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Abstract

Experimental studies have drawn conflicting conclusions about
the mechanisms of word learning. On the one hand, cross situ-
ational learning research (e.g. Yu & Smith, 2007) suggests the
capability of tracking word-meaning correlations across learn-
ing instances. On the other hand, studies have also shown
(Medina, Snedeker, Trueswell, & Gleitman, 2011) that the
learner appears to attend to a single meaning hypothesis to con-
firm or disconfirm it against the data. We present a word learn-
ing model that aggressively pursues a single, most favored,
meaning hypothesis while maintaining probabilistic associa-
tions between words and their meaning hypotheses. The model
is congruent with experimental results and outperforms two re-
cent, more computationally complex, cross-situational models
on a sample of child-directed English. We propose that this
difference in performance is due to a “dilution” effect, where
ignoring much of the cross-situational information prevents the
learner from diluting her probability space with erroneous hy-
potheses.

Introduction
The pairing between words and their meanings in the environ-
ment is messy and unreliable, which formed the earliest argu-
ments against the associationist approach to language learn-
ing (Chomsky, 1959). Major research efforts have been de-
voted to identifying constraints on word learning and their
interactions, and to investigate whether they are domain spe-
cific or derive from more general principles (see Bloom 2000
for review).

The recent interest in the cross-situational learning ap-
proach marks a new direction in the study of word learning.
Surely not all words, or every instance of them, will be neatly
aligned with their meanings (Landau & Gleitman, 1988). But
if the target meaning is associated with a word sufficiently
frequently—and more reliably than its competitors—then the
learner may be able to detect and learn from such statistical
correlations. A number of recent studies have investigated
word learning across situations in the laboratory (Medina et
al., 2011; K. Smith, Smith, & Blythe, 2011; L. Smith &
Yu, 2008; Trueswell, Medina, Hafri, & Gleitman, 2013; Yu
& Smith, 2007), and there are several computational models
that explore various aspects of this approach (e.g. Fazly, Al-
ishahi, & Stevenson, 2010; Frank, Goodman, & Tenenbaum,
2009; Siskind, 2000; Yu & Smith, 2007). These models
suggest that cross-situational statistics may be exploited to
acquire the meanings of words.

In this paper, we develop a new model of word learn-
ing that draws insights from recent experimental work point-
ing to the limits of cross-situational learning (Medina et al.,
2011; Trueswell et al., 2013). Based on their experimen-
tal results, these researchers offered a “Propose-but-Verify”

account of word learning across situations: the learner en-
tertains a single meaning hypothesis, retaining it upon con-
firmation but replacing it with an alternative upon discon-
firmation. Our model draws upon this account but departs
from it in incorporating probabilistic learning mechanisms
which are commonly associated with cross-situational learn-
ing, and which have been used in other domains of language
acquisition to integrate domain-specific and domain-general
learning processes (Yang, 2002, 2004). Algorithmically, the
model (dubbed Pursuit) employs a “greedy” variant of Re-
inforcement Learning (Barto & Sutton, 1998) that rewards
a single word-meaning hypothesis per instance of a word
if the hypothesis is consistent with the input, and punishes
it if it is not, while ignoring all other available meanings
(like Propose-but-Verify but unlike cross-situational learn-
ing). While making incomplete use of word-meaning cor-
relations would seem to handicap the model, simulations on
child directed English data show that the Pursuit model out-
performs previous models that keep track of the full range of
cross-situational meanings.

We first outline the algorithm and compare its computa-
tional properties with other models of word learning. We then
discuss the congruence of Pursuit with experimental find-
ings before reporting simulation results that show Pursuit to
be a better word learning algorithm for a particular set of
CHILDES data.

The Pursuit Model of Word Learning
The Algorithm
Like many other word learning models (e.g. Fazly et al.,
2010; Frank et al., 2009; Yu & Ballard, 2007) and in line
with current formal models of language acquisition (Yang,
2002, 2004), the Pursuit model represents linguistic hypothe-
ses in probabilistic terms. The learner stores a matrix of as-
sociation values between words and meanings. An associa-
tion A(w,m) is best understood as the learner’s confidence in
the meaning m for word w. Associations are strengthened or
weakened incrementally based on observation.

