
 Coling 94. The 15th International Conference on Computational Liguistics. Proceedings, pages 406-411. August 5-9,
 1994. Kyoto, Japan.

CONSTRUCTING LEXICAL TRANSDUCERS

Lauri Karttunen

Rank Xerox Research Centre
Grenoble

0. INTRODUCTION

A lexical transducer, first discussed in
Karttunen, Kaplan and Zaenen 1992, is a spe-
cialised finite-state automaton that maps in-
flected surface forms to lexical forms, and vice
versa. The lexical form consists of a canonical
representation of the word and a sequence of
tags that show the morphological characteristics
of the form in question and its syntactic cate-
gory. For example, a lexical transducer for
French might relate the surface form veut to the
lexical form vouloir+IndPr+SG+P3. In order
to map between these two forms, the transducer
may contain a path like the one shown in Fig. 1.

Lexical side

Surface side

+IndP

v e u

v o u l o i r

t

+SG +P3

Fig. 1 Transducer path

The circles in Fig. 1 represent states, the arcs
(state transitions) are labelled by a pair of sym-
bols: a lexical symbol and a surface symbol.
Sometimes they are the same (v:v), sometimes
different (o:e), sometimes one or the other side
is empty (= EPSILON). The exact alignment of
the symbols on the two sides is not crucial: the
path would express the v e u t ↔ v o u -
loir+IndP+SG+P3 mapping even if the last t
on the lower side was moved to match the l of
vouloir.

Because finite-state transducers are bidirec-
tional, the same transducer can be used for
analysis (veut → vouloir +IndP+SG+P3) as

well as generation (vouloir+IndP+SG+P3 →
veut). Analysis and generation differ only with
respect to the choice of the input side (surface

or lexical). The transducer and the analy-
sis/generation algorithm are the same in both
directions.

 Other advantages that lexical transducers
have over other methods of morphological
processing are compactness and speed. The
logical size of a transducer for French is around
50K states and 100K arcs but the network can
be physically compacted to a few hundred kilo-
bytes. The speed of analysis varies from a few
thousand words per second to 10K w/s or more
depending on hardware and the degree of com-
paction.

At this time there exist full-size lexical
transducers for at least five languages: English
and French (Xerox DDS), German (Lingsoft),
Korean (Hyuk-Chul Kwon, see Kwon and
Karttunen 1994), and Turkish (Kemal Oflazer).
It is expected that by the time of the Coling
conference several languages will have been
added to the list.

The standard way of constructing lexical
transducers, as described in Karttunen, Kaplan
and Zaenen 1994, consists of (1) a finite-state
source lexicon that defines the set of valid lexi-
cal forms of the language (possibly infinite),
and (2) a set of finite-state rules that assign the
proper surface realisation to all lexical forms
and morphological categories of the language.
The rules are compiled to transducers and
merged with the source lexicon using intersec-
tion and composition. The use of intersection is
based on the special interpretation of two-level
rules as denoting equal length relations (see
Kaplan and Kay 1994 for a detailed discussion).

For practical as well as linguistic reasons it
may be desirable to use more than one set of
rules to describe the mapping. Fig. 2 illustrates
the construction of a lexical transducer for
French by two sets of rules using intersection
(&) and composition (o) operations.

Stage 1 shows two parallel rule systems ar-
ranged in a cascade. In Stage 2, the rules on
each level have been intersected to a single
transducer. Stage 3 shows the composition of
the rule system to a single transducer. Stage 4
shows the final result that is derived by com-
posing the rule system with the lexicon.

Although the conceptual picture is quite
straightforward, the actual computations are
very resource intensive because of the size of
the intermediate structures at Stages 2 and 3.
Individual rule transducers are generally quite
small but the result of intersecting and com-
posing sets of rule transducers tends to result in
very large structures.

This paper describes two recent advances in
the construction of lexical transducers that cir-
cumvent these problems: (1) moving the de-
scription of irregular mappings from the rule
system to the source lexicon; (2) performing
intersection and composition in single opera-
tion. Both of these features have been imple-
mented in the Xerox authoring tools (Karttunen
and Beesley 1992, Karttunen 1993) for lexical
transducers.

