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In this reply, the authors point out that the simulations reported by S. M. Kanne, D. A. Balota, D. H. 
Spieler, and M. E. Faust (1998) did not incorporate mechanisms proposed to explain set size effects 
in J. D. Cohen, K. Dunbar, and J. L. McClelland (1990). The authors report a new simulation that 
incorporates these mechanisms and more accurately simulates S. M. Kanne et al.'s empirical data. 
The authors then point to other factors that could be explored in a more complete test of their model. 
The use of feed-forward rather than recurrent inhibition is discussed as a potentially important 
limitation of their original model, and recent work addressing this issue is described. The authors 
also discuss possible differences between word reading and color naming in the Stroop task. Although 
such differences may exist, the authors retain their earlier view that such differences do not reflect 
a dichotomy between automatic and controlled processing. 

Kanne, Balota, Spieler, and Faust ( 1998 ) reported new empir- 
ical data and simulation results that they used to call into ques- 
tion aspects of  our model of  Stroop task performance (Cohen, 
Dunbar, & McClelland, 1990). This challenge focuses on the 
ability of  the model to simulate accurately reaction times when 
the number of  stimuli in the task is varied. In particular, they 
presented data indicating that, as set size is increased, color- 
naming times increase more than word-reading times for hu- 
mans but that our model exhibits the opposite behavior. In this 
reply, we offer three responses to this challenge. 

First, we note that Kanne et al. (1998) did not fully incorpo- 
rate the mechanisms we described in Cohen et al. (1990, pp. 
350-353)  that were intended to address set size effects. When 
we incorporate these mechanisms into the simulation, we find 
that there is a better fit to their data. We also identify additional 
directions that could be pursued, to assess fully whether our 
original model can provide an adequate account of  set size 
effects. Overall, we observe that although the simple model 
presented in the first several simulations of Cohen et al. did not 
address set size effects, the additional mechanisms we intro- 
duced in Simulation 6 may permit an account of such effects. 

In the second part of our reply, we discuss fundamental limita- 
tions that we believe are inherent in networks using feed-for- 
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ward inhibition, such as our original model. We have observed 
such limitations in a variety of behavioral domains, of which 
the Kanne et al. (1998) findings represent an example. We 
briefly summarize recent work that considers these limitations 
and that examines the use of  recurrent rather than feed-forward 
inhibition to address them. 

Finally, we consider some of the theoretical claims made by 
our original model about the relation of  word reading to color 
naming. Although we concur with Kanne et al. (1998) that, in 
all probability, important differences exist between these pro- 
cesses, we are not convinced that their present results establish 
this point. Furthermore, we maintain our v i e w - - w h i c h  we be- 
lieve continues to be supported by our modeling ef for t s - - tha t  
the types of differences likely to be discovered will not corre- 
spond to the traditional qualitative distinction between 
controlled and automatic processing (Cohen et al., 1990, pp. 
353-354) .  

Se t  S ize  Ef fec ts  in the Or ig ina l  M o d e l  

Kanne et al.'s (1998) study did not incorporate several of  the 
mechanisms for simulating set size effects that we described in 
our original article (Cohen et al., 1990, Simulation 6, pp. 3 5 0 -  
353). These mechanisms implement principles underlying at- 
tentional effects central to our model. 

First, Kanne et al. (1998) used different networks to simulate 
different set sizes, each of  which was trained on a different 
number of  stimuli. This differs from how we proposed that our 
model could account for set size effects, which is to alter the 
allocation of  attention among units representing stimuli and re- 
sponses in the network. In our view, it does not seem plausible 
that participants come to the experiment with several networks 
each trained on different numbers of color words. Rather, it 
seems more reasonable to assume that changing the number of 
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stimuli and responses in a given experiment (or condition) in- 
duces dynamic changes in the allocation of  attention to units 
representing potential stimuli and responses within a large, sin- 
gle network that includes units for all of  the stimuli and re- 
sponses familiar to the participants. From this perspective, the 
appropriate way to simulate set size effects would be to train a 
single network on the maximum number of  stimuli and responses 
involved in the experiment (or perhaps an even larger, more 
realistic number) and then to test the network on subsets of  
these of  varying size while allocating attention to the stimuli 
and responses being tested. This is the approach we described 
in Simulation 6 of  Cohen et al. (1990).  