The input data is a sequence of utterances U = (WU ,MU ),
where WU and MU are the sets of words and available mean-
ings in that utterance U . The learner has access to the sets
of words, meanings and their associations (W,M,A), and ad-
justs their values after each utterance. For notational conve-
nience, let Aw for a given word w be the set of associations
{A(w,x)} for all meanings x that have been hypothesized for
w. Similarly, let Am for a given meaning m be {A(x,m)} for
all observed words x. We can speak of the conditional prob-
ability of a word meaning, P(m|w), by normalizing A(w,m)



INPUT: The learner’s words (W), meanings (M), their associa-
tions A, and the new utterance U = (WU ,MU ). For every w∈WU :

(a) Initialization
If w is a novel word, initiate Aw = {A(w,h0) = γ}, where
h0 = argmin

m∈MU

Am

(b) Pursuit
Select the most probable meaning h for w (i.e.,
argmax

h
A(w,h)):

i. If h is confirmed (h ∈MU ), reward A(w,h); go to (c)
ii. If h is disconfirmed (h 6∈ MU ), penalize A(w,h) and re-

ward A(w,h′) for a randomly selected h′ ∈MU

(c) Lexicon

If any conditional probability P(ĥ|w) exceeds a certain
threshold value (θ), then file the (w, ĥ) into the lexicon.

Box 1

with respect to Aw with smoothing to prevent zero probabil-
ities. This is shown in Equation 1, where N is the number of
observed meaning types, and λ is a small smoothing factor.

P(m|w) = A(w,m)+λ

∑Aw +N×λ
(1)

The term P(m|w) can be viewed as the learner’s belief in the
word-meaning (w,m) pairing. The smoothing factor λ gives
a small amount of probability mass to unseen mappings. If
P(m|w) exceeds a certain threshold value, then the learner
concludes m to be the meaning of the word w. An outline
of the learning algorithm is given in Box 1. Let’s first con-
sider the Pursuit step, which is the core of our model; we
will return to the Initialization step, which chooses a mean-
ing candidate for a novel word that the learner encounters for
the first time. Our approach could be described as “pursuit
with abandon”: the privileged status of a single meaning hy-
pothesis comes at the expense of other meanings. This is the
fundamental difference between our model and (Medina et
al., 2011; Trueswell et al., 2013) from cross-situational
learning models, which are defined as the tabulation of mul-
tiple, possibly all, word-meaning associations across learning
instances.

In Pursuit, the learner selects the most favored meaning
hypothesis (h) for the word w, i.e., the one with the highest
association score. It then adjusts the association score A(w,h)
according to its presence or absence in the current utterance.
If h is confirmed (i.e., found in MU , the current set of mean-
ings), then A(w,h) increases, and if h fails to be confirmed, it
decreases. In the case of confirmation, the learner ignores all
other meanings present in the current utterance and moves on.
In the case of disconfirmation, its association score decreases,
and the learner randomly chooses a single new meaning from
the currently set MU to boost, again ignoring all other avail-
able meanings. After updating Aw with respect to U , a mean-
ing ĥ may emerge as the winner if its conditional probability

Adjust association A(w,h) against an utterance U = (WU ,MU )
where w ∈WU :

If h is confirmed (h ∈MU ):
A(w,m)′ = A(w,m)+ γ(1−A(w,m))

If h is disconfirmed (h 6∈MU ):
A(w,m)′ = A(w,m)× (1− γ)

Box 2

P(ĥ|w), a normalization of A(ĥ,m) as described in Equation
1, exceeds a certain threshold value (Lexicon).

It is instructive to compare the Pursuit model with both
cross-situational learning models and the Propose-but-Verify
approach (Medina et al., 2011; Trueswell et al., 2013). Like
cross-situational learning, the association between words and
meanings is probabilistic and dynamically updated in re-
sponse to the learning data. Like Propose-but-Verify but un-
like cross situational learning, the Pursuit model considers
only one hypothesis ignores all other meanings upon confir-
mation. Unlike Propose-but-Verify, however, a disconfirmed
meaning is not discarded but only has its association value
lowered. Given the Pursuit scheme, a disconfirmed meaning
may still remain the most probable hypothesis and will be se-
lected for verification next time the word is presented in the
learning data. This crucial features adds considerable robust-
ness to learning behavior as we shall see.

