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Abstract

Treating sentiment analysis as a classifica-
tion problem has proven extremely useful,
but it misses the blended, continuous nature
of sentiment expression in natural language.
Using data from the Experience Project, we
study texts as distributions over sentiment cat-
egories. Analysis of the document collection
shows the texts contain blended sentiment in-
formation substantially different from a cate-
gorization view of sentiment. We introduce a
statistical vector-space model that learns from
distributions over emotive categories, in addi-
tion to capturing basic semantic information
in an unsupervised fashion. Our model out-
performs several baselines in predicting senti-
ment distributions given only the text of a doc-
ument.

1 Introduction

Computational sentiment analysis is often reduced
to a classification task: each text is presumed to
have a unique label summarizing its overall senti-
ment, and the goal is to build models that accurately
predict those labels (Turney, 2002; Pang et al., 2002;
Pang and Lee, 2008). The most widely-used la-
bels are ‘positive’ and ‘negative’, with a third ‘neu-
tral’ category also commonly included (Cabral and
Hortaçsu, 2006). Sometimes this basic approach is
enriched to a ranked or partially-ranked set of cat-
egories — for example, star ratings of the sort that
are extremely common on the Web (Pang and Lee,
2005; Goldberg and Zhu, 2006; Snyder and Barzi-
lay, 2007). And there is a large body of work em-

ploying other categories: not only binary distinc-
tions like subjective vs. objective (Bruce and Wiebe,
1999; Wiebe et al., 1999; Hatzivassiloglou and
Wiebe, 2000; Riloff and Wiebe, 2003; Riloff et al.,
2005; Pang and Lee, 2004) and pro vs. con (Thomas
et al., 2006), but also rich multidimensional category
sets modeled on those of cognitive psychology (Liu
et al., 2003; Alm et al., 2005; Wiebe et al., 2005;
Neviarouskaya et al., 2010).

While treating sentiment as a classification prob-
lem is extremely useful for a wide range of tasks, it
is just an approximation of the sentiment informa-
tion that can be conveyed linguistically. The cen-
tral assumption of the classification approach is that
each text is uniquely labeled by one of the cate-
gories. However, human reactions are often nu-
anced, blended, and continuous (Russell, 1980; Ek-
man, 1992; Wilson et al., 2006). Consider, for ex-
ample, this short ‘confession’ text from the website
ExperienceProject.com:

I have a crush on my boss! *blush* eeek
*back to work*

At the Experience Project, users can react to texts
by clicking buttons summarizing a range of emo-
tions: ‘sorry, hugs’, ‘that rocks’, ‘tee-hee’, ‘I under-
stand’, and ‘wow, just wow’. At the time of this writ-
ing, the above confession had received the following
distribution of reactions: ‘that rocks’: 1, ‘tee-hee’:
1, ‘I understand’: 10, and ‘wow, just wow’: 0. This
corresponds well to the mix of human responses we
might expect this text to elicit: it describes a so-
cially awkward and complex situation, which pro-
vokes sympathetic reactions, but the text is light-



hearted in tone and thus likely to elicit less weighty
rections as well. The comments on the confession
reflect the summary offered by the reaction distribu-
tion: some users tease (“Oooooooooo. . . . i’m tel-
llin!!! lol”) and others offer encouragement (“you
go and get that man. . . ”).

In this paper, we develop an approach that al-
lows us to embrace the blended, continuous na-
ture of human sentiment judgments. Our primary
data are about 37,000 confessions from the Experi-
ence Project with associated reaction distributions.
We focus on predicting those reaction distributions
given only the confession text. This problem is
substantially more challenging than simple classifi-
cation, but we show that it is tractable and that it
presents a worthwhile set of new questions for re-
search in linguistics, natural language processing,
and machine learning.

At the heart of our approach is a model that learns
vector representations of words. The model has both
supervised and unsupervised components. The un-
supervised component captures basic semantic in-
formation distributionally. However, this document-
level distributional information misses important
sentiment content. We thus rely on our labeled data
to imbue the word vectors with rich emotive infor-
mation.

