
CHIME: An Efficient Error-Tolerant Chinese Pinyin Input Method

Yabin Zheng1, Chen Li2, and Maosong Sun1

1State Key Laboratory of Intelligent Technology and Systems
Tsinghua National Laboratory for Information Science and Technology

Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
2Department of Computer Science, University of California, Irvine, CA 92697-3435, USA

{yabin.zheng,sunmaosong}@gmail.com, chenli@ics.uci.edu

Abstract

Chinese Pinyin input methods are very importan-
t for Chinese language processing. In many cases,
users may make typing errors. For example, a user
wants to type in “shenme” (, meaning “what”
in English) but may type in “shenem” instead. Ex-
isting Pinyin input methods fail in converting such
a Pinyin sequence with errors to the right Chinese
words. To solve this problem, we developed an
efficient error-tolerant Pinyin input method called
“CHIME” that can handle typing errors. By incor-
porating state-of-the-art techniques and language-
specific features, the method achieves a better per-
formance than state-of-the-art input methods. It can
efficiently find relevant words in milliseconds for
an input Pinyin sequence.

1 Introduction

Chinese uses a logographic writing system, while English and
many other romance languages use an alphabetic writing sys-
tem. Users cannot type in Chinese characters directly using
a Latin keyboard. Pinyin input methods have been widely
used to allow users to type in Chinese characters using such
a keyboard. Pinyin input methods convert a Pinyin sequence
to the corresponding Chinese words, where Pinyins are used
to represent pronunciations of Chinese words. For instance,
suppose a user wants to type in the Chinese word “ ” (the
city Shanghai). He types in the corresponding Pinyin “shang-
hai”, and the input method displays a list of Chinese words
with this pronunciation, as shown in Figure 1 (left). The user
selects the word “ ” as the result.

As users of other languages, Chinese users often make er-
rors when typing in a Pinyin sequence. Existing Pinyin-based
methods have error-tolerant features such as fuzzy tone for
Chinese southern dialects. However, there are many input er-
rors that cannot be handled by these methods. In our example
of “shanghai” (), the user may make typos, thus type in
“shanghaai” instead. As shown in Figure 1 (right), typical
methods cannot return the right word. This limitation affects
user experiences greatly, since he has to identify and correct
the typos, or cannot find the right word.

In this paper, we study how to automatically detect and cor-
rect typing errors in an input Pinyin sequence, and convert it

Figure 1: Typical Chinese Pinyin input method for a correct
Pinyin (left) and a mistyped Pinyin (right).

to the corresponding Chinese words. In the running example,
for the mistyped Pinyin “shanghaai”, we can find a similar
Pinyin “shanghai”, and suggest Chinese words including “

”, which is indeed what the user is looking for.
When developing an error-tolerant Chinese input method,

we are facing two main challenges. First, Pinyins and Chi-
nese characters have two-way ambiguity. Many Chinese
characters have multiple pronunciations. The character “ ”
can be pronounced as “h ”, “h ”, “hu ”, “hu ”, and “h ”.
On the other hand, different Chinese characters can have the
same pronunciation. Both characters “ ” and “ ” have the
same pronunciation “r n”. The ambiguity makes it techni-
cally challenging to do Pinyin-to-Chinese conversion. Notice
that it is important for us to suggest relevant words to a user,
since otherwise the user may be annoyed by seeing suggested
words that are irrelevant to the input sequence. Thus we need
to detect and correct mistyped Pinyins accurately.

Another challenge is how to do the correction efficiently.
Existing input methods suggest Chinese words as a user types
in a Pinyin sequence letter by letter. Studies have shown that
we need to answer a keystroke query within 100 ms in order
to achieve an interactive speed, i.e., the user does not feel any
delay. Achieving such a high speed is especially importan-
t when the method is used by a Web server that can receive
queries from many users, and requires a method to find rele-
vant Chinese words for a mistyped sequence efficiently.

In this paper we develop a novel error-tolerant Chinese
Pinyin input method that can meet both requirements of high
accuracy and high efficiency. It is called “CHIME”, which
stands for “CHinese Input Method with Errors.” CHIME
works on a Pinyin sequence as follows. For a mistyped Pinyin
in the sequence that does not exist in a Pinyin dictionary,
we find similar Pinyins as candidates. We rank them using
a noisy channel model and Chinese-specific features to find
those that are most likely what the user intends to type in for
this Pinyin. Finally, we use a statistical language model on
the input sequence to find the most likely sequence of Chi-
nese words.