1. LEXICON AS A SET OF RELATIONS

1.1 Stem Alternations

The differences between lexical forms and
surface forms may be divided to regular and
irregular alternations. Regular variation, such as
the al~aux pattern in the declension of French
nouns (cheval~chevaux), affects a large class of
similar lexical items; irregular variation is lim-

ited to a handful of words like the i~a alterna-
tion in some English verbs (swim~swam). Both
types of alternations can be described equally
well by means of two-level rules. The only dif-
ference is that irregular alternations generally
must be constrained with more care, perhaps
using diacritic markers to flag the appropriate
words, to prevent them from applying outside
their proper domain. In standard two-level sys-
tems (Antworth 1990), it is not possible to dis-
tinguish idiosyncratic mappings from regular
alternations.

From a practical point of view, the treatment
of irregular alternations by individual two-level
rules is not optimal if the number of rules be-
comes very large. For example, the description
of the irregular verb morphology in English
requires more than a hundred rules, a large
number of which deal with the idiosyncratic
behaviour of just one word, such as the rule in
(1).

 (1) "From 'be' to 'is' - Part 1"
 b:i <=> #: _ e: Irregular:
 +Pres: +Sg: +P3: ;

Here # (word boundary) and Irregular (a
diacritic assigned to strong verbs in the source
lexicon) guarantee that the rule applies just
where it is supposed to apply: to derive the first
letter of is in the present tense 3rd person form
of be. Another rule is needed to delete the e
because two-level rules are restricted to apply
to just a pair of symbols. This is an artefact of
the formalism but even if the be~is alternation
were to be described by a single rule, the con-

fst1 FST2

FST1

surface string

LEXICON

surface string

 LEXICON
 o
 FST1
 o
 FST2

surface string

lexical string

o

o

FST1
 o
FST2

LEXICON

fst1 fstn . . .

fstk

LEXICON

surface string

&

&

Stage 1 Stage 2 Stage 3 Stage 4

 . . .

Fig. 2 Construction of a lexical transducer with intersection and composition (Karttunen,
Kaplan and Zaenen 1992)

struction of dozens of rules of such limited ap-
plicability is a tedious, error prone process.

A natural solution to this problem is to allow
idiosyncratic variation to be described without
any rules at all, by a simple lexical fiat, and to
use rules only for the more general alternations.
This is one of the novel features of the Xerox
lexicon compiler (Karttunen 1993). Techni-
cally, it means that the lexicon is not necessar-
ily a collection of simple lexical forms as in
classical Kimmo systems but a relation that
may include pairs such as <be+Pres+Sg+P3,
is>.

This can be achieved by changing the lexical
format so that the lexicon interpreter compiles
an entry like (2) to the transducer shown in Fig.
3.

 (2)be+Pres+Sg+P3+Verb:is Neg? ;

Here the colon marks the juncture between the
lexical form and its surface realisation, Neg? is
the continuation class for forms that may be
have an attached n't clitic.

Lexical side

Surface side

+IndPb e

i s

+Sg +P3 +Verb

 Fig. 3 Entry (2) in compiled form.

The convention used by the Xerox compiler
is to interpret paired entries so that the lexical
form gets paired with the second form from left
to right adding epsilons to the end of the shorter
form to make up the difference in length. The
location of the epsilons can also be marked ex-
plicitly by zeros in the lexical form. For exam-
ple, if it is important to regard the s of is as the
regular present singular 3rd person ending, the
entry could be written as in (3).

(3) be+Pres+Sg+P3+Verb:i000s # ;

This has the effect of moving the s in Fig. 3 to
the right to give a +P3:s pair. The mapping
from vouloir+IndP+Sg+P3 to veut in Fig. 1
can be achieved in a similar way.

1. 2 Inflectional and Derivational Affixes

Moving all idiosyncratic realisations from
the rules to the source lexicon also gives a natu-

ral way to describe the realisation of inflec-
tional and derivational suffixes. Although it is
possible to write a set of two-level rules that
realise the English progressive suffix as ing, the
rules that make up this mapping have no other
function in the English morphology system. A
more straight-forward solution is just to include
the entry (4) is the appropriate sublexicon.