Visualization of our model’s learned word rep-
resentations shows multiple levels of word similar-
ity (supplementary diagram A). At the macroscopic
level, words are grouped into large clusters based on
the reaction distributions they are likely to elicit, rel-
fecting their sentiment connotations. Within these
macroscopic clusters, words with highly related de-
scriptive semantic content form sub-structures.

We evaluate our model based upon how well it
predicts the reaction distributions of stories, but we
also report categorization accuracy as a point of ref-
erence. To assess the impact of learning represen-
tations specifically for sentiment, we compare our
model with several alternative techniques and find it
performs significantly better in experiments on the
Experience Project data.

2 Data

As noted above, our data come from the website Ex-
perienceProject.com (EP). The site allows users to

Category Clicks

‘sorry, hugs’ 22,236 (19%)
‘you rock’ 25,416 (22%)

‘teehee’ 16,052 (14%)
‘I understand’ 42,352 (37%)

‘wow, just wow’ 9,745 (8%)

Table 1: Overall distribution of reactions.

upload a variety of different kinds of texts, to com-
ment on others’ texts, and to contribute to annotat-
ing the texts with information about their reactions.
We focus on the ‘confessions’, which are typically
short, informal texts relating personal stories, atti-
tudes, and emotions. Here are two typical confes-
sions with their associated reactions:

I really hate being shy . . . I just want to
be able to talk to someone about anything
and everything and be myself. . . That’s all
I’ve ever wanted. [understand: 10; hugs:
1; just wow: 0; rock: 1; teehee: 2]

subconsciously, I constantly narrate my
own life in my head. in third person. in
a british accent. Insane? Probably [under-
stand: 0; hugs: 0; just wow: 1; rock: 7;
teehee: 8]

Our data consist of 37,146 texts (3,564,039
words; median text length of 56 words). Table 1
provides some basic information about the overall
distribution of reactions. They are highly skewed
towards the category ‘I understand’; the stories are
confessional, so it is natural for readers to be sympa-
thetic in response. The ‘wow, just wow’ category is
correspondingly little used, in virtue of the fact that
it is largely for negative exclamation (its associated
emoticon has its mouth and eyes wide open). Such
reactions are reserved largely for extremely trans-
gressive or shocking information.

We have restricted attention to the texts with at
least one reaction. Table 2 summarizes the amount
of reaction data present in this document collec-
tion, by measuring cut-offs at various salient points.
When analyzing the reaction data, we normalize the
counts such that the distribution over reactions sums
to 1. This allows us to treat the reaction data as a



Reactions Texts

> 1 37, 146
> 2 24, 179
> 3 15, 813
> 4 10, 537
> 5 7, 073

Table 2: Reaction counts.

probability distribution, ignoring differences in the
raw number of counts stories receive.

There are many intuitive correlations between
the authors’ word choices and readers’ reaction re-
sponses (Potts, 2010). Figure 1 illustrates this effect
with words that show strong affinities to particular
reaction types. Each panel depicts the distribution
of the word across the rating categories. These were
derived by first estimating P (w|c), the probability of
word w given class c, and then obtaining P (c|w) by
an application of Bayes rule under the assumption of
a uniform prior over the classes. (Without this uni-
formity assumption, almost all words appear to asso-
ciate with the ‘understand’ category, which is about
four times bigger than the others; see table 1.) The
gray horizontal line is at 0.20, the expected proba-
bility if there is no association between the word’s
usage and the reaction categories.

The first panel in figure 1 depicts awesome. As
one might expect, this correlates most strongly with
the ‘rocks’ and ‘teehee’ categories; stories in which
one uses this word are likely to be perceived as posi-
tive and light-hearted (especially as compared to the
usual EP fare). Conversely, terrible, in the second
plot, correlates with ‘hugs’ and ‘understand’; when
an author describes something as terrible, readers re-
act with sympathy and solidarity. The final panel
depicts cocaine, one of a handful of words in the
corpus that generate predominantly ‘wow, just wow’
reactions. We hope these examples help convey the
nature of the reaction categories and also suggest
that it is promising to try to use these data to learn
sentiment-rich word vectors.