2551

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

The rest of this paper is organized as follows. Section 2
reviews related work. Section 3 analyzes typing errors at the
Pinyin level. In Section 4, we study how to convert a Pinyin
sequence to a sequence of Chinese words. In Section 5, we
report experimental results. Section 6 concludes the paper
and discusses future work.

2 Related Work

Chen and Lee [2000] used a statistical segmentation and a
trigram-based language model to convert Chinese Pinyin se-
quences to Chinese word sequences. They also proposed an
error model for Pinyin spelling correction. However, they on-
ly correct single-character errors, while our method can cor-
rect multi-character errors.

Kwok and Deng [2002] proposed a method of extracting
Chinese Pinyin names from English text and suggesting cor-
responding Chinese characters to these Pinyins. However,
their approach can only convert Pinyin names to Chinese
characters, while our method can handle general words.

There are studies on spelling correction mainly for English.
Brill and Moore [2000] introduce a noisy channel model for
spelling correction based on generic string-to-string edit op-
erations. Without a language model, their error model gives
a 52% reduction in spelling correction error rate. With a
language model, their model gives a 74% reduction in er-
ror rate. Toutanova and Moore [2002] extend the work using
pronunciation information. They use pronunciation similar-
ities between words to achieve a better accuracy. Inspired
by [Toutanova and Moore, 2002], we also take pronuncia-
tion information in Chinese to gain better performance. More
details are given in Section 3.

Cucerzan and Brill [2004] use information in search query
logs for spelling correction. Their approach utilizes an itera-
tive transformation of the input query strings into other cor-
rect query strings according to statistics learned from search
query logs. Sun et al. [2010] extract query-correction pairs
by analyzing user behaviors encoded in the click-through da-
ta, and then a phrase-based error model is trained and inte-
grated into a query speller system. Gao et al. [2010] make
significant extensions to a noisy channel model and treat spel-
l checking as a statistical translation problem. Experiments
show that these extensions lead to remarkable improvements.

Whitelaw et al. [2009] implement a system for spelling
correction in various languages. Their system does not re-
quire any manually annotated training data. They adopt the
Web as a knowledge base to learn misspellings and word us-
age. These methods are not directly applicable to the Chinese
language due to the unique ways users type in Chinese words.

In this paper, we assume that a user already segments an
input Pinyin sequence by explicitly typing in a space between
two adjacent Pinyins. For example, suppose a user wants to
type in a sentence “ ” (mean-
ing “We bought milk made in Shanghai”). The correct input
Pinyin sequence is “women goumai le shanghai shengchan
de niunai”. However, the user types in a sequence “woemng
gounai le sanghaai shengchang de niulai”. We will use this
example throughout this paper.

3 Correcting a Single Pinyin

We first study the problem of how to correct a single Pinyin.
Given a dictionary D of Pinyins and an input Pinyin p that is
not in the dictionary, our method CHIME finds a set of can-
didate Pinyins w ∈ D that are most likely to be erroneously
typed in as p. First, we do a similarity search to find candidate
Pinyins that are similar to the input Pinyin. Second, we rank
these candidates and find those with the highest probabilities
to be what the user intends to type in.

3.1 Finding Similar Pinyins

Measuring Pinyin Similarity: As shown in [Cooper, 1983],
most typing errors can be classified into four categories: in-
sertions, deletions, substitutions, and transpositions. There-
fore, in this paper we use edit distance to measure the number
of errors between a candidate Pinyin and a mistyped Pinyin.
Formally, the edit distance between two strings is the mini-
mum number of single-character operations required to trans-
form one sting to the other. We generalize the definition of
edit distance by allowing transpositions.

We assume an upper threshold on the number of typing
errors a user can make in a single Pinyin. In other words, for
a mistyped Pinyin, we assume that the edit distance between
the correct Pinyin and the input one is within the threshold.
Damerau [1964] showed that 80% of typing errors are caused
by a single edit operation. Using a threshold of 2, we can
find the correct Pinyin with a very high probability. For
example, for the Pinyin “sanghaai”, by finding those whose
edit distance to the input is within 2, we can find candidates
“shanghai”, “canghai”, and “wanghuai”.