Kanne et al. (1998) acknowledged this point in Footnote 3 
of their article. There, they report the results of  a simulation 
using their 4-4 network, which was trained on four stimuli, and 
manipulated attention rather than training to simulate set size 
effects. However, their manipulation of  attention differed from 
the simulation of  response set effects that we described in Simu- 
lation 6 of  Cohen et al. (1990).  Kanne et al. implemented set 
selection at the intermediate unit level and not at the output 
level as we had done. They also did not ensure that output units 
were at the most sensitive part of  their activation function. As 
our next point makes clear, we consider these to be critical 
differences from the approach that we took in Cohen et al., 
which was based on a fundamental principle about how the 
allocation of  attention affects processing. 

The principle in question is the following: Attention acts to 
ensure that all units in an attended pathway rest in the most 
sensitive range of  their activation function (which, for the logis- 
tic function, corresponds to an activity level of  0.5 ). We suggest 
that one of  the reasons why Kanne et al.'s (1998) simulations 
did not produce a good fit to their data is because they did not 
fully conform to this principle. This principle was implemented 
in the intermediate layer of  our original model (described on 
pp. 338 -339 )  by ensuring that the weights from the task demand 
units directly offset the negative bias on these units. It was not 
necessary to implement explicitly this principle at the response 
layer of  our original model because, as Kanne et al. correctly 
noted, the symmetry of  excitatory and inhibitory weights in a 
2-2 architecture guarantees that the net input to each unit at rest 
will be zero, and, therefore, the activation will be 0.5. This is 
not true for larger (or asymmetric) networks, such as Simulation 
6 of  Cohen et al. (1990) or those reported in Kanne et al. 
However, this can be corrected by allowing participants' knowl- 
edge of  the task demands to have the effect of setting the resting 
levels of  all task-relevant units to 0.5. We emphasize that such 
adjustments should not be seen as ad hoc because a central 
principle of  the Cohen et al. model was specifically that the role 
of  attention is to place processing units in the attended pathway 
in the most sensitive part of  their activation function. 

A more detailed point is worth noting here. Because task- 
related attentional effects are assumed to be established in ad- 
vance of  stimulus presentation on a particular trial of  an experi- 
ment, attention can be seen as presetting the state of  task-rele- 
vant units in a condition-specific way. These effects can be 
implemented in a simulation in several ways. One way is by 
explicitly implementing a set of  units that represents partici- 
pants' knowledge about the demands of  the different task condi- 
tions and that provides activation to units in the attended path- 

way. We used such task demand units in our original model to 
represent participants' knowledge about the relevant stimulus 
dimension for a given task condition (i.e., color naming or word 
reading) and to preactivate intermediate units in the correspond- 
ing pathway. Another way to preactivate processing units is to 
adjust their biases. This can be done as a "s tand- in"  for the 
effects of  the task demand units just described (i.e., as a simpler 
but formally equivalent alternative to actually implementing the 
relevant-task demand units) or to capture the influence of  local 
factors (e.g., after effects such as residual activation) that may 
accrue to units previously engaged in processing. In Simulation 
6 of  Cohen et al. (1990),  we used bias adjustments to preset 
to 0.5 the activity of  units in the response set at the output level 
of  the network. 

An important question is how task demand units develop and 
come to be activated, or how processing units come to be biased, 
so as to allocate appropriately attention for a given task or 
condition. The situation can become complex when it is consid- 
ered that the activation of  task representations or the setting of  
unit biases can dynamically be adjusted on the basis of  partici- 
pants' experience with a task. The mechanisms underlying these 
processes are an important focus for any theory that tries to 
explain how attention comes to be allocated. However, as we 
made clear in Cohen et al. (1990),  this was not within the scope 
of  our original model: 

Our focus in this article . . . is not on how task interpretation 
occurs or on how decisions concerning the allocation of attention 
are made. Rather, we are concerned with how information about 
the task and the corresponding allocation of attention influences 
processing in the pathways directly involved in performing the task 
itself. (p. 338) 

Thus, our model was not intended to explain how task demand 
units or biases come to be chosen on the basis of  participants' 
knowledge about or experience with the task. Rather, it was 
intended to show how, if  such mechanisms are assumed, they 
can account for attentional effects. The critical principle of our 
model is that these mechanisms produce attentional effects by 
placing all task-relevant (i.e., attended) units in the most sensi- 
tive part of  their dynamic range. We applied this principle to 
output units explicitly in our consideration of response set ef- 
fects in Simulation 6 of  Cohen et al. (1990):  

In the preceding simulations . . . [A]ttentional selection occurred 
at the level of the intermediate units, where information in the 
two pathways was still separate. However, the attention-allocation 
mechanism used in this model is a general one and can be applied 
to other levels of processing as well. In the following simulation, 
this mechanism was used to select a particular set of responses at 
the output level of the network. (p. 350) 

