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ABSTRACT

In this paper, we investigate the ability of a recently pro-

posed discriminatively trained, multi-level context-dependent

acoustic model to adapt to a new speaker in both super-

vised and unsupervised adaptation scenarios. Speaker adap-

tive speech recognition experiments performed on a large-

vocabulary spoken lecture task show that the multi-level

model reduces word error rates by more than 10% in both

cases as compared to the conventional clustering-based

decision-tree context-dependent acoustic model approach.

Index Terms— Multi-level acoustic model, context-

dependent model, speaker adaptation, discriminative training,

LVCSR

1. INTRODUCTION

Speaker adaptation methods have been studied extensively for

automatic speech recognition (ASR). One of the simplest and

most effective methods is maximum a posteriori (MAP) adap-

tation that updates Gaussian mixture model (GMM) param-

eters of a speaker independent (SI) model to maximize the

posterior probability of the adaptation data with respect to the

updated parameters [1]. Maximum likelihood linear regres-

sion (MLLR) groups Gaussian components and estimates a

linear transform of the SI GMM means to the corresponding

speaker dependent (SD) distribution in order to maximize the

likelihood of the adaptation data [2]. Eigenvoice analysis and

reference speaker weighting use multiple reference speakers

to represent a speaker vector that is a concatenation of Gaus-

sian means. The adapted speaker vector is determined using

a maximum likelihood (ML) criterion to derive a linear com-

bination of the reference speaker vectors [3, 4]. Note that

while these methods are all effective with limited adaptation

data, MAP-based adaptation typically provides the largest im-

provement in ASR word error rate (WER) when there is a

significant quantity of adaptation data [3].

While the aforementioned methods use ML-based cri-

terion, discriminative methods have also been successfully

used for speaker adaptation. Instead of seeking to model

parameters that maximize the likelihood of adaptation data,

discriminative training methods seek parameters that can

minimize the amount of confusion reflected in a computable

objective function. Several types of objective functions have

been applied to construct discriminative speaker adaptation

frameworks. For example, maximum mutual information

(MMI) training statistics have been used to formulate a con-

ditional MLLR adaptation framework [5]. Minimum phone

error (MPE) training has also been shown to be effective

in estimating the regression transformation matrix [6]. If

enough adaptation data are available, the entire set of GMM

parameters can be adapted via a discriminative criterion with

the discriminative MAP method [7]. In addition, training

criterion such as minimum classification error (MCE) have

also been shown to be effective for speaker adaption [8].

Recently, we introduced a novel method for context-

dependent acoustic modeling that is based on a discrimina-

tively trained, multi-level framework for integrating acoustic

models with differing degrees of contextual granularity. In

our initial speaker-independent experiments we were able

to reduce ASR WERs on a large vocabulary spoken lecture

transcription task when compared to a similar model that was

based on the conventional clustering-based decision tree ap-

proach for determining contextual equivalence classes [9]. In

this paper, we extend this research by examining the ability of

the multi-level model to adapt to a new speaker within a dis-

criminatively trained framework. In the following sections,

we describe the multi-level modeling, discriminative training,

and MCE-based adaptation we implemented for this model.

We then describe a series of speaker adaptation experiments

for a large vocabulary spoken lecture processing task.

2. MULTI-LEVEL ACOUSTIC MODELS

Context-dependent (CD) acoustic modeling has become

a standard modeling procedure for most large vocabulary

speech recognizers as a mechanism to model coarticulatory

variation that occurs during speech production. Typically, the

local phoneme context is used as a means to define CD units.

Since the number of possible units grows exponentially with

the length of the local context, many units do not have enough

training examples to produce a robust model.
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Fig. 1. Classifiers and combination weights for the triphone

“pl-pc+pr”. The “*” symbol means to ignore certain contexts.

The function B(·) reduces a phonetic unit into its corresponding

broad-class, e.g. B(“n”) =“Nasal”. Under this notation, T33(“k-

oy+n”) =<*,“oy”,B(“n”)> which represents a classifier that iden-

tifies an “oy” with right context “Nasal”. The numbers of the same

color represent a possible setting of combination weights. Different

weight settings can be used to avoid data sparsity effect.

For many years, this data sparsity issue has been ad-

dressed by a clustering-based approach that learns a decision

tree to group contexts into clusters that each have enough

training examples to create a robust model [10]. While clus-

tering addresses the sparsity issue, it also inherently quantizes

the contexts; that is, different CD units within a cluster will

always have the same acoustic likelihood, making the units

acoustically indistinguishable from each other. This quan-

tization effect is not completely negligible. Typically, the

number of clustered states in a conventional triphone-based

large vocabulary ASR system is on the order of 103 ∼ 104,

which is one or two orders of magnitude smaller than the

potential number of triphones. This difference can hinder the

discriminative ability of the resulting CD acoustic model.

In order to address the sparsity and quantization issues,

we have recently explored a multi-level CD acoustic model-

ing framework [9]. The basic idea of the multi-level model

is to associate each CD unit with a set of GMM classifiers

that identify contexts at multiple levels of resolution, linearly

combining the classifier outputs for scoring. By appropriately

choosing the classifiers, every pair of CD units will have at

least one differing classifier, making them mutually distin-

guishable to the speech recognizer.