Finally, we address the question of how much the
distributions matter as compared with a categori-
cal view of sentiment. If the majority of the texts
in the data received categorical or near-categorical
responses, we might conclude that classification is

an appropriate modeling choice. Conversely, if the
texts tend to receive mixed reactions, then we are
justified in adopting our more complex approach.
Figure 2 assesses this using the entropy of the re-
action distributions. Where the entropy is zero, just
one category was chosen. Where the entropy is
around two, the reactions were evenly distributed
across the categories. As is evident from this plot,
the overall picture is far from categorical; about one-
third of the texts have a non-negligible amount of
variation in their distributions. What’s more, this
picture is somewhat misleading. As table 2 shows,
the majority of our texts have just one reaction. If we
restrict attention to the 7,073 texts with at least five
reactions, then the entropy values are more evenly
distributed, with an entropy of zero far less domi-
nant, as in figure 2(b). Thus, these texts manifest
the blended, continuous nature of sentiment that we
wish to model.
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(b) Texts with > 5 reactions.

Figure 2: The entropy of the reaction distributions.

3 Model

We introduce a model that captures semantic asso-
ciations among words as well as the blended distri-
butional sentiment information conveyed by words.
We assume each word is represented by a real-
valued vector and use a probabilistic model to learn
words’ vector representations from data. The learn-
ing procedure uses the unsupervised information of
document-level word co-occurrences as well as the
reaction distributions present in EP data.

Our work fits into the broad class of vector space
models (VSMs), recently reviewed by Turney and
Pantel (2010). VSMs capture word relationships
by encoding words as points in a high-dimensional
space. The models are both flexible and powerful;
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Figure 1: Word–category associations in the EP data.

depending on the application, the vector space can
encode syntactic information, as is useful for named
entity recognition systems (Turian et al., 2010), or
semantic information, as is useful for information
retrieval or document classification (Manning et al.,
2008). Most VSMs apply some sort of matrix fac-
torization technique to a term-context co-occurrence
matrix. However, the success of matrix factorization
techniques for word vectors often depends heavily
on the choices one makes for weighting the entries
(for example, with inverse document frequency of
words). Thus, the process of building a VSM re-
quires many design choices, often with only past
empirical results as guidance. This challenge is mul-
tiplied when building representations for sentiment
because we want word vectors to capture both de-
scriptive and emotive meanings. The recently intro-
duced delta inverse document frequency weighting
technique has had some success in binary sentiment
categorization (Martineau and Finin, 2009), but it
does not naturally handle multi-dimensional notions
of sentiment.

Our recent work seeks to address these design is-
sues. In Anonymous (2011), we introduce a prob-
abilistic model for learning semantically-sensitive
word vectors. In the present paper, we build off
of this probabilistic model of documents, because it
helps avoid the large design space present in matrix
factorization-based VSMs, but we extend its sen-
timent component considerably. Whereas we pre-
viously learned only from unique labels, we are
now able to capture the multi-dimensional, non-

categorical notion of sentiment that is expressed in
the EP data. In the following sections, we intro-
duce the semantic and sentiment components of the
model separately, and then describe the procedure
for learning the model’s parameters from data.

3.1 Semantic Component
We approximately capture word semantics from a
collection of documents by analyzing document-
level word co-occurrences. This semantic compo-
nent uses a probabilistic model of a document as in-
troduced in our previous work (Anonymous, 2011).
The model uses a continuous mixture distribution
over words indexed by a multi-dimensional random
variable θ. Informally, we can think of each dimen-
sion of a word vector as a topic in the sense of topic
modeling. The document coefficient vector θ thus
encodes the strength of each topic for the document.
A word’s probability in the document then corre-
sponds to how strongly the word’s topic strengths
match those defined by θ.