Although our discussion did not take account of  the situation 
in which there were asymmetric weights, as noted earlier this 
circumstance can be addressed by assuming that the mecha- 
nisms responsible for the allocation of  attention provide activa- 
tion to units in the response set sufficient to zero their net input 
and produce a resting activity level of 0.5. Again, this abides 
directly by the principles we used to implement attentional ef- 
fects in the intermediate layer of  the original model (as de- 
scribed on pp. 338-339,  Cohen et al., 1990). Therefore, rather 
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than considering the deviation of output units from a resting 
level of 0.5 in the Kanne et al. (1998) simulations to be a 
fundamental problem with the model, we consider this to reflect 
the absence of mechanisms from their simulations that imple- 
ment principles central to our theory. 

As a preliminary exploration of how these factors may have 
affected the ability of Kanne et al.'s (1998) simulations to ac- 
count for their data, we conducted a simulation that more fully 
implemented the principles just described. Our simulation was 
similar to the one they reported in their Footnote 3. We used 
the connection weights from their 4-4 model (Simulation 4). 
Although we have some concerns about how training influenced 
this simulation--concerns that we return to short ly--we 
wanted to know whether augmenting their simulation with the 
mechanisms discussed earlier would improve its ability to ac- 
count for the empirical data. We made three modifications to 
their simulation. 

First, we computed the value of the bias parameter that would 
produce a resting activation level of 0.5 for units at the output 
level representing items included in the stimulus and response 
set. We emphasize that these bias values reflect assumed influ- 
ences of attention. The bias value differed between the word- 
reading and color-naming tasks because of the different connec- 
tion weights from the intermediate units to the output units in 
the pathway relevant to each. Bias values also differed, within 
each task, as a function of set size. These variations between 
set size and condition are reasonable given that, in the empirical 
study, each participant was tested with only one set size and 
tasks were performed in a blocked fashion (see the Appendix in 
Kanne et al., 1998). Therefore, participants could have adjusted 
attention from block to block to optimize sensitivity of units 
relevant to the task being performed. Table 1 lists the biases for 
output units used for each task and set size. 

Second, we increased the size of the task attentional effect 
by increasing the negative bias on the intermediate units (to 
-4 .5 )  and by increasing the weights to these intermediate units 
from the task demand units (to 4.5). This was done to accommo- 
date the larger network and the somewhat smaller influence of 
words on colors observed in the Kanne et al. (1998) data, as 
compared with the data from Dunbar and MacLeod (1984) 
simulated by our original model. This adjustment is similar 
to and was done for the same reasons as those described for 
Simulations 2 and 6 in Cohen et al. (1990). 

Finally, units not in the response set were given biases so as 
to place their resting levels below the most sensitive point of 
their dynamic range, both at the output level and at the interme- 

Table 1 
Biases for  Output Units at Each Set Size 

Biases 

Set size Word reading Color naming 

Table 2 
Number of  Cycles to Respond by Task, Set Size, 
and Condition 

Condition 

Task/set size Congruent Neutra l  Incongruent 

Word reading 
2 23.4 24.2 24.3 
3 25.1 25.4 26.1 
4 26.3 27.2 27.5 

Color naming 
2 28.6 32.5 41.3 
3 30.1 35.3 44.2 
4 31.8 37.4 46.3 

diate level. We did this at the output level in exactly the same 
way as in Simulation 6 of Cohen et al. (1990): Units not in the 
response set had their biases set ~o 0.1 below the value required 
to produce an activation value of 0.5. We also performed a 
similar manipulation at the intermediate unit layer by adding a 
negative bias ( - 0 . 5 )  to units not in the stimulus set (this value 
Was arrived at by a limited parameter search).l 

Table 2 shows the response times of the simulation for each 
condition of each task and at each set size. A regression of the 
model's performance for a set size of two against the corre- 
sponding empirical data reveals an r 2 of .96. Figure 1 shows a 
regression of the model's performance against the data for all 
three set sizes tested in Kanne et al.'s (1998) empirical study 
(comparable to their Figure 9). The r 2 for this regression 
was .91. 

Figure 2 shows the mean response times by task and set size 
for both the empirical data and our simulation (comparable to 
Kanne et al.'s, 1998, Figures 8 and 7, respectively). The simula- 
tion produces a substantially better fit to the data than those 
reported by Kanne et al. In particular, it now shows that color- 
naming times increase rather than decrease with set size. These 
findings suggest that placing all task-relevant processing uni ts--  
at both the intermediate and output levels-- in the most sensitive 
part of their dynamic range can overcome at least some of the 
problems that Kanne et al. encountered. 