The function that specifies the magnitude of re-
ward/penalty is found in Box 2. Following Yang’s Variational
model of language acquisition (2002, 2004), we use a simple
reinforcement learning model to adjust the association scores
for words and their meanings (Bush & Mosteller, 1951). The
amount of adjustment is determined by the learning rate γ,
usually a small value between 0 and 1. The Pursuit model
falls in the subclass of greedy algorithms: instead of sampling
over hypotheses thereby giving every hypothesis a chance to
be selected, the learner simply chooses the most favored hy-
pothesis and ignores all the rest. Under the Pursuit model, as
long as the most favored meaning continues to be confirmed,
the learner ignores all other competing meanings. This is a
familiar idea sometimes known as error-driven learning in
the formal studies of language acquisition (Berwick, 1985),
and appears to be consistent with the experimental findings
(Medina et al., 2011; Trueswell et al., 2013). Traditional
use of error-driven learning has frequently been tied to cate-
gorical learning models (e.g., Gibson and Wexler 1994) but
that is neither necessary nor sufficient. The Pursuit model is
more in line with the current understanding (Saffran, Aslin,
& Newport, 1996; Xu & Tenenbaum, 2007; Yang, 2004)
that human language acquisition has a probabilistic compo-
nent. Additional meanings are only added to the hypothesis
set if the most favored hypothesis fails to be located in the
current learning instance. Even here, the single-mindedness
of Pursuit is evident: the learner chooses only one additional
meaning to boost.



Let’s now consider the Initialization step which deals with
novel words that the learner has not seen before. This step
encodes a probabilistic form of the Mutual Exclusivity Con-
straint (Golinkoff, Hirsh-Pasek, Bailey, & Wenger, 1992;
Markman & Wachtel, 1988), which has been implemented in
various ways by many computational models of word learn-
ing (Fazly et al., 2010; Frank et al., 2009; Yu & Ballard,
2007): when encountering novel words, children favor map-
pings to novel rather than familiar meanings.1 In our model,
the learner chooses a hypothesis that is least likely to be re-
ferred to by another word in the learner’s hypothesis space.
More specifically, the learner associates a novel word with
the meaning about which she is least confident, where the
learner’s confidence in a meaning is defined as the highest
probability with which this meaning is associated with some
other word. For example, say the new word is “cat”, and both
CAT and DOG are available meanings.2 If DOG is already
paired with the word “dog” with probability 0.8, and CAT
is paired with the word “whisker” with probability 0.6, then
learner is less sure about CAT than DOG, making CAT a bet-
ter guess for the new word “cat”; DOG is ignored completely.

Properties of Pursuit Learning
We now illustrate the key differences between the Pursuit
model and cross-situational learning models. For concrete-
ness, we focus on the model of Fazly et al. (2010). This
model is an effective incremental variant of Yu & Ballard’s
original batch learning model (Yu & Ballard, 2007) and most
directly captures cross-situational learning experimental re-
sults (e.g., L. Smith and Yu 2008; Yu and Smith 2007). Like
the current model, Fazly et al. (2010) use associations be-
tween words and meanings, which are updated incrementally
as new input is received, to calculate word-meaning proba-
bilities. But unlike the current model, Fazly et al.’s cross-
situational learner boosts the associations (and thus the prob-
abilities) for all meanings that are present during the utter-
ance of a given word; this is a key design feature of cross-
situational learning. By contrast, the Pursuit model can only
raise the probability of one hypothesis per instance of a word.

Let us first consider the standard cross-situational learning
scenario, adapted from L. Smith and Yu (2008) (Fig 1).

By keeping track of word object co-occurrence frequen-
cies, a cross-situational learner can determine that the most
likely meaning for “ball” is in fact BALL, which is present
across both learning instances.

The Pursuit model, by contrast, will not fare as well. Sup-
pose on the first scene, the learner guesses BALL (with prob-
ability of 0.5), it will be selected and confirmed on the scene,

1Fazly et al. (2010) build in this preference by having the learner
give larger association boosts to newer meanings and smaller as-
sociation boosts to meanings that are already associated with other
words in the utterance. The Bayesian model of Frank et al. (2009)
penalizes many-to-one mappings and places a higher prior probabil-
ity on lexicons with a smaller number of word-meaning pairs, which
is also a probabilistic encoding of the Mutual Exclusivity Constraint.