We assign a probability to a document d using
a joint distribution over the document and θ. The
model assumes each word wi ∈ d is conditionally
independent of the other words given θ, a bag of
words assumption often used when learning from
document-level co-occurrences. The probability of
a document is thus,

p(d) =

∫
p(d, θ)dθ =

∫
p(θ)

N∏
i=1

p(wi|θ)dθ, (1)

where N is the number of words in d and wi is the



ith word in d.
The conditional distribution p(wi|θ) is defined us-

ing a softmax distribution,

p(w|θ;R, b) = exp(θTφw + bw)∑
w′∈V exp(θTφw′ + bw′)

. (2)

The parameters of the model are the word repre-
sentation matrix R ∈ R(β x |V |) where each word
w (represented as a one-on vector) in the vocab-
ulary V has a β-dimensional vector representation
φw = Rw corresponding to that word’s column in
R. The random variable θ is also a β-dimensional
vector, which weights each of the β dimensions of
words’ representation vectors. A scalar bias bw for
each word captures differences in overall word fre-
quencies. The probability of a word given the doc-
ument parameter θ corresponds to how strongly that
word’s vector representation φw matches the scaling
direction of θ.

Equation 1 resembles the probabilistic model of
latent Dirichlet allocation (LDA) (Blei et al., 2003),
which models documents as mixtures of latent top-
ics. However, our model does not attempt to model
individual topics, but instead directly models word
probabilities conditioned on the topic mixture vari-
able θ. Our previous work compares the word vec-
tors learned with our semantic component to an ap-
proach which uses LDA topic associations as word
vectors. We found the word vectors learned with
our model to be superior in tasks of document and
sentence-level sentiment classification.

Maximum likelihood learning in this model as-
sumes documents dk in a collectionD are i.i.d. sam-
ples. The learning problem of finding parameters to
maximize the probability of observed documents be-
comes,

max
R,b

p(D;R, b) =
∏
dk∈D

∫
p(θ)

Nk∏
i=1

p(wi|θ;R, b)dθ.

(3)

Using maximum a posteriori (MAP) estimates for θ,
we approximate this learning problem as,

max
R,b

∏
dk∈D

p(θ̂k)

Nk∏
i=1

p(wi|θ̂k;R, b), (4)

where θ̂k denotes the MAP estimate of θ for dk. Our
previous work used a Gaussian prior for θ. In our
present experiments we explore both Gaussian and
Laplacian priors. The Laplacian prior is intuitively
appealing because it encourages sparsity, where cer-
tain entries of θ are exactly zero as opposed to small
non-zero values as is the case when using Gaussian
priors. These exactly zero values correspond to topic
dimensions which are not at all present in the seman-
tic representation of a word.

3.2 Sentiment Component

We now introduce the second component of our
model, which aims to capture the multi-dimensional
sentiment information expressed by words. Unlike
topical information, sentiment is not easy to learn
by analyzing document-level word co-occurrences
alone. For this reason, we use the reaction dis-
tributions of documents to capture how words in
the document express multi-dimensional sentiment
information. Our previous work demonstrated the
value of learning sentiment-sensitive word represen-
tations for the simplistic binary categorization no-
tion of sentiment. We now introduce a method to
learn word vectors sensitive to a continuous multi-
dimensional notion of sentiment.

Our model dictates that a word vector φ should
predict the reaction distribution of documents in
which that word occurs using an appropriate predic-
tor function. Because the reaction distributions are
categorical probability distributions, we use a soft-
max model,

ŝk =
exp(ψTk φ+ ck)∑
k′ exp(ψ

T
k′φ+ ck′)

(5)

The value ŝk is the probability predicted for the kth

sentiment dimension for a given word vector φ. The
softmax weight vectors ψk serve to partition the vec-
tor space into K regions where each region corre-
sponds to a particular sentiment dimension. The pre-
dicted reaction distribution for a word thus depends
on where that word lies in the vector space relative
to the regions defined by ψ.

For EP data, a document d is associated with its
reaction distribution s, which is a five-dimensional
categorical probability distribution (K = 5). The
softmax parameters ψ ∈ RK xβ and c ∈ RK are



shared across all word vectors as to create a sin-
gle set of emotive regions in the word vector space.
The softmax predicts a reaction distribution for each
word, and we learn the softmax parameters as well
as the word vectors to match the observed reaction
distributions.