Efficient Similarity Search: We adopt the state-of-the-
art index structure and search algorithm proposed in [Ji et
al., 2009] to find those similar candidate Pinyins efficiently.
The main idea is to build a trie structure to index the Pinyins
in the dictionary. As a user types in a Pinyin letter by letter,
the algorithm can on-the-fly do a similarity search to find
those trie nodes, such that the edit distances between the
corresponding prefixes and the input Pinyin are within a
given threshold. From the trie nodes of these similar prefixes
we can find their leaf nodes as candidate similar Pinyins.

Consider the sequence in our running example, “woemng
gounai le sanghaai shengchang de niulai”. For each Pinyin,
we find similar candidate Pinyins in the dictionary, whose edit
distance to the given Pinyin is no greater than 2. The candi-
date Pinyins are shown in Table 1, where we underline each
correct Pinyins that the user intends to type in.

Input Pinyin Similar Candidate Pinyins

woemng women, weng, wodang
gounai goumai, dounai, guonei
le le
sanghaai shanghai, canghai, wanghuai
shengchang shengchan, zhengchang, shangchang
de de
niulai niunai, niupai, niuli

Table 1: Similar candidates for mistyped Pinyins.

2552

3.2 Ranking Similar Pinyins

Each Pinyin can have multiple similar candidates, and
CHIME ranks them to decide which of them are most likely
what the user wants. We discuss how to do ranking using a
noisy channel error model and language-specific features.

Using Noisy Channel Error Model: Given a mistype-
d Pinyin p, in a noisy channel error model [Brill and Moore,
2000; Kernighan et al., 1990], we want to rank each similar
candidate p′ based on its conditional probability Pr(p′|p).
We find those with the highest conditional probabilities as
the suggestions, since they are most likely what the user
wants to type in. To estimate Pr(p′|p), we apply the Bayes
rule and have:

Pr(p′|p) = Pr(p|p′)Pr(p′)
Pr(p)

. ∝ Pr(p|p′)Pr(p′) (1)

We assume that the user first chooses a Pinyin p′ to type in
according to the prior probability distribution Pr(p′). Then
the user mistakenly types in a Pinyin p with the conditional
probability Pr(p|p′). In Formula (1), the prior probability
Pr(p′) shows how popular this Pinyin p′ is.

Estimating Conditional Probability Pr(p|p′): To
estimate Pr(p|p′), we consider an optimal transformation T
from p′ to p that has the minimum number of edit operations.
For each edit operation e in T , let Pr(e) be its probability.
Assuming these edit operations are independent, we take the
product of their probabilities as the probability Pr(p|p′).

Pr(p|p′) =
∏

e∈T

Pr(e). (2)

We use ‘∼’ to denote the empty string. Then, an opti-
mal transformation T from shanghai to sanghaai contain-
s two edit operations: ‘h’→‘∼’ (deleting the first ‘h’ let-
ter) and ‘∼’→‘a’ (inserting the letter ‘a’). Then, we have:
Pr(sanghaai|shanghai) = Pr(‘h’→‘∼’)Pr(‘∼’→‘a’).

Ristad and Yianilos [1998] proposed a method for estimat-
ing the probabilities of edit operation Pr(e) from a training
corpus. In this paper, we focus on proposing a framework
for our error-tolerant Chinese Pinyin input method. More-
over, there is no publicly available training corpus in Chinese
Pinyin. Therefore, in the absence of such a training corpus,
we use heuristic rules based on Chinese-specific features to
determine these probabilities. Some features are shown in
Table 2.

We explain these features as follows. There are many di-
alects in China. Many people in southern China do not speak
the standard Mandarin, and they do not distinguish retroflex
and blade-alveolar, as well as front and back nasal sound. In
addition, some letters are pronounced similarly. For instance,
letters ‘n’ and ‘l’ have similar pronunciations. For anoth-
er example, many Chinese speakers tend to be confused by
whether they should use the letter ‘g’ in a Pinyin ending with
“-ing” and a Pinyin ending with “-in” due to the similarity
between a front nasal sound a back nasal sound.

In summary, for a mistyped single Pinyin p, CHIME finds
similar Pinyins p′ and compute their conditional probabilities
Pr(p′|p) using Formulas (1) and (2). CHIME takes candi-
dates with the highest probabilities as the correct Pinyins.