(4) +Prog:ing # ;

The forms on the lower side of a source lexi-
con need not be identical to the surface forms of
the language; they can still be modified by the
rules. This allows a good separation between
idiosyncratic and regular aspects of inflectional
and derivational morphology. The application
of vowel harmony to the case marking suffixes
in Finnish illustrates this point.

Finnish case endings are subject to vowel
harmony. For example, the abessive (“without”)
case in Finnish is realised as either tta or ttä
depending on the stem; the latter form occurs in
words without back vowels. The general shape
of the abessive, ttA, is not predictable from
anything but the specific realisation of the final
vowel (represented by the “archiphoneme” A) is
just an instance of the general vowel harmony
rule in Finnish. This gives us the three-level
structure in Fig. 4 for forms like syyttä “without
reason.”

s y y +Sg +Abe lexical form

s y y t t A intermediate form

s y y t t ä surface form

LEXICON

RULES

 Fig. 4 Three level analysis of Finnish Abessive.

The mapping from the lexical form to the
intermediate form is given by the lexicon; the
rules are responsible for the mapping from the
lower side of the lexicon to the surface. The
intermediate representation disappears in the
composition with the rules so that the resulting
transducer maps the lexical form directly to the
surface form, and vice versa, as in Fig. 5.

s y y +Sg +Abe lexical form

s y y t t ä surface form

 Fig. 5 Final structure after composition.

This computational account coincides nicely
with traditional descriptions of Finnish noun
inflection (Laaksonen and Lieko 1988).

2. INTERSECTING COMPOSITION

The transfer of irregular alternations from
the rules to the lexicon has a significant effect
on reducing the number of rules that have to be
intersected in order to produce lexical transduc-
ers in accordance with the scheme in Fig. 2.
Nevertheless, in practice the intersection of
even a modest number of rules tends to be quite
large. The intermediate rule transducers in Fig.
2 (Stages 2 and 3) may actually be larger than
the final result that emerges from the composi-
tion with the lexicon in Stage 4. This has been
observed in some versions of our French and
English lexicons. Fig. 6 illustrates this curious
phenomenon.

Intersection
of

Rule
Transducers

Composed
Lexicon

o

Source
Lexicon

Fig. 6. Composition of a lexicon with rule
transducers

As the relative sizes of the three components
in Fig. 6 indicate, the composition with the
lexicon results in a network that is smaller than
the rule network by itself. This is an interesting
discovery because it does not follow from the
mathematics of the operation. One might expect
composition to have the opposite effect. In the
worst case, it could yield a result whose size is
the product of the sizes of the input machines.

Instead of the expected blowup, the compo-
sition of a lexicon with a rule system tends to
produce a transducer that is not significantly
larger than the source lexicon. The reason ap-
pears to be that the rule intersection involves
computing the combined effect of the rules for
many types complex situations that never occur

in the lexicon. Thus the composition with the
actual lexicon can be a simplification from the
point of the rule system.

This observation suggests that it is advanta-
geous not to do rule intersections as a separate
operation, as in Fig. 2. We can avoid the large
intermediate results by performing the intersec-
tion of the rules and the composition with the
lexicon in one combined operation. We call this
new operation intersecting composition. It
takes as input a lexicon (either a simple
automaton or a transducer) and any number of
rule transducers. The result is what we would
get by composing the lexicon with the intersec-
tion of the rules.

The basic idea of intersecting composition is
to build an output transducer where each state
corresponds to a state in the source lexicon and
a configuration of rule states. The initial output
state corresponds to the initial state of the lexi-
con and its configuration consists of the initial
states of the rule transducers. At every step in
the construction, we try to add transitions to our
current output state by matching transitions in
the current lexicon state against the transitions
in all the rule states of the current configuration.
The core of the algorithm is given in (5).

