Dependency Forest for Sentiment Analysis

Zhaopeng Tu*, Wenbin Jiang, Qun Liu, and Shouxun Lin

Key Laboratory of Intelligent Information Processing,
Institute of Computing Technology, CAS, Beijing, China
{tuzhaopeng, jiangwenbin,liuqun,sxlin}@ict.ac.cn

Abstract. Dependency Grammars prove to be effective in improving
sentiment analysis, because they can directly capture syntactic relations
between words. However, most dependency-based systems suffer from
a major drawback: they only use 1-best dependency trees for feature
extraction, which adversely affects the performance due to parsing errors.
Therefore, we propose an approach that applies dependency forest to
sentiment analysis. A dependency forest compactly represents multiple
dependency trees. We develop new algorithms for extracting features
from dependency forest. Experiments show that our forest-based system
obtains 5.4 point absolute improvement in accuracy over a bag-of-words
system, and 1.3 point improvement over a tree-based system on a widely
used sentiment dataset. Our forest-based system also achieves state-of-
the-art performance on the sentiment dataset.

Keywords: dependency forest, sentiment analysis.

1 Introduction

Dependency grammars have received a lot of attention in sentiment analysis
(SA). One important advantage of dependency grammars is that they can di-
rectly capture syntactic relations between words, which are key to resolving most
parsing ambiguities. As a result, employing dependency trees produces substan-
tial improvements in sentiment analysis [T2J6JT0].

However, most dependency-based systems suffer from a major drawback: they
only use 1-best dependency trees for feature extraction, which adversely affects
the performance due to parsing errors(93% [8] and 88% [3] accuracies for English
and Chinese on standard corpora respectively). To make things worse, sentiment
corpora usually consist of noisy texts from web, which will lead to a much lower
parsing quality. As we will show, the tree-based systems still commits to using
features extracted from noisy 1-best trees. Due to parsing error propagation,
many useful features are left out of the feature set.

To alleviate this problem, an obvious solution is to offer more alternatives.
Recent studies have shown that many tasks in natural language processing can
benefit from widening the annotation pipeline: using packed forests [I3] or de-
pendency forests [20] instead of 1-best trees for statistical machine translation,

* Corresponding author.

M. Zhou et al. (Eds.): NLPCC 2012, CCIS 333, pp. 69-[T7] 2012.
(© Springer-Verlag Berlin Heidelberg 2012

70 Z. Tu et al.

packed forests for semantic role labeling [22], forest reranking for parsing [2],
and word lattices reranking for Chinese word segmentation [4].

Along the same direction, we propose an approach that applies dependency
forest, which encodes exponentially many dependency trees compactly, for tree-
based sentiment classification systems. In this paper, we develop a new algo-
rithm for extracting features from dependency forest. Experiments show that
our forest-based system obtains 5.4 point absolute improvement in accuracy over
a bag-of-words system, and 1.3 point improvement over a tree-based system on
a widely used sentiment dataset [I§].

2 Related Work

Our research builds on previous work in the field of sentiment classification and
forest-based algorithms. For sentiment classification, the design of lexical and
syntactic features is a fundamental step. There has been an increasing amount
of work on feature-based algorithms for this problem. Pang and Lee [I§] and
Dave et al. [9] represent a document as a bag-of-words; Matsumoto et al. [12]
extract frequently occurring connected subtrees from dependency parsing; Joshi
and Penstein-Ros’e [6] use a transformation of dependency relation triples; Liu
and Seneff [I0] extract adverb-adjective-noun relations from dependency parser
output while Wu et al. [2I] extract features from phrase dependency parser.

Previous research has convincingly demonstrated forests ability to offer more
alternatives, which is useful to solving parsing error propagation problem, and
has led to improvements in various NLP tasks, including statistical machine
translation [I3120], semantic role labeling [22], and parsing [2].

3 Background

In this section, we present the baseline system that extracts features from 1-best
dependency trees.

Figure [[(a) shows a dependency tree of the English sentence the film is
sick, slick fun. The dependency tree expresses relation between words by head-
dependents relationships of nodes. The arrow points from the dependent to its
head. For example, in Figure [[l(a), fun is the head of slick.