Nevertheless, the simulation still exhibits some problematic 
effects. Although color-naming times increase with set size, this 
effect is not as large as in the empirical data, and word-reading 
times may increase too much (see Figure 2). Kanne et al. 
(1998) observed similar effects in their simulations and attrib- 
uted this to the fact that the resting activation level of output 
units was lower than 0.5 in the larger networks. However, these 
effects persist in our simulations, even after the output units are 
placed in their most sensitive range, suggesting that Kanne et 
al.'s analysis of these effects may be incomplete. Their analysis 
focused on the nonlinearity of the activation function. However, 

2 1.630 1.010 
3 1.955 1.205 
4 2.280 1.399 

Note. Biases are for output units in the stimulus-response set. Re- 
maining units received a bias of 0.1 less than the value listed. 

Although we did not do this in our original model, we considered 
it to be justified in the current case because Kanne et al. (1998) manipu- 
lated both stimulus and response set sizes simultaneously (unlike the 
study simulated in Cohen et al., 1990, which manipulated only response 
set size). 
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there are also other factors that govern the dynamics of  pro- 
cessing in the model, including the effects of  the cascade (time- 
averaging) function and interactions between these and the acti- 
vation function (i.e., the difference between the accumulated 
activation of  the most active and next-most active units). A full 
analysis of  these effects, and how they might relate to set size 
effects, is beyond the scope of  the present discussion. We should 
note that there are also other problems with the behavior of  our 
simulation. For example, as Kanne et al. pointed out, it produces 
a greater amount of  facilitation in the congruent condition than 
is observed in their data, and this increases somewhat with set 
size. 

These shortcomings may or may not reflect fundamental prob- 
lems with our model. Determining this will require a more 
complete exploration than we or Kanne et al. (1998) have con- 
ducted. The purpose of  our current simulation was simply to 
point out that incorporating mechanisms that implement central 
principles of  our original theory improves the model 's  ability 
to account for the data. There are other implementational factors 
influencing the model 's  performance, factors that we identified 
in Cohen et al. (1990, Appendix, pp. 360 -361 )  and used to fit 
the model to the empirical data that might also be explored 
profitably in a more complete evaluation of  the model. These 
include the specific ratio of  training of  colors to words, the 
stopping criterion for training, and the size of  attentional influ- 
ences at the intermediate and output levels. Furthermore, as we 
noted in our original article (Cohen et al., 1990, pp. 360-361 ), 
there are also complex interdependencies among these 
parameters. 

For example, consider the relative amounts of  training given 
to words and colors. In Cohen et al. (1990, pp. 340, 360), we 
assumed that participants have had more experience with word 
reading than color naming. However, because there are no direct 
empirical data regarding this difference, the specific ratio of  
word-reading to color-naming training trials was treated as a 
free parameter, and a value was determined that produced the 
closest fit to empirical data concerning the relative speed of  
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Figure 1. Regression plot of our simulation results and the empirical 
data reported by Kanne, Balota, Spieler, and Faust (1998). The equation 
for the regression is response time = 12.6 cycles + 154, r 2 = .91. 

Figure 2. Influence of set size on response times for word reading and 
color naming. (A) Empirical data reported by Kanne, Balota, Spieler, 
and Faust (1998, Figure 8). (B) Results of our simulation. For both, 
values plotted are the means of the congruent, neutral, and incongruent 
conditions at each set size for each task. 

word reading versus color naming in the basic Stroop paradigm. 
This turned out to be 5:1 and was fixed across simulations of  
task variants. However, the ratio producing the best fit for a 2- 
2 network may not be best for larger networks. Furthermore, this 
parameter interacts with the strength of  the attentional effects at 
both the intermediate and output levels. We did not extensively 
explore these parameters in our current simulation. It may be 
that the remaining disparities concerning set size effects reflect 
the fact that, for larger networks, a value of  5:1 is too small. A 
larger ratio may be needed to capture the finding that word 
reading is less affected by manipulations of  set size than is 
color naming. Furthermore, we have not explored the effects of  
asymmetries in the number of  colors and words on which the 
network is trained, which was one motivation for Kanne et al.'s 
(1998) studies. These too may interact with set size effects 
(e.g., training on a greater number of  words than colors may 
help dilute set size effects for words).  2 

2 This raises an interesting methodological challenge--how best to 
determine the correct ratio when this depends on the size of the network, 
which itself is not precisely known for human subjects. However, this 
parameter dependency should not, by itself, be counted against the 
model. The relevant question is whether a reasonable training ratio (re- 
fleeting greater word-reading than color-naming experience, but not ab- 
surdly large) can be found for a network of a given size that produces 
the proper pattern of effects in the Stroop task and that can simulate 
performance across the range of task variants that has been studied. 
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Kanne et al. (1998) reported exploration of some of these 
implementational factors (e.g., training ratio, stopping criterion, 
and asymmetry in the number of colors and words).  However, 
they did not explore others (e.g., the strength of the attention 
effects). More important, their simulations did not include atten- 
tional mechanisms that implement a central principle of our 
theory (i.e., that all units in an attended pathway rest in the 
most sensitive range of  their activation function). Therefore, we 
believe it may be premature to reject the model on the basis of 
these studies. 