Feature
Example pairs of

similar Pinyin letters

Front and back
nasal sound

‘ang’ - ‘an’, ‘ing’ - ‘in’,
‘eng’ - ‘en’

Retroflex and
blade-alveolar

‘zh’ - ‘z’, ‘sh’ - ‘s’,
‘ch’ - ‘c’

Letters with similar
pronunciations

‘z’ () - ‘c’ () - ‘s’ (),
‘n’ () - ‘l’ (), ‘b’ () - ‘p’ ()

Table 2: Common Chinese-specific typos.

4 Converting Pinyin Sequences to Chinese

Words

Considering a Pinyin sequence P = p1p2 · · · pk, where each
pi is a Pinyin, we want to find the most probable sequence of
Chinese words W = w1w2 · · ·wk, where each wi is a Chi-
nese word for the Pinyin pi. Figure 2 shows different Chinese
words for each Pinyin in the running example.

One simple way is to select the most likely Chinese word
for each Pinyin separately, and concatenate these words as
the result. However, it does not consider the context of each
Pinyin when suggesting a Chinese word. Next we discuss
how CHIME uses a language model when suggesting Chi-
nese words. We first discuss how CHIME converts a Pinyin
sequence to Chinese words when the sequence is correct.

4.1 Pinyin-to-Chinese Conversion without Typos

Suppose the input sequence P does not have typos. We
want to find the most probable sequence of Chinese words
W = w1w2 · · ·wk. In other words, we want to maximize the
conditional probability Pr(W |P). We want to find:

Ŵ = argmax
W

Pr(W |P)

= argmax
W

Pr(W)Pr(P |W)

Pr(P)

= argmax
W

Pr(W)Pr(P |W)

= argmax
W

Pr(W)
∏

i

Pr(pi|wi). (3)

We made the assumption of conditional independence in
Formula (3). Pr(pi|wi) is the conditional probability that a
Chinese word wi is typed in as Pinyin pi. (Notice that wi

is a Chinese word, not a Chinese Pinyin as in Section 3.2.)
Pr(pi|wi) is 1 if pi is a pronunciation of word wi, and 0
otherwise.

The term Pr(W) is the prior probability of a Chinese word
sequence W according to a language model [Chen and Lee,
2000; Gao et al., 2002; Jurafsky et al., 2000]. To compute the
probability, we make a first-order Markov assumption, and
adopt a bigram language model learned from a training cor-
pus. Then we compute Pr(W) using the following formula:

Pr(W) = Pr(w1)Pr(w2|w1) · · ·Pr(wn|wn−1). (4)
CHIME uses maximum likelihood estimation (MLE) to

compute the conditional probability Pr(wn|wn−1), and us-
es Katz backoff [Jurafsky et al., 2000] for smoothing the
zero probability bigrams. Finally, CHIME uses the Viterbi
algorithm to find the optimal Chinese word sequence W .

2553

�������	�
	����
��������
���������������������������	�
�����������������������������

���

���������������
������
���������������������������������	�
��

�
������������������������	�
�����������������������������
�
���
���������������
������
���������������������������������	�
���
�����������������������������	�������������������������������������	���	���	��
���������������������������	��������������������������������������	��	��	�

�����
���������������������������������

�

�

�

�

�

�

�

�

�

�

�

��� �

�

�

�

�

�

�

�

�

�

�

�
�
�

Figure 2: Correcting typos in a Pinyin sequence. The thick lines represent the final sequence of Chinese words.

4.2 Pinyin-to-Chinese Conversion with Typos

Consider the case where there are typing errors in the Pinyin
sequence P . Let P ′ denote the correct Pinyin sequence that
the user intends to type in. In our running example, P =
“woemng gounai le sanghaai shengchang de niulai”, while
P ′ = “women goumai le shanghai shengchan de niunai”.
We make an assumption that given P ′, the input Pinyin
sequence P and the optimal Chinese word sequence W are
conditionally independent. We can refine Formula (3) as:

Ŵ = argmax
W

Pr(W |P)

= argmax
W

∑

P ′
Pr(P ′|P)Pr(W |P ′)

= argmax
W

∑

P ′

Pr(W)Pr(P ′|P)Pr(P ′|W)

Pr(P ′)

= argmax
W

∑

P ′
Pr(W)Pr(P |P ′)Pr(P ′|W)

= argmax
W

∑

P ′
Pr(W)

∏

i

Pr(pi|p′i)Pr(p′i|wi).(5)

In the new Formula (5), Pr(pi|p′i) can be computed using
Formula (2). Pr(p′i|wi) is 1 if the Chinese word wi has a pro-
nunciation matching the Pinyin p′i, and 0 otherwise. Pr(W)
can be estimated using Formula (4).