Inspired by the previous work [12], we extract connected subtrees from depen-
dency trees. A connected subtree is a more general form obtained by removing
zero or more nodes from the original dependency tree. Figure [[(b) shows some
examples. The top left subtree is obtained by removing the node slick, and the
bottom left subtree is obtained by further removing the node the.

Recent studies show that this kind of partial subtrees could capture the syntac-
tic information between words quite well [I2/T45]. For example, in Figure [Iib),
to express the relation between the words film and fun, a subtree ¢ does not
only show the co-occurrence of film and fun, but also make sure that they are
syntactically connected by the word is.

Dependency Forest for Sentiment Analysis 71

film sick R fun film fun
film sick , fun T ----------------
T T the
the slick is is
film sick R fun film sick
(@ (b)

Fig. 1. A dependency tree of the sentence the film is sick, slick fun and examples of
corresponding dependency substructures

Since the number of dependency features tends to be very large, we only
remain the features that occur frequently in the corpus.

4 Dependency Forest

As the tree-based system relies on 1-best trees, the quality of features might
be affected by parsing errors and therefore ultimately results in classification
mistakes. We propose to encode multiple dependency trees in a compact rep-
resentation called dependency forest, which provides an elegant solution to the
problem of parsing error propagation.

Figure (a) and 2(b) show two dependency trees for the example English
sentence in Figure [[I The word sick can either be an adjective as an attribute
of the film, or be a modificatory word like slick for the word fun. The two
dependency trees can be represented as a single dependency forest by sharing
common nodes and edges, as shown in Figure 2(c).

Each node in a dependency forest is a word. We assign a span to each node to
distinguish among nodes. For example, the span of the word sick is (3,4) because
it is the fourth word in the sentence. Since the seventh word fun dominates the
word slick, the span is (5,7). Note that the position of fun itself is taken into
consideration.

The nodes in a dependency forest are connected by hyperedges. While a
edge in a dependency tree points from a dependent to its head, a hyperedge
groups all dependents of their common head. For example, the hyperedge es:

€2: <i50,7, (ﬁlmo,vaun?,,?»

denotes that both filmg , and fung , are dependents of the head isp 7.
Formally, a dependency forest is a pair (V| E), where V is a set of nodes,
and F is a set of hyperedges. For a given sentence wi., = wy ... wy, each node

72 Z. Tu et al.

isg; sy
ﬂ\
filmy, sicky, 45 funs, film,, funs ;
T
thlo,1 sli(]ki6 ‘[hTe(L1 sicks, ,45 slicksg
(a) (b)

(©)

Fig. 2. (a) the dependency tree in Figure 1, (b) another dependency tree for the same
sentence, and (c) a dependency forest compactly represents the two trees.

v € V is represented as w; j, denoting that the word w dominates the substring
Wit1 ... w;. Bach hyperedge e € E is a pair (head(e), tails(e)), where head(e) €
V is the head of the hyperedge and tails(e) € V are its dependents.

We followed the work [20] to construct dependency forest from k-best parsing
results, and transform a dependency forest into a hypergraph.

5 Forest-Based Subtree Extraction

In tree-based systems, we can extract dependency subtrees by simply enumer-
ating all nodes in the tree and combining the subtrees of their dependents with
the heads. However, this algorithm fails to work in the forest scenario because
there are usually exponentially many subtrees of a node.

To solve this problem, we develop a new bottom-up algorithm to extract
dependency subtrees. Our approach often extracts a large amount of dependency
subtrees as each node has many hyperedges. To maintain a reasonable feature
set size, we discard any subtrees that dont satisfy two constraints:

1. appear in at least f distinct sentences in the dataset [12];
2. the fractional count should not be lower than a pruning threshold p;

Dependency Forest for Sentiment Analysis 73

Here the fractional count of a subtree is calculated like in the previous work
[13120]. Given a tree fragment ¢, we use the inside-outside algorithm to compute
its posterior probability:

ap(t) = a(root(t)) x [[pe) x [B (1)

e€t vEleaves(t)

where root(t) is the root of the subtree, e is an edge, leaves(t) is a set of leaves of
the subtree, a(-) and 3(-) are outside and inside probabilities, respectively. For
example, the subtree rooted at funs ; in Figure 2(c) has the following posterior
probability:

a(fung 7) x plea) x B(sicks a) x B(,45) x B(slicks)
Now the fractional count of the subtree ¢ is

(- 20

~ aB(TOP) @)

where TOP is the root node of the forest. As a partial connected subtree might
be non-constituent, we approximate the fractional count by taking that of the
minimal constituent tree fragment that contains the connected subtree.