Our concern that Kanne et al. (1998) did not implement 
mechanisms relevant to set size effects that we proposed in 
Simulation 6 of  Cohen et al. (1990) might raise the reasonable 
question of why we did not use same mechanisms in Simulations 
1 -5  from our original study. Specifically, those simulations ig- 
nored issues of  set size, implementing a 2-2 model of  empirical 
studies that involved more than two stimuli in each dimension. 
The reason is that we chose the simplest model that could imple- 
ment the principles we considered to be relevant to the phenom- 
ena of  interest. We did this for the purposes of  both analytic 
and descriptive simplicity. Because none of the empirical studies 
addressed by Simulations 1 -5  manipulated set size, we did not 
consider this to be a relevant factor. Implementing a larger net- 
work in these simulations (to simulate a larger but fixed set 
size) would simply have required different but still constant 
values for the biases and attentional weights. Matters become 
more complicated, however, when set size is varied. Indeed, the 
purpose of  Simulation 6 was to show that set effects can be 
accommodated by the model, that this requires some additional 
mechanisms (e.g., bias adjustments ), but that these mechanisms 
are consistent with the central principles of  our theory. Simula- 
tion 6 used a larger network, and addressed response set effects, 
but did not directly examine the effects of  changing set size. 
Kanne et al. (1998) examined this directly and more thoroughly 
by manipulating stimulus as well as response set size. This 
highlights some of the complexities involved in attentional allo- 
cation when set size is varied. While acknowledging these com- 
plexities, our current simulation shows that by including the 
additional mechanisms proposed in Simulation 6, which are 
consistent with our original theory of  attention, our model is 
better able to account for Kanne et al.'s data. At the same time, 
this account is not perfect. Therefore, it is worthwhile to con- 
sider whether there are fundamental limitations to the model as 
we originally proposed it. In fact, we believe this is the case. 
In the section that follows, we briefly review recent work  that 
considers these limitations. 

Se t  S ize  Ef fec t s  and the M e c h a n i s m s  o f  Inh ib i t ion  

One feature of  our model that we have long felt requires 
modification is the use of  a strictly feed-forward processing 
architecture. Such an architecture suffers from several computa- 
tional limitations. Indeed, early models such as those of  
Grossberg ( 1978, 1980) and McClelland and Rumelhart ( 1981 ) 
used between-layer excitatory connections and within-layer in- 
hibitory connections. Although McClelland and Rumelhart al- 
lowed feed-forward inhibition, subsequent variants of the inter- 
active activation model (McClelland, 1985, 1993; McClelland & 
Elman, 1986) eliminated such connections entirely. 

Figure 3. A display that shows that three ambiguous characters can 
each constrain the identity of the others. 

Between-layer inhibition creates problems in connectionist 
networks containing " local is t"  uni ts - -uni ts  that serve as detec- 
tors for specific cognitive entities such as letters, words, or 
concepts such as the color green, and so forth. The problem 
arises whenever partial activation of  several alternatives is possi- 
ble at a particular layer of a processing system: Feed-forward 
inhibition can prevent exploiting these partial activations at the 
next layer, even when they are highly constraining at that layer. 
To see the problem, one can consider a simple version of the 
interactive activation model of  letter perception (McClelland & 
Rumelhart, 1981 ) with three positions so that words of three 
letters can be processed. Now suppose that an ambiguous stimu- 
lus like the one in Figure 3 is presented, activating two alterna- 
tives in each position: R or P in the first position, E or F in the 
second, and D or B in the fourth. For these inputs, there is 
only one word that fits one of  the alternatives in each position. 
However, if  activation of  each alternative at a given set of  units 
excites alternatives at the next level that it is consistent with, 
but also inhibits to the same extent alternatives at the next level 
that it is inconsistent with, there is no net excitation of any 
alternatives. 