In summary, CHIME works as follows. First, we detect
mistyped Pinyins that are not in the Pinyin dictionary. Then,
for each such Pinyin, we find top-k similar candidate Pinyins
using the method described in Section 3. Finally, we convert
the corrected Pinyin sequence to the most likely sequence of
Chinese words using Formula (5).

Considering our running example in Figure 2, for each
mistyped Pinyin in the sequence, we pick top-3 most similar
candidate Pinyins. We empirically selected top-3 most sim-
ilar candidates because we find that most Pinyins that users
intend to type in are included in these top-3 candidates. In
addition, more candidates require more computational costs
and bring really limited improvement on accuracy. We enu-
merate the Chinese words matching these candidate Pinyins.
Finally, we find the most likely sequence of Chinese words:
“ ”.

5 Experiments

5.1 Settings

Our method needs a dictionary of Chinese words with their
Pinyins. We also use a bigram language model as in For-
mula (4). In our experiments, we obtained this data from an
open-source software called Sun-PinYin. It has a dictionary
of 104,833 Chinese words and 66,797 Pinyins.

We used the Lancaster corpus [McEnery and Xiao, 2004]
to evaluate the accuracy and efficiency of our method. Lan-
caster is a segmented Chinese corpus with Pinyins. After re-
moving noisy sentences containing numbers or non-Chinese
characters, we selected 2,000 sentences to do an evaluation.
These sentences contained 21,861 Chinese characters and
11,968 Chinese words.

In order to evaluate CHIME on a real data set, we asked 5
native speakers to type in the 2,000 Chinese sentences and
recorded their corresponding Pinyin sequences. We found
that 679 sentences (34%) contained one or more typing er-
rors. This number shows the necessity of developing an error-
tolerant Chinese input method. The collected data had 885
mistyped Pinyins. We computed the edit distance between
the mistyped Pinyins and their correct Pinyins that users in-
tended to type in. 775 typing errors were caused by one edit
operation, and 85 typing errors were caused by two edit oper-
ations. This result indicates that a good edit-distance thresh-
old can be 2 when we want to find candidate Pinyins.

We assigned the probabilities of edit operations as follows.
A letter can be replaced by another letter or transposed with
the previous letter. We empirically assigned a probability of
0.25 to the transposition, and assigned a probability of 0.75
to all substitutions. Letters close to each other on a Latin
keyboard or with similar pronunciations are more likely to
be mistyped. For example, Pr(‘z’→‘s’) tends to be larg-
er than Pr(‘z’→‘p’) because ‘z’ and ‘s’ pronounce similar-
ly (as shown in Table 2) and are close to each other on the
keyboard. Operations on such similar letters were assigned
with a relatively high probability. In the experiments, we used
Pr(‘z’→‘s’) = 0.15 and Pr(‘z’→‘p’) = 0.005.

All the experiments were implemented using C++ com-
piled with a GNU compiler, and run on a computer with an
AMD Core2 2.20GHz CPU and 4GB memory.

2554

5.2 Evaluation Metrics

We want to know whether CHIME can successfully detect
mistyped Pinyins, suggest the right Pinyins, and find the right
Chinese words. Inspired by Whitelaw et al. [2009], we col-
lected occurrences of the following kinds of errors:

1. E1: A mistyped Pinyin is not detected. In our experi-
ments, we had E1 = 331.

2. E2: A mistyped Pinyin is not suggested to the right
Pinyin that users intend to type in. In our experiments, we
had E2 = 464.

3. E3: A mistyped Pinyin is not converted to the right
Chinese word. In our experiments, we had E3 = 474.

We consider these different kinds of errors since they can
have different impacts on user experiences. For instance, a
mistyped Pinyin that is not detected is more frustrating than
a mistyped Pinyin that is not suggested to the right Pinyin or
converted to a wrong Chinese word.

E1 pertains to the detection task, i.e., whether we can de-
tect mistyped Pinyins. We define “Detection Error Rate” as
DER = E1/T , where T is the total number of mistyped
Pinyins. In our experiments, T = 885.