2Throughout this paper, we use quotations to denote the form of
the word and uppercase to denote meanings.

Figure 1: A canonical cross-situational learning scenario

and learning succeeds. But if the first guess is BAT, it will
be disconfirmed on the second scene and the learner selects
another meaning from BALL and DOG randomly. Taken to-
gether, the Pursuit model only learns BALL 75% of the time,
which is transparently sub-optimal compared to the cross sit-
uational learning model.

However, recent experimental work suggests that learners
do not necessarily keep track of multiple hypotheses as sug-
gested by cross situational learning models (Medina et al.,
2011; Trueswell et al., 2013). Subjects were presented
with nonsense words accompanied by visual scenes similar to
those in Fig 1. After each instance of a word, subjects were
asked to guess the word’s meaning. It is found that when
instances of a word were separated in time by instances of
other words, learners appeared to be capable of remembering
only their previous guess. If that previous guess was discon-
firmed by new data, they appeared to be incapable of remem-
bering which alternative meanings had been present before.
To illustrate, imagine the scenes in Fig 1 accompanying ut-
terances of the nonsense word “dax”. Subjects who guess the
meaning BALL for “dax” after instance 1 are likely to guess
BALL after instance 2 as well. But subjects who guess BAT
are at chance when choosing between DOG and BALL after
instance 2. In other words, the fact that BALL was present
in the first instance does not help the learner who made the
wrong initial guess. The Pursuit model captures these results,
where the favored hypothesis is determined by the highest
association score, where other possibilities–both other mean-
ings in the scene and other, but lower ranked, meanings from
past experience–are ignored.

This sub-optimal way of making use of information across
situations ought to handicap the Pursuit model. However,
simulation results show that it actually performs better than
cross situational learning. As we discuss below, simulation
results and the analysis of word learning data in naturalistic
settings suggests that scenarios like the one in Fig 2 are more
common than those like in Fig 1, in which case the Pursuit
model has an advantage.

After instance 1, the learner has only one choice of BALL
as the hypothesized meaning for “ball”. This initial guess re-
ceives an initial association score of γ (Initialization); as the
only and thus the most probable hypothesis for “ball”, it is



Figure 2: A learning scenario where Pursuit obviates proba-
bility dilution

rewarded during the Pursuit step. BALL is therefore cho-
sen again after instance 2, confirmed and further rewarded.
Instance 3 is similar to instance 2; BALL is chosen again,
and the association between “ball” and BALL increases once
more. After these three instances, the conditional proba-
bility P(BALL|“ball′′) will be very high, since the learner
completely ignored the presence of ELEPHANT, DOG and
BEAR during the second and third instances. This guarantees
that the correct meaning BALL will be learned as the correct
meaning. Space limitations prevent us from illustrating the
behavior of the Pursuit model when the unambiguous scene
is presented at the second and third instance. As the reader
can readily verify, the probability of learning BALL will be
lower; interestingly, that is also the findings of Medina et al.
(2011), where high informative cues presented earlier in the
learning sequence are more effective than presented later.

Contrast that performance with how the cross-situational
model fares on the same instances. After instance 1, the
probability of BALL will be high because that is the only
meaning that has co-occurred with the target word. After in-
stance 2, BALL receives a further boost, but crucially, DOG
and ELEPHANT receive a boost as well. After instance 3,
BALL and ELEPHANT receive a further boost, while the
new meaning BEAR receives some share of the probabil-
ity for “ball”. The result is that ELEPHANT has been re-
warded twice, DOG once, BEAR once, and the correct mean-
ing BALL three times—the majority of the association boosts
for “ball” have been incorrect meanings. In this simple one-
word example, the Fazly et al. (2010) cross situational learn-
ing model will have meaning probabilities directly propor-
tional to the number of association boosts for each mean-
ing. Thus, after seven meaning tokens, the cross-situational
model assigns approximately 4

7 (more than half) of the total
probability for “ball” to incorrect meanings. In order to suc-
ceed, Fazly et al.’s learner must have a very low threshold
for words to be learned. However, to set the threshold this
low has the unwanted effect of allowing many other weak hy-
potheses into the lexicon, as we shall see in our simulation
results. Table 1 summarizes the differences between cross-
situational and Pursuit learners on Fig 2. In the case of the
cross-situational learner, the presence of ELEPHANT, DOG

“ball” BALL ELEPH. DOG BEAR
# of rewards
(Pursuit)

3 0 0 0

Probability ≈
(Pursuit)

1 0 0 0

# of rewards
(Cross-sit.)

3 2 1 1

Probability ≈
(Cross-sit.)

