100, using Maximum-
Likelihood (ML) criterion with the maximum number of mix-
ture components set to 30, 60, and 100, respectively. The MCE
training criterion in (5) was applied to the ML models, and three



Models #Mixtures WER Dev. WER Test.
ML-C30 31,873 45.7% 38.2%
ML-C60 49,470 44.2% 36.8%
ML-C100 65,340 43.8% 36.5%

MCE-C30 31,873 41.2% 32.8%
MCE-C60 49,470 41.5% 32.7%
MCE-C100 65,340 41.5% 33.3%

Table 1: Size of the clustering-based models and their word
error rates of the development and test lectures.

discriminative models, MCE-C30, MCE-C60, and MCE-C100

were generated. During the MCE training, the number of com-
peting hypotheses is set to 20 for each utterance in the training.

Table 1 summarizes the WERs of the clustering-based mod-
els. Comparing the WERs of ML models with that of MCE
models, we can see that the MCE training provides significant
WER reductions. However, while the performance of ML mod-
els improves as the number of mixture components increases,
the discriminatively trained models suffer some degradation in
WERs. This fact suggests that the discriminatively trained mod-
els may start over-fitting the training data during the training
and thus the gain resulted from the reduction of the loss func-
tion does not translate to unseen data.

4.4. Back-off models
To construct a back-off acoustic model, we first trained a ML-
A30 (setting maximum number of mixture components to 30)
diphone model without clustering the diphones. Among the
5,549 diphones, 3,653 diphones are unseen in the training lec-
tures. For each basic phonetic unit used by SUMMIT, we clas-
sify it into one of the following broad phonetic classes: {high
vowel}, {low vowel}, {retroflex}, {l}, {stop}, {fricative},
{closure}, {silence}, and {noise}. In addition to ML-A30, we
also trained a ML-L30 with all the right contexts of the diphones
reduced to the broad phonetic classes, and a ML-R30 with all
the left contexts reduced to the broad phonetic classes. Com-
bining the three models {ML-A30, ML-L30, ML-R30}, we can
form a back-off model ML-B30,30,30. The combination weights
(ω0, ωl, ωr) in (2) are set to (0.5, 0.25, 0.25) for the diphones
of more than 20 occurrences in the training data, and are set
to (0, 0.5, 0.5) otherwise. To investigate how the size of the
back-off model affect the performance, we also set the maxi-
mum number of mixture components of the back-off to 60 and
construct a ML-B30,60,60. For both of the two back-off models,
we also applied MCE training and generated two discriminative
model MCE-B30,60,60 and MCE-B30,60,60.

Table 2 compares the performance of the back-off models
with that of clustering-based models. As shown in the table, the
discriminative back-off model MCE-B30,30,30 has over 2.0%
absolute WER reduction over MCE-C60. The McNemar sig-
nificance test [10] shows that the improvement of the back-off
model over the clustering-based model is statistically significant
(p < 0.001). Although MCE-B30,60,60 has much more mixture
components than MCE-B30,30,30, it still yields a marginal im-
provement, showing that the back-off model is less sensitive
to over-fitting. Also, the back-off models gain more benefit
through MCE training than the clustering-based models, sup-
porting the hypothesis that via discriminative training, the sub-
models in (2) becoming more complementary to each other.

5. Conclusion and Future Work
In this paper, we have proposed a back-off discriminative acous-
tic modeling scheme based on broad phonetic classes. The pro-

Models #Mixtures WER Dev. WER Test.
ML-C60 49,470 44.2% 36.8%

ML-B30,30,30 58,741 45.5% 37.8%
ML-B30,60,60 79,116 44.0% 36.5%

MCE-C60 49,470 41.5% 32.7%
MCE-B30,30,30 58,741 40.0% 30.3%
MCE-B30,60,60 79,116 39.3% 30.1%

Table 2: WER comparison of the clustering-based and back-off
models.

posed scheme works well for the diphone-based system on lec-
ture transcription tasks. In the future, we plan to apply the back-
off scheme to higher-order context-dependent models. Also, in
the current setup, we only use one set of broad phonetic classes
to perform the back-off. However, based on different acoustic-
phonetic aspects, we can construct different sets of broad pho-
netic classes. For example, the phone ‘t’ can belong to {stop
consonant} based on the manner of pronunciation, but it can
also belong to {alveolar voice} based on place of articulation.
By incorporating different aspect of acoustic-phonetic knowl-
edge, we can add multiple pairs of back-off terms in (2). Using
multiple back-off pairs can potentially increase the difference
between different context-dependent units and can thus further
improve the performance of the back-off models.

6. Acknowledgement
This work is supported by Taiwan Merit Scholarship (Number
NSC-095-SAF-I-564-040-TMS), by the T-Party Project, a joint
research program between MIT and Quanta Computer Inc., Tai-
wan, and by Nippon Telegraph and Telephone Corp., Japan.

7. References
[1] Young, S. J., Odell, J. J. and Woodland P.C. “Tree-based state ty-

ing for high accuracy acoustic modeling”, Proc. Human Language
Technology, 307–312, 1994.

[2] Hwang, M., Huang, X. and Alleva, F.,“Predicting unseen tri-
phones with senones”, IEEE Trans. Speech and Audio Proc., 4(6):
412–419, 1996.

[3] Ljolje, ”High accuracy phone recognition using context cluster-
ing and quasitriphonec models”, Computer Speech Language, 8:
129–151, 1994.

[4] Ming, J., O’Boyle P., Owens, M. and Smith, F. J., “A Bayesian ap-
proach for building triphone models for continuous speech recog-
nition”, IEEE Trans. Speech and Audio Proc., 7(6): 678–683,
1999.

[5] McDermott, E., Hazen, T. J., Roux J. L., Nakamura A. and
Katagiri S., “Discriminative training for large-vocabulary speech
recognition using minimum classification error”, IEEE Trans. Au-
dio, Speech and Language Proc., 15(1): 1–21, 2007.

[6] Park, A., Hazen, T. J. and Glass, J. R., “Automatic processing of
ausio lectures for information retrieval: vocabulary selection and
language modeling”, Proc. ICASSP, 497–500, 2005.

[7] Glass, J. R., “A probanilistic framework for segment-based speech
recognition”, Computer Speech and Language, 17: 137–152,
2003.

[8] Hetherington, L., “MIT finite-state transducer toolkit for speech
and language processing”, Proc. ICSLP, 2609–2612, 2004.

[9] Chang, H.-A. and Glass, J. R., “Discriminative training of hier-
archical acoust models for large vocabulary continuous speech
recognition”, Proc. ICASSP 2009.

[10] Gillick, L. and Cox, S. J., “Some statistical issues in the compar-
ison of speech recognition algorithms,” Proc. ICASSP, 532–535,
1989.