We observed that if a subtree appears in at least f distinct sentences, then
each edge in the subtree should also occurs at least f times. According to this
observation, we can first enumerate all edges that appear in at least f distinct
sentences, then we can check whether the edge in this set when dealing with a
head and a dependent. Take the edge (sick, fun) in Figure 2lc) for example, if
the occurrence of the edge is lower than f, then any subtree that contain this
edge could not be possible appear in at least f times.

Algorithm [shows the bottom-up algorithm for extracting subtrees from a
dependency forest. This algorithm maintains all available subtrees for each node
(line 12). The subtrees of a head can be constructed from those of its dependents.
For instance, in Figure 2(c), as the subtree rooted at fung ; is

(slick) fun

we can obtain another subtree for the node isg 7 by attaching the subtree of its
dependent to the node (EnumerateSubtrees in line 8)

is ((slick) fun)
Note that we only keep the subtrees that appear in at least f distinct sentences

(line 6), and have a fractional count not lower than p (line 10).

6 Experiments

We carried out experiments on the movie review dataset [18], which consists of
1000 positive reviews and 1000 negative reviews. To obtain dependency trees,

74 Z. Tu et al.

Algorithm 1. Algorithm of extracting subtrees from a dependency forest. All
subtrees should appear in at least f distinct sentences and have a fractional
count not lower than p.
Input: a forest F', and f and p
Output: minimal subtree set T
avail edges < [edges that appear in at least f distinct sentences]
for each node v € V in a bottom-up order do
for each hyperedge e € E and head(e) = v do
avail nodes < ()
for each node w € tails(e) do
if edge (v, w) € avail edges then
avail nodes.append(w)

S < EnumerateSubtrees (v, avail nodes)
for each subtree t € S do

10: if ¢(t) > p then

11: T .append(t)

12: keep subtrees for v

©

we parsed the document using the Stanford Parser [7] to output constituency
trees and then passed the Stanford constituency trees through the Stanford
constituency-to-dependency converter [11].

We consider two baselines:

1 Unigrams: using unigrams that occur at least 4 times [1§]
2 Unigrams+Subtree; _pest: Unigrams features plus partial connected sub-
trees extracted from 1-best dependency trees

We construct dependency forest from 100-best parsing list[] We set the pa-
rameter f = 10 for both dependency trees and forests, and pruning threshold
p = 0.01 for dependency forests @ All experiments are carried out using the Max-
Ent toolkifd with default parameter settings. All results reported are based on
10-fold cross validation.

Table [I] shows the result on the movie review dataset. The first column Fea-
tures indicates where the features are extracted from: 1-best dependency trees,
100-best list or dependency forests. The second column denotes the averaged
number of extracted features, while the last column is the averaged time of sub-
tree extraction. We compare our method to previously published results on the
same dataset (rows 9-11), showing that our approach is very competitive. We
find that using subtrees from 100-best list or forests achieve significant improve-

! The speed of construction is approximately dozens of milliseconds per sentence. Most
of the time cost is attributed to the calculation of inside and outside probabilities.

2 We only use fractional count pruning for dependency forest, because the inside-
outside algorithm for computing fractional count is only available for hypergraphs.
As we extract features from the trees in k-best list individually, we cannot use it for
k-best list scenario.

3http://homepages.inf .ed.ac.uk/lzhang10/maxent_toolkit.html

http://homepages.inf.ed.ac.uk/lzhang10/maxent_toolkit.html

Dependency Forest for Sentiment Analysis 75

Table 1. Result on the movie review dataset. Here “Number” (column 2) indicates the
averaged number of features used and “Time” (column 4) denotes the averaged subtree
extraction time (second/document). “Subtreesiructure” denotes that the subtrees are
extracted from 1-best tree, 100-best list or forest. The baseline system (row 2) used the
unigrams that occur at least 4 times, and another baseline system (row 4) furthermore
incorporates dependency subtrees extracted from 1-best trees. We use “{” to denote a
result is better than baseline “Unigram” significantly, and “i” denote better than both
“Unigram” and “Unigram + Subtreei_pes:” significantly, at p < 0.01 (sign test).