0.43 0.29 0.14 0.14

Table 1: Pursuit vs. cross-situational on Fig 2

and BEAR, ignored by our learner, dilutes the probability
space for “ball”, making the correct meaning less likely to
be added to the lexicon. The advantage of the Pursuit model
over cross-situational models derives from its apparent sub-
optimal design. The pursuit of the most favored hypothesis
limits the range of competing meanings. But at the same time,
it obviates the dilution of cues, especially the highly salient
first scene in Fig 2, which is weakened by averaging with
more ambiguous learning instances—but these are precisely
the types of highly salient instances that the learner takes ad-
vantage of (Medina et al., 2011).

Computational Simulations and Results

Learning data

We manually coded two videos of mother-child interaction
from the Rollins corpus on the CHILDES database, about 15
minutes’ worth of data in total. For each of the 496 distinct
utterances, we coded which concrete noun meanings were
available to the learner (e.g., visible on the video and judged
not to be outside the baby’s visual field). The coding reflects
children’s prior assumptions, amply documented in the lit-
erature (see Markman, 1992, and references therein), that
words map to basic categories of discrete and whole objects.
Thus, for example, if we included the meaning BIRD in the
interpretation of a scene, we did not also include BEAK or
ANIMAL, in line with previous computational simulations
of word learning (Frank et al., 2009; Yu & Ballard, 2007).3

The performance of all models was evaluated based on
comparison to a single gold standard lexicon consisting of
the set of word-meaning pairs that, in the judgment of the ex-
perimenters, could have reasonably been learned. The two
criteria for inclusion in the gold standard were: (1) the word
must refer to a concrete object (since only concrete object
meanings were coded), and (2) the word must appear more
than once in the data, and must refer to a meaning that is at
some point visible to the child as judged from the video.

3The simulations of (Fazly et al., 2010) were carried on a much
larger dataset but with artificially constructed sets of meanings; for
the sake of comparison, we ran that model on the present set of
Rollins data.



Simulations
We tested four models on the derived data set from
CHILDES. First, we ran the Bayesian cross-situational model
of Frank et al. (2009) on our dataset, with the code obtained
from the first author of that paper. Second, we ran an im-
plementation of Fazly et al. (2010), exactly following the de-
scription in their paper. Third, we implemented the the strict
version of ‘Propose-but-Verify’, in which only a single hy-
pothesized meaning is ever maintained in memory for a given
word (Trueswell et al., 2013), along with a variant that prob-
abilistically retrieves the conjectured hypothesis. And finally,
we tested the Pursuit model. We tried a wide range of pa-
rameter values for all models to optimize performance. For
the Fazly et al. (2010) and Pursuit models, the parameter val-
ues were optimized to two decimal places. For the Bayesian
model, we used the best of a manageable number of simula-
tions using a range of values for the learning rate parameter,
which determines lexicon size. Further optimization was im-
practical, as each simulation of the Bayesian model can take
several hours to run. The results reported below were ob-
tained by running the models with best-case parameter val-
ues.

Models were evaluated based on precision, recall and the
combined F-score (the harmonic mean of precision and re-
call) of the learned lexicon against the gold standard. Pre-
cision refers to the percentage of accurate word-meaning
pairs, compared to the gold standard lexicon, that the model
has learned, and recall refers to the percentage of all word-
meaning pairs in the gold standard that have been learned
by the model. Due to instances of random choice in the al-
gorithm, Pursuit yields slightly different lexicons each time
the model is run. Therefore, the results reported for the cur-
rent model were obtained by averaging precision and recall
over 500 simulations and using those averages to calculate
F-score.