The predicted and actual reaction distributions are
categorical probability distributions, so we use the
Kullback-Leibler (KL) divergence as a measure of
how closely the predicted distribution matches the
actual. Given the actual distribution s and a predic-
tion for this distribution ŝ the KL divergence is,

KL(ŝ||s) =
K∑
k=1

sk log
sk
ŝk
. (6)

Learning this component of the model amounts to
finding word vectors as well as softmax parame-
ters to minimize the KL divergence between reaction
distributions of observed documents and the pre-
dicted reaction distributions of words occurring in
the documents. We can formally express this as,

min
R,ψ,c

∑
dk∈D

Nk∑
i=1

KL(ŝwi ||s), (7)

where ŝwi is the predicted reaction distribution for
word wi as computed by (5). To ensure identifi-
ability of the softmax parameters ψ we constrain
ψK = 0

3.3 Learning
We now describe the method to learn word vectors
using both the semantic and sentiment components
of the model. The learning procedure for the se-
mantic component minimizes the negative log of the
likelihood shown in equation (4). The sentiment
component is then additively combined to form the
full learning problem,

min
R,b,ψ,c

λ||R||2F +
∑
dk∈D

Nk∑
i=1

KL(ŝwi ||s)

−

 |D|∑
k=1

log p(θ̂k) +

Nk∑
i=1

log p(wi|θ̂k;R, b)

 . (8)

We add to the objective Frobenious norm regular-
ization on the word representation matrix R to pre-
vent the word vector norms from growing too large.

We minimize the objective function for several it-
eration using the L-BFGS quasi-Newton algorithm
while leaving the MAP estimates θ̂ fixed. The MAP
estimates are then updated while leaving the other
parameters of the model fixed. This process contin-
ues until the objective function value converges.

Our work explores both a Gaussian and a Lapla-
cian prior for θ. The log-Gaussian prior corre-
sponds to a squared `2 (sum of squares,

∑
i x

2
i )

penalty on θ whereas the Laplacian prior corre-
sponds to an `1 (sum of absolute values,

∑
i |xi|)

penalty. Both priors have a single free parame-
ter λ which is proportional to the variance of the
prior distribution. This regularization parameter λ
and the word vector dimensionality β are the only
free hyper-parameters of the model. Because opti-
mizing the non-differentiable `1 penalty is difficult
with gradient-based techniques we approximate the
`1 penalty with the function log cosh(θ).

4 Experiments

Our experiments focus on predicting the reaction
distribution given the text of a document. We em-
ploy several baseline approaches to assess the rel-
ative performance of our model. As shown in fig-
ure 2, the reaction distributions of stories which re-
ceived at least five reactions have higher entropy on
average than the set which includes stories with only
one reaction or more. The higher entropy reaction
distributions are of greater interest because predict-
ing such distributions is substantially more challeng-
ing than predicting a low entropy distribution, which
is more like the categorization approach of previous
work. We evaluate models on both the set of texts
with at least one reaction, and the set of texts with
five or more reactions.

After collecting the text and reaction distributions
from the Web, we tokenized all documents with at
least one reaction. Traditional stop word removal
was not used because certain stop words (e.g. nega-
tions) are indicative of sentiment. To minimize the
amount of text pre-processing, we did not apply
stemming or spelling correction. Because certain
non-word tokens (e.g. “!” and “:-)” ) are indicative
of sentiment, we allow them in our vocabulary. Af-
ter this tokenization, the dataset consists of 52,973
unique unigrams, many of which occur only once



because they are unique spellings of words (e.g.
“hahhhaaa” ). The collection of 37,146 documents is
reduced to 37,130 when we discard documents with
no tokens recognized by our tokenizer. Most stories
fall around the median length of 56 words, however,
a few are thousands of words long. We randomly
partitioned the data into 30,000 training and 7,130
test documents. When we consider documents with
at least five reactions, this becomes 5,764 training
and 1,307 test documents.

4.1 Word Representation Learning
We induce word representations with our model us-
ing the learning procedure described in section 3.3.
We construct word representations for only the
5,000 most frequent tokens in the training data. This
speeds computation and avoids learning uninforma-
tive representations for rare words for which there
is insufficient data to properly assess their semantic
and sentiment associations. We use the 29,591 doc-
uments from our training set with length at least five
when the vocabulary is restricted to the 5,000 most
frequent tokens. The reaction distributions for doc-
uments are used when learning the sentiment com-
ponent of the model. Our model could leverage ad-
ditional unlabeled data from related websites to bet-
ter capture the semantic associations among words.
However, we restrict the model to learn from only
the labeled training set in order to better compare it
to baseline models for this task.