(5) Intersecting Composition

For each transition x:y in the current
lexicon state, find a pair y:z such that
all rule states in the current configu-
ration have a transition for the pair.
For each such y:z pair, get its desti-
nation configuration and the corre-
sponding output state. Then build an
x:z transition to that state from the
current output state. When all the
arcs in the current lexicon state have
been processed, move on to the next
unprocessed output state. Iterate until
finished.

Special provisions have to be made for x:y
arcs in the lexicon state and for y:z arcs in the
rules when y is EPSILON. In the former case, we
build an x:EPSILON transition to the output state
associated with the destination and the un-
changed configuration; in the lat ter case we
build an EPSILON:z arc to the output state asso-
ciated with the current lexicon state and the
new destination configuration.

If there is only one rule transducer, inter-
secting composition is equivalent to ordinary

composition. If all the networks are simple fi-
nite-state networks rather than transducers, the
operation reduces to n-way intersection in
which one of the networks (the lexicon in our
case) is used to drive the process. This special
case of the algorithm was discovered independ-
ently by Pasi Tapanainen (Tapanainen, 1991;
Koskenniemi, Tapanainen and Voutilainen,
1992) as an efficient way to apply finite-state
constraints for syntactic disambiguation. The
distinguished network in his application repre-
sents alternative interpretations of the sentence.
The method allows the sentence to be disam-
biguated without computing the large (possibly
uncomputable) intersection of the rule auto-
mata.

 Fig. 7 shows a logically equivalent but a
more efficient way to perform the computations
in Fig. 2 using intersecting composition
(designated by &o).

In Fig. 7, the first set of rules applies to the
source lexicon, the second set of rules modifies
the outcome of the first stage to yield the final
outcome. The rules are not intersected sepa-
rately. The Xerox lexicon compiler (Karttunen
1993) is designed to carry out the computations
in this optimal way.

REFERENCES

Antworth, E. L (1990). PC-KIMMO: a two-level
processor for morphological analysis. Sum-
mer Institute of Linguistics, Dallas, Texas.

Kaplan, Ronald M. and Martin Kay (1994).
Regular Models of Phonological Rule Sys-

tems. To appear in Computational Linguis-
tics.

Karttunen, Lauri, Ronald M. Kaplan and Annie
Zaenen (1992). Two-Level Morphology with
Composition. In the Proceedings of the fif-
teenth International Conference on Compu-
tational Linguistics. Coling-92. Nantes, 23-
28/8/1992. Vol. I 141-48. ICCL.

Karttunen, Lauri and Kenneth R. Beesley
(1992).Two-Level Rule Compiler Technical
Report. ISTL-1992-2. Xerox Palo Alto Re-
search Center. Palo Alto, California.

Karttunen, Lauri (1993).Finite-State Lexicon
Compiler Technical Report. ISTL-NLTT-
1993-04-02. Xerox Palo Alto Research
Center. Palo Alto, California.

Koskenniemi, Kimmo, Pasi Tapanainen and
Atro Voutilainen (1992). Compiling and
Using Finite-State Syntactic Rules. In the
Proceedings of the fifteenth International
Conference on Computational Linguistics.
Coling-92. Nantes, 23-28/8/1992. Vol. I 156-
62. ICCL. 1992.

Kwon, Hyuk-Chul and Lauri Karttunen (1994).
Incremental Construction of a Lexical Trans-
ducer for Korean. In the Proceedings of the
15th International Conference on Computa-
tional Linguistics. Coling-94. Kyoto, Aug. 5-
9, 1994.

Laaksonen, Kaino and Anneli Lieko (1988).
Suomen kielen äänne- ja muoto-oppi (Pho-
nology and Morphology of Finnish). Oy
Finn Lectura Ab. Loimaa.

Source
Lexicon

&o

&o
Final
Result

Intermediate
Result

Stage 1 Stage 2 Stage 3

fst1 fstk

fst1 fstn

 Fig. 7. Construction of a lexical transducer with intersecting composition.

Tapanainen, Pasi (1991). Äärellisinä automaat-
teina esitettyjen kielioppisääntöjen sovelta-
minen luonnollisen kielen jäsentäjässä
(Applying finite-state grammar rules in natu-
ral language parsing). Master's Thesis. De-
partment of Computer Science, University of
Helsinki.