Features Number Accuracy Time
Unigram 17,704 86.2 -
Subtree; _pest 12,282 74.2 0.33
Unigram + Subtree; _pest 29,986 90.3t -
Subtreeigo—best 24,006 81.9 35.47
Unigram + Subtreeigo—_best 41,710 90.2t -
Subtreesorest 18,968 81.2 6.93
Unigram + Subtreesorest 36,674 91.61 -
Pang et al. [18] - 87.1 -

Ng et al. [17] - 90.5 -
Yessenalina et al. [23] - 91.8 -

ment over 1-best trees, validating our belief that offering more alternatives could
produce substantial improvements. Using 100-best list produce only double sub-
trees in over 100 times longer than using 1-best trees, indicating that a k-best
list has too few variations and too many redundancies [2]. When incorporating
unigrams features, forest-based system obtains significant improvement of 5.4
point in accuracy over the bag-of-words system, and 1.3 point improvement over
the tree-based system. An interesting finding is that combining subtrees from
100-best list and unigrams features doesnt achieve any improvement over 1-best
tree. We conjecture that: (1) as most syntactic information is already captured
by 1-best trees, using 100-best list can introduce little new information, (2) more
noisy information would be introduced when extracting features from 100-best
list, because there would be some low-quality parsing trees in the 100-best list
(e.g. the trees at the foot of 100-best list). In contrast, we can extract new sub-
trees from dependency forests, which could not be extracted from any single
tree in 100-best list (e.g. a subtree that consists of two parts from two different
dependency trees). On the other hand, with the help of fractional count pruning,
we would discard most low-quality subtrees.

7 Conclusion and Future Work

In this paper, we have proposed to extract features represented as partial con-
nected subtrees from dependency forests, and reduced the complexity of the
extraction algorithm by discard subtrees that have low fractional count and
occurrence. We show that using dependency forest leads to significant improve-
ments over that of using 1-best trees on a widely used movie review corpus.

76

Z. Tu et al.

In this work, we still select features manually. As convolution kernels could
exploit a huge amount of features without an explicit feature representation
[T4BITITETHITY], we will combine dependency forest and convolution kernels in
the future.

Acknowledgments. The authors were supported by 863 State Key Project
No. 2011AA01A207. We thank the anonymous reviewers for their insightful
comments.

References

1.

10.

11.

12.

Bunescu, R., Mooney, R.: A Shortest Path Dependency Kernel for Relation Extrac-
tion. In: Proceedings of Human Language Technology Conference and Conference
on Empirical Methods in Natural Language Processing, pp. 724-731. Association
for Computational Linguistics, Vancouver (2005)

Huang, L.: Forest reranking: discriminative parsing with non-local features. In:
Proceedings of ACL 2008: HLT, Columbus, Ohio, pp. 586-594 (May 2008)

Jiang, W., Liu, Q.: Dependency parsing and projection based on word-pair classifi-
cation. In: Proceedings of the 48th Annual Meeting of the Association for Compu-
tational Linguistics, pp. 12-20. Association for Computational Linguistics, Uppsala
(2010)

Jiang, W., Mi, H., Liu, Q.: Word lattice reranking for chinese word segmentation
and part-of-speech tagging. In: Proceedings of the 22nd International Conference
on Computational Linguistics (Coling 2008), pp. 385-392. Coling 2008 Organizing
Committee, Manchester (2008)

Johansson, R., Moschitti, A.: Syntactic and semantic structure for opinion expres-
sion detection. In: Proceedings of the Fourteenth Conference on Computational
Natural Language Learning, Uppsala, Sweden, pp. 67-76 (July 2010)

Joshi, M., Penstein-Rosé, C.: Generalizing dependency features for opinion mining.
In: Proceedings of the ACL-IJCNLP 2009 Conference Short Papers, pp. 313-316.
Association for Computational Linguistics, Suntec (2009)

Klein, D., Manning, C.D.: Accurate Unlexicalized Parsing. In: Proceedings of the
41st Annual Meeting of the Association for Computational Linguistics, pp. 423~
430. Association for Computational Linguistics, Sapporo (2003)