For both the Gaussian and Laplacian models, we
evaluate 100-dimensional word vectors and set the
regularization parameter λ = 10−4. Our previous
work and preliminary experiments with this dataset
suggested the learned word vectors are relatively in-
sensitive to changes in these parameters.

Supplementary diagram A shows a 2-D visualiza-
tion of the learned word similarities for the 2,000
most frequent words in our vocabulary. The visual-
ization was created using the t-SNE algorithm, with
code provided by van der Maaten and Hinton (2008).
Word vectors are cosine normalized before passing
them to the t-SNE algorithm.

The visualization clearly shows words grouped
locally by semantic associations — for example,
“doctor” and “medication” are nearby. Additionally,
there is some evidence that the macroscopic struc-
ture of the words correlates with how they influence

reaction distributions. A cluster of words containing
playful, upbeat tokens like “:-)” and “haha” are all
likely to appear in stories which elicit the rock or tee-
hee reactions. Far removed from such happy words
are clusters of words indicative of melancholic sub-
jects, marked by words like “cancer” and “suicide.”
We note that sad and troubling topics are highly
prevalent in the data, and our visualization reflects
this fact.

After learning the word representations, we rep-
resent documents using average word vectors. This
approach uses the arithmetic average of the word
vectors for all words which appear in the document.
Because we learn word vectors for only the 5,000
most frequent words, a small fraction of the docu-
ments contain only words for which we do not have
vector representations. These documents are repre-
sented as a vector of all zeros.

4.2 Alternative Methods

In addition to the vectors induced using our model,
we evaluate the performance of several standard ap-
proaches to document categorization and informa-
tion retrieval.

Unigram Bag of Words Representing a document
as a vector of word counts performs surprisingly
well in many classification tasks. In our preliminary
experiments, we found that term presence performs
better than term frequency on EP data, as noted
in previous work on sentiment (Pang et al., 2002).
We also note that delta inverse document frequency
weighting, which has been shown to sometimes per-
form well in sentiment (Martineau and Finin, 2009),
does not extend easily to multi-dimensional notions
of sentiment. We thus use term presence vectors
with no normalization and evaluate with the full vo-
cabulary of the dataset and the 5,000 word vocabu-
lary used in building word vectors.

Latent Semantic Analysis (LSA) We apply trun-
cated singular value decomposition to a term-
document count matrix to obtain word vectors from
LSA (Deerwester et al., 1990). We first apply tf.idf
weighting to the term-document matrix, but do not
use cosine normalization. We use the same 5,000
word vocabulary as is used when constructing word
vectors for our model.



> 5 reactions > 1 reaction
Features KL Max Acc. KL Max Acc.

Uniform Reactions 0.861 20.2 1.275 20.4
Mean Training Reactions 0.763 43.0 1.133 46.7
Bag of Words (All unigrams) 0.637 56.0 1.000 53.4
Bag of Words (Top 5000 unigrams) 0.640 54.9 0.992 54.3
LSA 0.667 51.8 1.032 52.2
Our Method Laplacian Prior 0.621 55.7 0.991 54.7
Our Method Gaussian Prior 0.620 55.2 0.991 54.6

Table 3: Test set performance.

4.3 High Entropy Reaction Distributions

Our first experiment considers only the examples
with at least five reaction clicks, because they best
exhibit the blended distributional notion of senti-
ment of interest in this work. For all of the fea-
ture sets described (mean word vectors and bag of
words), we train a softmax classifier on the train-
ing set. The softmax classifier is a predictor of the
same form as is described in equation (5), but with
a quadratic regularization penalty on the weights.
The strength of the regularization penalty is set by
cross-validation on the training set. The classifier is
trained to minimize the KL divergence of predicted
and actual distributions on the training set. We then
evaluate the models by measuring average KL diver-
gence on the test set.