The problem is easily overcome by eliminating the bottom- 
up inhibition and by using recurrent or lateral inhibition instead. 
This is implemented by providing mutual inhibitory connections 
from each'unit  within a layer to every other unit in the same 
layer. In this case, a number of  words will receive net bottom- 
up excitation, but only the unit for RED will be excited by one 
of the possibilities in all three positions. As shown in many 
simulations, lateral inhibitory influences will allow this best 
fitting alternative to win out, even when there are many compet- 
ing alternatives. For these and other reasons, McClelland ( 1993 ) 
and Usher and McClelland (1995) have begun to develop a 
general alternative to the cascade model of  McClelland (1979),  
which is a strictly feed-forward model of  the dynamics of infor- 
mation processing. In this new model, between-level connec- 
tions are only excitatory, and within-level connections are used 
to carry out a competitive, lateral inhibition process. 

Given the earlier discussion, one may wonder why, in Cohen 
et al. (1990),  we used feed-forward rather than recurrent inhibi- 
tion. There are two reasons. First, the simplest form of our model 
focused on the case in which there were only two diametrically 
opposed alternatives under consideration. In this situation, "evi -  
dence"  (represented by activation) supporting one alternative 
counts as equally strong evidence against the other alternative. 
Second, at the time we did our initial work, learning algorithms 
for connectionist networks were suitable for training strictly 
feed-forward networks, but not networks that exploit lateral or 
recurrent inhibition. We felt then, and still believe today, that 
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significant insight into the effects of gradual strengthening of 
connection weights could come from the analysis of the effects 
of learning in feed-forward networks. 

Ultimately, however, we do aspire to a more fully adequate 
model that makes use of recurrent rather than feed-forward 
inhibition, and we have taken several steps in this direction. In 
an initial effort, we developed a simplified recurrent version of 
the Stroop model and showed that it could account for the basic 
Stroop effects (Cohen & Huston, 1994). In more recent work 
(Usher & Cohen, 1997), we have developed a more refined 
version of this model to address the set size effects reported by 
Kanne et al. (1998) as well as other concerns that have been 
raised about our original model (e.g., Mewhort, Braun, & Heath- 
cote, 1992). Furthermore, we have used the same basic frame- 
work to account for performance in a variety of other attentional 
tasks, including the Eriksen flanker paradigm (Cohen, Servan- 
Schreiber, & McClelland, 1992), a spatial-cued reaction time 
task (Cohen, Romero, Farah, & Servan-Schreiber, 1994), and a 
variant of the continuous performance test (Braver, Cohen, & 
Servan-Schreiber, 1995). However, as Kanne et al. pointed out, 
an important remaining challenge for this work is to incorporate 
a learning mechanism that allows this new framework to provide 
the same integrated account of attentional and learning phenom- 
ena as our original model. 

Word Reading Versus Color Naming 

On the basis of the work just referred to, we remain strongly 
committed to the idea that connectionist models, especially 
those that include recurrent rather than feed-forward inhibition, 
can provide important insights into the mechanisms underlying 
attentional phenomena. Our account of performance in the 
Stroop task in which this form of model is used has the virtue 
not only of being explicitly mechanistic but also of being parsi- 
monious. One of the central points made in Cohen et al. (1990, 
pp. 353-354) was that findings widely thought to reflect the 
operation of qualitatively distinct processes can in fact be ac- 
counted for by qualitatively identical mechanisms. We recognize 
that this is a strong claim, particularly with regard to tasks such 
as word reading and color naming that would seem to differ in 
important ways. We also recognize that parsimony is not an 
infallible guide to the truth. We suspect, much as Kanne et al. 
(1998) did, that there are indeed important differences between 
word reading and color naming. However, for all of the reasons 
just described, it may still be possible to account for these 
processes in terms of qualitatively identical processing pathways 
in a connectionist model. This possibility has not fully been 
explored, either by using the original Cohen et al. architecture 
or by using network architectures that incorporate recurrent 
inhibition. 

This is the most literal interpretation of our claim: that Stroop 
effects "can be explained by differences in the strength of two 
processes that use qualitatively identical mechanisms" (Cohen 
et al., 1990, p. 353). However, even assuming this account fails, 
there is still an interesting and potentially important claim that 
could be made about the qualitative similarity of the processing 
pathways involved, at least with respect to the distinction be- 
tween automatic and controlled processing. Suppose, for exam- 
ple, that to explain the difference in Stroop effects between 

color naming and word reading, an extra stage of processing is 
required for color naming (e.g., an extra layer of intermediate 
units, representing the "meaning pathway" for colors, as sug- 
gested by Kanne et al., 1998, in their General Discussion sec- 
tion). Although the pathways involved in each task would no 
longer be identical, the mechanisms underlying both, and used 
to account for their behavior in the Stroop task, would still be 
qualitatively very similar. That is, no unique or qualitatively 
distinct mechanisms would have been invoked for color naming. 
Indeed, this is just the sort of account that has been proposed 
by Phaf, Van der Heiden, and Hudson (1990). This contrasts 
with the traditional theory that color naming is controlled, 
whereas word reading is automatic and that this difference in- 
volves qualitatively distinct mechanisms) 