Figure 1 illustrates the multi-level concept as imple-

mented in [9] to setup classifiers and combination weights for

a triphone “pl-pc+pr”. An important aspect of the multi-level

model is that while each classifier at a lower level ignores

certain contextual details, if each classifier at the same level

contributes a likelihood for observation x, then the full con-

text of x can be identified. Another result of this criterion is

that at least one classifier will differ between any pair of CD

units, which will generally produce differing acoustic scores

for all CD units.

Having selected the classifiers, the acoustic score of x

with respect to a CD label s can be computed by

aλ(x, s) =

3∑

i=1

Ji∑

j=1

ws
ij lλ(x, Tij(s)), (1)

where lλ(x, Tij(s)) denotes the log-likelihood of x with re-

spect to the GMM classifier Tij(s), Ji denotes the number of

classifiers at level i, and ws
ij is a non-negative combination

weight satisfying the convex constraint
∑3

i=1

∑Ji

j=1 w
s
ij = 1.

To address the data sparsity issue, a classifier combination

weight is zeroed when it does not have enough training exam-

ples. This prevents it from contributing to the overall acoustic

score, as shown by the red/blue colored weights in Figure 1.

2.1. Discriminative Training of Multi-Level Model

As is the case for the conventional cluster-based CD model,

discriminative training is performed on the multi-level CD

model by taking the gradient of the objective function with

respect to the GMM parameters. This can be computed by

first taking partial derivatives with respect to each acoustic

score and then summing up the contribution of the gradient

with respect to each acoustic score

∂L
∂λ

=
N∑

n=1

∑

x∈Xn

∑

s

∂L
∂aλ(x, s)

∂aλ(x, s)

∂λ
. (2)

Since the acoustic score can be decomposed into a linear

combination of the log-likelihood of GMMs as in Eq. (1), the

gradient of the acoustic score can be further computed by

∂aλ(x, s)

∂λ
=

3∑

i=1

Ji∑

j=1

ws
ij

∂lλ(x, Tij(s))

∂λ
. (3)

In this way, computing the gradient of the multi-level CD

model can be done by first computing the partial derivative

with respect to each acoustic score as in conventional discrim-

inative training, and then distributing the contribution of each

GMM with respect to the combination weights.

While the prefixed weights in Figure 1 work reasonably

well, the combination weights can also be automatically

learned by performing a constrained optimization on the ob-

jective function used for discriminative training [9]. Let W
be the combination weights, and ws

ij be the prefixed weight

of the jth classifier at level i for label s. The optimization for

the weights can be expressed as follows

min
W

L(W) + α
∑

s,i,j

||ws
ij − ws

ij ||2 s.t.

∑

i,j

ws
ij = 1 ∀s, ws

ij ≥ 0 ∀s, i, j, ws
ij = 0 ∀ws

ij = 0, (4)

where the first term is the objective function used for discrim-

inative training, and the second term is a regularization term.

The first two sets of constraints ensure convexity; the last set

ensures no unreliable classifier contributes to the scores.
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2.2. Multi-Level Model Adaptation

To adapt model parameters in a discriminative way, we ap-

plied the MCE criterion to perform speaker adaptation. In-

stead of interpolating the speaker-independent model with

MCE updated speaker-dependent model as in [8], we directly

apply MCE training to update the SI model parameters over

the adaptation data. The MCE loss function used in the

experiment can be expressed as

L =
∑N

n=1 �(−Lλ(Xn,Yn)+

log([ 1K
∑

S∈SK

n

exp(ηLλ(Xn,S))]
1
η )),

(5)

where N is the number of adaptation utterances, Lλ(Xn,Yn)
denotes the recognition score of the reference path Yn,

Lλ(Xn,S) denotes the score for the hypothesis S, SK
n is

the best K incorrect hypotheses of the nth utterance, η is

a parameter that determines the relative importance of the

hypotheses, and �(·) is a sigmoid function that maps the

score difference into a value between 0 and 1. The quickprop

algorithm in [11] was used for parameter optimization.

3. EXPERIMENTS

3.1. Task and ASR Configuration

Experiments were performed on the MIT lecture corpus con-

sisting of approximately 119 hours of audio recordings and

transcriptions from a variety of talkers and topics[12]. A pre-

liminary set of SI acoustic models were trained from these

data. Feature vectors were extracted at a 10ms frame rate.

Each vector consisted of average values of 14 MFCCs in 8

telescoping regions spanning 150ms. The 112 dimensional

vectors were reduced to 50 dimensions by a composition of

neighborhood component analysis and principal component

analysis as in [13].

For the baseline clustering-based (CL) model, a decision

tree was used to cluster the triphone states [10]. The stop-

ping criteria for number of clusters and model size were tuned

on two held out lectures. For the multi-level (Multi) model,

9 broad-classes were used to construct low-level classifiers.