Results and Analysis
Table 2 compares the output of the three models. First,
the low precision of the propose-but-verify model (Trueswell
et al., 2013) underscores the robustness of probabilis-
tic learning on realistic data. Second, our results repli-
cate the basic pattern reported in Frank et al. (2009) that
the Bayesian model outperforms the simplest non-Bayesian
cross-situational model (Fazly et al., 2010; Yu & Ballard,
2007).4 The Pursuit model outperforms all other models. Out
of 500 simulations, only 8 produced a lexicon whose F-score

4It should be noted that, although we used the same videos as
Frank et al. (2009), we report lower numbers for the Bayesian model
even though we used the authors’ original code. We believe this
is due to the difference in data coding. Our coding is more inclu-
sive as we encoded more meaning candidates in the video: more
specifically, the average number of possible meanings per utterance
in our coding is just under 3, but is 2 in Frank et al. (2009) (meaning
our coding is 50% more ambiguous on average). Given the severity
of the ambiguity in word-meaning associations (Gillette, Gleitman,
Gleitman, & Lederer, 1999), a more inclusive coding procedure
gives a better approximation of word learning in realistic situations.

was below the best result obtained by the Bayesian model.

Precision Recall F1
Bayesian 0.50 0.29 0.37
FAS ’10 0.28 0.21 0.24
Propose/Verify 0.04 0.31 0.08
P/V (prob. retrieval) 0.05 0.29 0.09
Current 0.44 0.38 0.41

TABLE 2: MODEL COMPARISON

We believe the advantage of the Pursuit model is revealed
through the nature of the learning data the child learner faces
during acquisition, which is more similar to the experimental
conditions in Medina et al. (2011) and Trueswell et al. (2013),
rather than the standard illustration of cross-situational learn-
ing in Fig 1. An analysis of the words successfully learned
(and not learned) by the word learning models clearly illus-
trates this. Consider Fig 3, which shows the number of cor-
rectly learned words in the cross-situational model’s lexicon
vs. an average lexicon output by the Pursuit model, grouped
by average ambiguity. We define the average ambiguity of
a word as the average number of meanings in all utterances
that contain that word; for instance, if a scene that accompa-
nies a word contains only one noticeable object as judged by
the human coder, then that occurrence of the word has am-
biguity score of 1. Fig 3 shows that the Pursuit model does
considerably better on words with lower ambiguity scores.
For words with an ambiguity score greater than or equal to
3, both models learn rather conservatively, with the cross-
situational model making only 3 correct mappings and the
Pursuit model making 4 correct mappings. But when we look
at those words that have an average ambiguity score less than
three, we see that while the cross-situational model doesn’t do
much better on these words (4 correct mappings), our model
learns more than twice the number of words (9 correct map-
pings). For each of the 6 words that were learned by the Pur-
suit model but not by the cross-situational model, there was
at least one object which co-occurred with that word multi-
ple times, but which was incorrect. This is exactly analogous
to Fig 2, where the probability space for a word becomes di-
luted by competing hypotheses. While the averaging effect of
cross-situational learning dilutes the few but relatively salient
learning instances, the Pursuit model greatly benefits from
their presence.

Conclusion
We implemented a model of word learning that combines
insights from general considerations of probabilistic learn-
ing as well as experimental demonstrations of the word
learning process. Cast in Marr’s familiar level of analysis
(1982), we have aimed to develop models at the algorith-
mic/representational level that could be related closely to be-
havioral studies of language learning. Future work will ex-
plore the predictions of the Pursuit model in an experimental
setting, which may further refine the details of the model. The
model also provides a general framework in which other cues
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Figure 3: Comparison of correctly learned words

for word meaning can be incorporated; for instance, gestu-
ral information may further constrain the space of possible
meanings, which can be straightforwardly implemented in
our framework. Our model pursues the highly valued, and
thus probabilistically defined, word meaning at the expense
of other meaning candidates. By contrast, cross-situational
models do not favor any one particular meaning, but rather
tabulate statistics across learning instances to look for con-
sistent co-occurrences. While the cross-situational approach
seems optimally designed, simulation results show that its
advantage is outweighed by dilution effects that distract the
learner away from clear, unambiguous learning instances. It
is notable that the apparently sub-optimal Pursuit model pro-
duces superior results over more powerful models with richer
statistical information about words and their associated mean-
ings: word learning is hard, but trying too hard may not help.
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