There are also other possible differences between word read- 
ing and color naming. For example, it has been proposed that 
word reading is a task that can exploit the quasi-regularity of the 
mapping between spelling and sound (e.g., Plaut, McClelland, 
Seidenberg, & Patterson, 1996; Plaut & Shallice, 1993; Seiden- 
berg & McClelland, 1989), whereas color naming lacks this 
systematicity. Accordingly, the types of representations in each 
pathway may differ. Exactly how attentional influences of the 
sort we have proposed interact with such representational fac- 
tors has yet to be explored. However, it seems possible that such 
interactions will not be relevant to, or at least sufficient to ac- 
count for, the pattern of effects observed in the Stroop task, 
especially because such effects are observed even when other 
types of stimuli are used, such as pictures or spatial locations. 

Perhaps the most important point about Stroop-like effects 
made by our original model is that relative strength of processing 
is the critical factor in accounting for such effects, even when 
there may be other differences between the pathways involved. 
Strength of processing is a continuous variable, and our model 
suggests that quantitative differences in this variable may be 
sufficient to account for Stroop effects, in contrast to more 
traditional theories that have interpreted such effects in terms 
of a qualitative distinction in processing. Thus, although we 
believe that there may well be important, and even qualitative 
differences in color naming and word reading, these differences 
may not be relevant to, and should not obscure, the explanation 
that our model offers for Stroop effects. 

Finally, we would like to make it clear that we do not believe 
that performance in all tasks can be explained in terms of quali- 
tatively similar mechanisms. For example, we believe that dis- 
tinctly different mechanisms come into play when a task in- 
volves highly novel associations between stimuli and responses 
(see discussion of strategic processes and direct vs. indirect 
pathways in Cohen et al., 1990, pp. 347 and 354). Our point 
is simply that we do not believe that word reading and color 
naming differ in this particular way because both involve highly 
familiar sets of associations. 

3 Changing the number of layers in a given pathway might alter its 
susceptibility to control, but this is expected and explained by the princi- 
ples used in our original model (see discussions on pp. 354-355 and, 
in particular, p. 357 of Cohen et al., 1990). 
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C o n c l u s i o n  

In summary, we find the data presented by Kanne et al. (1998) 
to be interesting and of  significant value in calling into sharper 
focus the principles central to our original model and issues 
concerning their implementation. However, we differ in our con- 
clusion about the ability of  the principles we described in Cohen 
et al. (1990) to capture these data and find that augmenting the 
simulations reported by Kanne et al. with mechanisms that ad- 
here to these principles results in a much improved fit to their 
data. The most important of these is the allocation of  attention 
at all levels of  the network that act to place task-relevant units 
at the most sensitive part of their activation function. Kanne et 
al. did not implement this principle at the output level of  their 
network. At the same time, we recognize that the results of  our 
simulations are not perfect. We point to additional implementa- 
tional factors that could be explored (such as the specific ratio 
of  training of  colors to words, the stopping criterion for training, 
and the size of  attentional influences at the intermediate and 
output levels) and suggest that a more thorough evaluation of  
these might reveal whether our original model can fully account 
for the phenomena in question. In addition, we identify a princi- 
ple of  the original model - - feed- forward  inhibi t ion-- that  may 
face a fundamental limitation, and we discuss how our frame- 
work might be extended to address this through the use of  
recurrent inhibition. 

Finally, Kanne et al.'s (1998) data highlight an important 
challenge that a more general elaboration of  our theory faces, 
which concerns the mechanisms that determine the allocation 
of  attention. Although such mechanisms are beyond the scope of  
our original model, they relate closely to the kinds of  attentional 
effects that our model predicts and, therefore, warrant careful 
consideration in future work. We believe that the current ex- 
change has brought these issues into sharper focus and that it 
demonstrates how the scientific process is well served by the 
close interaction between carefully designed experimental stud- 
ies and efforts to capture the results of  such studies in explicit 
simulation models. 