Koo, T., Collins, M.: Efficient third-order dependency parsers. In: Proceedings of
the 48th Annual Meeting of the Association for Computational Linguistics, pp.
1-11. Association for Computational Linguistics, Uppsala (2010)

Kushal Dave, S.L., Pennock, D.: Mining the peanut gallery: Opinion extraction and
semantic classification of product reviews. In: Proceedings of the 12th International
Conference on World Wide Web, pp. 519-528. ACM (2003)

Liu, J., Seneff, S.: Review Sentiment Scoring via a Parse-and-Paraphrase Paradigm.
In: Proceedings of the 2009 Conference on Empirical Methods in Natural Language
Processing, Singapore, pp. 161-169 (August 2009)

de Marneffe, M.C., Manning, C.D.: The stanford typed dependencies representa-
tion. In: Proceedings of the COLING Workshop on Cross-Framework and Cross-
Domain Parser Evaluation, Manchester (August 2008)

Matsumoto, S., Takamura, H., Okumura, M.: Sentiment Classification Using Word
Sub-sequences and Dependency Sub-trees. In: Ho, T.-B., Cheung, D., Liu, H. (eds.)
PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 301-311. Springer, Heidelberg (2005)

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Dependency Forest for Sentiment Analysis 7

Mi, H., Huang, L.: Forest-based translation rule extraction. In: Proceedings of the
2008 Conference on Empirical Methods in Natural Language Processing, Honolulu,
Hawaii, pp. 206-214 (September 2008)

Moschitti, A.: Efficient Convolution Kernels for Dependency and Constituent Syn-
tactic Trees. In: Fiirnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006.
LNCS (LNAI), vol. 4212, pp. 318-329. Springer, Heidelberg (2006)

Moschitti, A., Pighin, D., Basili, R.: Tree kernels for semantic role labeling. Com-
putational Linguistics 34(2), 193224 (2008)

Moschitti, A., Quarteroni, S.: Kernels on Linguistic Structures for Answer Extrac-
tion. In: Proceedings of ACL 2008: HLT, Short Papers, pp. 113-116. Association
for Computational Linguistics, Columbus (2008)

Ng, V., Dasgupta, S., Arifin, S.M.N.: Examining the Role of Linguistic Knowl-
edge Sources in the Automatic Identification and Classification of Reviews. In:
Proceedings of the COLING/ACL 2006 Main Conference Poster Sessions, Sydney,
Australia, pp. 611-618 (July 2006)

Pang, B., Lee, L.: A Sentimental Education: Sentiment Analysis Using Subjectiv-
ity Summarization Based on Minimum Cuts. In: Proceedings of the 42nd Annual
Meeting of the Association for Computational Linguistics, Barcelona, Spain, pp.
271-278 (June 2004)

Tu, Z., He, Y., Foster, J., van Genabith, J., Liu, Q., Lin, S.: Identifying high-impact
sub-structures for convolution kernels in document-level sentiment classification.
In: Proceedings of the 50th Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pp. 338-343. Association for Computational
Linguistics, Jeju Island (2012)

Tu, Z., Liu, Y., Hwang, Y.S., Liu, Q., Lin, S.: Dependency Forest for Statistical
Machine Translation. In: Proceedings of the 23rd International Conference on Com-
putational Linguistics (Coling 2010), Beijing, China, pp. 1092-1100 (July 2010)
Wu, Y., Zhang, Q., Huang, X., Wu, L.: Phrase Dependency Parsing for Opinion
Mining. In: Proceedings of the 2009 Conference on Empirical Methods in Natural
Language Processing, Singapore, pp. 1533-1541 (August 2009)

Xiong, H., Mi, H., Liu, Y., Liu, Q.: Forest-based semantic role labeling. In: Twenty-
Fourth AAAT Conference on Artificial Intelligence, pp. 1039-1044 (2010)
Yessenalina, A., Choi, Y., Cardie, C.: Automatically generating annotator ratio-
nales to improve sentiment classification. In: Proceedings of the ACL 2010 Con-
ference Short Papers, pp. 336-341. Association for Computational Linguistics,
Uppsala (2010)

	Dependency Forest for Sentiment Analysis

	Introduction
	Related Work
	Background
	Dependency Forest
	Forest-Based Subtree Extraction
	Experiments
	Conclusion and Future Work
	References