We also report performance of models in terms
of accuracy in predicting the maximum probability
reaction for a document. In this setting, the model
picks a single category corresponding to its most
probable predicted reaction. A prediction is counted
as correct if that category is the most probable in
the true reaction distribution, or if it is tied with
other categories for the role of most probable. None
of the models were explicitly optimized to perform
this task, but instead to predict the full distribution
of reactions. However, it is helpful to compare this
performance metric to KL divergence, as measuring
performance in terms of accuracy is more familiar.
Table 3 shows the results; recall that lower average
KL divergence indicates better performance.

All bag of words and vector space models beat the
simplistic baselines of predicting the average reac-
tion distribution, or a uniform distribution. The im-

provements in both KL divergence and accuracy are
substantial relative to these simplistic baselines, sug-
gesting that it is indeed feasible to predict reaction
distributions from text. Both variants of our model
perform better than bag of words and LSA in KL
divergence, but bag of words performs best using
the accuracy as the metric. That the accuracy and
KL metrics disagree on models’ performance rank-
ings suggests categorization accuracy is not a suf-
ficient indicator of how well models capture a dis-
tributional notion of sentiment. Based on the poor
performance of LSA-derived word vectors, we hy-
pothesize that learning representations using senti-
ment distributions is critical when attempting to cap-
ture the blended sentiment information within docu-
ments.

Differences in KL divergence are somewhat diffi-
cult to interpret, so we use a matched t-test to eval-
uate their significance. The matched t-test between
two models takes the KL divergence for each test
example and evaluates the hypothesis that the KL
divergence numbers come from the same distribu-
tion. KL divergences on the set of test examples
are approximately gamma distributed with a valid
range of [0,∞]. We thus apply the matched t-test to
the logarithm of the KL divergences, which have a
Gaussian distribution as assumed by the t-test. We
find that the difference in KL divergence between
our models and the bag of words models are sig-
nificant (p < 0.001). However, the Gaussian and
Laplacian prior variants of our model do not differ
significantly from each other. The prior over doc-
ument coefficients perhaps has little effect relative
to the other components of our model, causing both



model variants to perform comparably.

4.4 All Reaction Distributions

We repeated the experimental procedure using the
full dataset which includes all documents with at
least one reaction. As noted in figure 2, these reac-
tion distributions have low average entropy because
a large number of documents have only a few re-
actions. Distribution predictors for all models were
trained and evaluated on this dataset; table 3 shows
the results.

Again all models outperform the naive baselines
of guessing the average training distribution or a uni-
form distribution. A third baseline (not show) which
assigns 99% of its probability mass to the dominant
understand category performs substantially worse
than all results shown. Although the difference in
KL divergence between our models and the bag of
words baselines are numerically small, the improve-
ment of our models is significant as measured by the
matched t-test (p < 0.001). The significance of such
small differences is due to the large testing set size.
Again the Gaussian and Laplacian variants of our
model do not differ significantly from each other in
performance.

We see that all models have a higher average KL
divergence on this task as compared to evaluation
on the set of documents with at least five reactions.
As shown in table 2, reaction distributions with zero
entropy dominate this version of the dataset. We
hypothesize that the higher average KL divergences
and small numerical differences in KL divergence
are largely due to all predictors struggling to fit these
zero entropy distributions which were formed with
only one reaction click.

5 Conclusion

Using the confessions at the EP, we showed that nat-
ural language texts often convey a wide range of sen-
timent information to varying degrees. While classi-
fication models can capture certain emotive dimen-
sions, they miss this blended, continuous nature of
sentiment expression. Building on the existing clas-
sifier model of Anonymous (2011), we developed
a vector-space model that learns from distributions
over emotive categories, in addition to capturing ba-
sic semantic information in an unsupervised fash-

ion. The model is successful in absolute terms, sug-
gesting that learning realistic sentiment distributions
is tractable, and it also outperforms various base-
lines, including LSA. We believe the task of predict-
ing sentiment distributions from text provides a rich
challenge for the field of sentiment analysis, espe-
cially when compared to simpler classification tasks.
Going forward, we plan to move beyond the lexical
level to capture the ways in which sentiment is in-
fluenced by compositional semantic facts (e.g., in-
teraction with negation and other non-veridical op-
erators), which we expect to provide further insights
into the complexities of sentiment expression.
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