Re fe rences  

Braver, T. S., Cohen, J. D., & Servan-Schreiher, D. (1995). A computa- 
tional model of prefrontal cortex function. In D. S. Touretzky, G. 
Tesauro, & T. K. Leen (Eds.), Advances in neural information pro- 
cessing systems (Vol. 7, pp. 141-148). Cambridge, MA: MIT Press. 

Cohen, J. D., Dunbar, K., & McClelland, J. L. (1990). On the control 
of automatic processes: A parallel distributed processing account of 
the Stroop effect. Psychological Review, 97, 332-361. 

Cohen, J. D., & Huston, T. A. (1994). Progress in the use of interactive 
models for understanding attention and performance. In C. Umilt3t & 
M. Moscovitch (Eds.), Attention and performance XV (pp. 1-19). 
Cambridge, MA: MIT Press. 

Cohen, J.D., Romero, R.D., Farah, M.J., & Servan-Schreiber, D. 
(1994). Mechanisms of spatial attention: The relation of macrostruc- 
ture to microstructure in parietal neglect. Journal of Cognitive Neuro- 
science, 6, 377-387. 

Cohen, J. D., Servan-Schreiber, D., & McClelland, J. L. (1992). A paral- 

lel distributed processing approach to automaticity. American Journal 
of Psychology, 105, 239-269. 

Dunbar, K., & MacLeod, C.M. (1984). A horse race of a different 
color: Stroop interference patterns with transformed words. Journal 
of Experimental Psychology: Human Perception and Performance, 
10, 622-639. 

Grossberg, S. (1978). A theory of human memory: Self-organization 
and performance of sensory-motor codes, maps, and plans. Progress 
in Theoretical Biology, 5, 233-374. 

Grossherg, S. (1980). How does the brain build cognitive code? Psycho- 
logical Review, 87, 1-51. 

Kanne, S.M., Balota, D.A., Spieler, D.H., & Faust, M.E. (1998). 
Explorations of Cohen, Dunbar, and McClelland's (1990) connec- 
tionist model of Stroop performance. Psychological Review, 105, 
174-187. 

McClelland, J. L. (1979). On the time relations of mental processes: 
An examination of systems of processes in cascade. Psychological 
Review, 86, 287-330. 

McClelland, J.L. (1985). Putting knowledge in its place: A scheme 
for programming parallel processing structures on the fly. Cognitive 
Science, 9, 113-146. 

McClelland, J. L. (1993). Toward a theory of information processing 
in graded, random, and interactive networks. In D.E. Meyer & S. 
Kornblum (Eds.), Attention and performance XIE" Synergies in exper- 
imental psychology, artificial intelligence, and cognitive neuroscience 
(pp. 655-688). Cambridge, MA: MIT Press. 

McClelland, J. L., & Elman, J. L. (1986). The TRACE model of speech 
perception. Cognitive Psychology, 18, 1-86. 

McClelland, J. L., & Rumelhart, D. E. (1981). An inl;eractive activation 
model of context effects in letter perception: Part I. An account of 
basic findings. Psychological Review, 88, 375-407. 

Mewhort, D. J. K., Braun, J.G., & Heathcote, A. (1992). Response- 
time distributions and the Stroop task: A test of Cohen, Dunbar, and 
McClelland's (1990) parallel distributed processing model. Journal 
of Experimental Psychology: Human Perception and Performance, 
18, 872-882. 

Phaf, R.H., Van der Heiden, A. H. C., & Hudson, E T. W. (1990). 
SLAM: A connectionist model for attention in visual selection tasks. 
Cognitive Psychology, 22, 273-341. 

Plant, D.C., McClelland, J.L., Seidenberg, M.S., & Patterson, K. 
(1996). Understanding normal and impaired word reading: Computa- 
tional principles in quasi-regular domains. Psychological Review, 103, 
56-115. 

Plant, D.C., & Shallice, T. (1993). Deep dyslexia: A case study of 
connectionist neuropsychology. Cognitive Neuropsychology, 10, 377- 
500. 

Seidenberg, M. S., & McClelland, J. L. (1989). A distributed, develop- 
mental model of word recognition and naming. Psychological Review, 
96, 523-568. 

Usher, M., & Cohen, J. D. (1997). A connectionist model of the Stroop 
task revisited: Reaction time distributions and differential effects on 
facilitation and interference captured by a single set of mechanisms. 
Manuscript in preparation. 

Usher, M., & McClelland, J. L. ( 1995 ). On the time course of perceptual 
choice: A model based on principles of neural computation (Tech. 
Rep. No. PDECNS.95.5), Department of Psychology, Carnegie Mel- 
lon University. 

Received March 4, 1997 
Revision received September 23, 1997 

Accepted September 24, 1997 • 