For both types of models, parameters were initialized by ML

criterion and were refined by MCE training [9]. For notation

purposes, we use SI-ML-CL and SI-ML-Multi to refer to the

SI ML-trained models that use the two CD methods, while

SI-MCE-CL and SI-MCE-Multi correspond to the SI MCE-

trained CD models.

A standard vocabulary of 37K words was used for this

task; a trigram language model was trained on training lec-

ture texts, Switchboard conversations, and the Michigan Cor-

pus of Academic Spoken English via the SRILM toolkit [14].

The trigram language model was converted to a finite-state

transducer (FST) representation by the MIT FST toolkit [15],

and was composed with other lexicon-level FSTs to form the

search module [9].

3.2. Supervised Adaptation

A series of lectures on introductory mechanical physics taught

by a Dutch-accented lecturer were used for the speaker adap-

tation experiments. The audio and transcripts of first 30

lectures of the series were used as potential adaptation data,

while the last 3 lectures were used as test data. To obtain

speaker adaptive (SA) models, an additional MCE train-

ing run was applied to the SI-MCE-CL and SI-MCE-Multi

models on the adaptation lectures, resulting in SA-MCE-CL

and SA-MCE-Multi models, respectively. To compare ML-

based adaptation with discriminative-based adaptation, MAP

adaptation was also performed on the SI-ML-CL models to

produce a SA-ML-CL model. A clustering-based speaker-

dependent (SD) model was also trained on the available

adaptation data. MCE training was applied to produce a

SD-MCE-CL model.

As shown in solid lines in Figure 2, the WER results of

the four models were measured using different amounts of su-

pervised adaptation data (i.e., transcripts known). As shown

in the figure, both MAP and MCE adaptation achieved sig-

nificant WER reductions over the SI models (i.e. 0 adapta-

tion lectures). When less than 10 lectures of adaptation data

were used, the SA-MCE-CL models performed better than

SD-MCE-CL, although as more adaptation became available

the opposite was observed. In contrast, the SA-MCE-Multi

model consistently outperformed all CL models over all adap-

tation amounts, demonstrating better model adaptability.

3.3. Unsupervised Adaptation

Since adaptation transcripts are not always available, we also

performed unsupervised adaptation (UA) experiments using

these data to compare the clustering-based and multi-level CD

models. For these experiments we used the baseline SI acous-

tic model to decode the available adaptation lectures. We then

used the recognition hypothesis as a reference and performed

MCE adaptation with a unigram language model. The per-

formance of the resulting UA-MCE-CL and UA-MCE-Multi

models are shown in dashed lines in Figure 2. Although the

gain over the SI model was much smaller than observed for

the supervised scenario, the multi-level model still provided

about 10% relative improvement over the clustering-based

model over these adaptation conditions.

3.4. Discussion

Although the multi-level CD models performed well un-

der both supervised and unsupervised adaptation conditions,

there are several areas of ongoing investigation. In particu-

lar, we have not achieved significant gains by optimizing the

classifier weights as described in Eq. (4). As compared to the

default weight settings shown in Figure 1, we found slight

WER improvements if the weights were optimized prior to

MCE GMM parameter adaptation, but these gains vanished

post MCE GMM adaptation. Moreover, if weight optimiza-
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Fig. 2. Results for supervised and unsupervised adaptation.

tion was performed after MCE GMM parameter adaptation,

the test WER actually increased slightly. By observing the

optimized classifier weights, it appears that many top-level

classifiers (i.e., most context-dependent) had too large of a

weight which suggests over-training on the adaptation data,

and reducing the model generalizability to test data.

We also continue to investigate unsupervised adaptation

approaches. Instead of always using the SI models to produce

transcript hypotheses, we have also explore an incremental

approach whereby we adapt in “chunks” of five lectures . In

this scenario, the SI models are used to produce transcripts

for the first five lectures, upon which an initial SA model is

produced. This new model is used to produce transcripts for

the next five lectures, before a new SA model is produced on

all ten lectures. This process can be iterated through all 30

adaptation lectures. Our initial tests of the incremental proce-

dure did not produce a monotonically decreasing WER how-

ever. Preliminary analyses indicated that the hypotheses gen-

erated by the incremental models had a higher insertion rate

of unnecessary fillers and short function words. Our future

research will attempt to address this issue, as well as explore

alternative adaptation mechanisms including the use of con-

fidence scoring for unsupervised adaptation. Currently how-

ever, using the SI models to generate transcript hypotheses

seems to be the most stable way to adapt to a new speaker.

4. CONCLUSION
In this paper, we compared the performances of a newly pro-

posed multi-level context-dependent acoustic model with a

conventional clustering-based model on a large vocabulary

speaker adaptive ASR task. Based on a series of experiments,

the multi-level model had more than a 10% WER relative im-

provement over the baseline model for both supervised and

unsupervised adaptation scenarios. Future work includes fur-

ther investigation of classifier weight optimization, alternative

methods for unsupervised adaptation, as well as experiments

with “mostly correct” transcripts that have been generated via

crowdsourcing-based methods [16].
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