We noticed that 331 mistyped Pinyins were not detected,
because these mistyped Pinyins are valid Pinyins in the dictio-
nary. For example, a Pinyin sequence “ta jianjian shiqu yishi”
(, meaning “He gradually loses conscious-
ness”) was mistyped as “ta jianjian shiqu yisi”. The mistyped
Pinyin “yisi” is a valid Pinyin in the dictionary, which makes
CHIME fail in detecting this mistyped Pinyin. A possible fix
of this problem is to consider similar candidate Pinyins for
every input Pinyin, not just those that cannot be found in the
dictionary. However, this solution affected efficiency great-
ly in our experiments. We may also detect a correct Pinyin
as wrong under this solution. The problem of detecting and
correcting such typos needs future research investigation.

E2 pertains to the correction task, i.e., whether we can cor-
rect mistyped Pinyins to the right Pinyins. We define “Cor-
rection Error Rate” as CorrER = E2/T . About 133 (=
E2 − E1) mistyped Pinyins were detected but not corrected
to the right Pinyins, because we only selected three most sim-
ilar candidates to reduce the processing time.

E3 pertains to the conversion task, i.e., whether we can
convert mistyped Pinyins to the right Chinese words. We de-
fine “Conversion Error Rate” as ConvER = E3/T . About
10 (= E3 − E2) mistyped Pinyins were detected and correct-
ed to the right Pinyins but not converted to the right Chinese
words. The conversion errors were caused by the language
model.

For comparison purposes, we used a commercial Chinese
Pinyin input method called Sogou-Pinyin as our baseline. So-
gou is one of the state-of-the-art Chinese input methods that
covers about 70% of the Chinese-input-method market. We
evaluated Sogou using the same data set and collected oc-
currences of the three types of errors described above. For
Sogou, we had E1 = 625, E2 = 807, and E3 = 812.

As we can see in Table 3, with an error rate of 37.4%,
CHIME achieved a better performance on the task of detect-
ing mistyped Pinyin than Sogou (70.62%). CHIME correct-
ed mistyped Pinyins with an error rate of 52.43%, while So-
gou achieved a correction error rate of 91.19%. Our error

Metric DER CorrER ConvER
CHIME 37.40% 52.43% 53.56%

Sogou 70.62% 91.19% 91.75%

Table 3: Results on the Lancaster corpus with typing errors.

rate was 53.56% when converting Pinyins to Chinese word-
s, which was much better than Sogou with a conversion er-
ror rate of 91.75%. Specifically, CHIME was able to convert
411 mistyped Pinyins to the right Chinese words, while So-
gou converted only 73 mistyped Pinyins to the right Chinese
words.

5.3 Efficiency Evaluation

We also evaluated the efficiency of CHIME, and measured the
additional computational costs if we enabled error-tolerant
features. We assumed a user continually types in a Pinyin
sequence letter by letter, and CHIME converted the Pinyin
sequence to Chinese words interactively. For example, sup-
pose a user wants to type in the Pinyin sequence “woem-
ng gounai le sanghaai shengchang de niulai”. She types in
the first Pinyin “woemng” letter by letter, and CHIME will
receive strings “w”, “wo”, “woe”, “woem”, “woemn” and
“woemng”. The other Pinyins are input similarly.

�
� � � � � � � 	

�

�

��

��

��

��

��

��

�

��
��

��
��

�

��

��
��

��
��

����������
��

� !�"����#��$����%��&��'���
� !�"����$����%��&��'���

Figure 3: Processing time with different prefix lengths.

We simulated the typing process described above using
2,000 Pinyin sentences typed in by real users. The average
processing time of each sentence as a complete query was
12.8ms. When users type in more letters, the number of can-
didate Pinyins will reduce. For example, in our compiled
Pinyin dictionary, the number of candidate Pinyins which s-
tart with prefix “w”, “wo”, and “wom” was 2320, 92, and
3 respectively. Therefore, the average processing time de-
creased quickly when users typed in more letters. In Figure 3,
the average processing time was 26.19 ms when the user type-
d in the first letter. It dropped to 17.19 ms when the user typed
in the second letter.

We also recorded the performance of CHIME without the
error-tolerant features, and the results are shown in Figure 3.
The average processing time of each sentence was 7.83ms,
which indicates that we need an additional processing time
of 4.97ms if we add error-tolerant features. This shows that
CHIME can achieve a very high performance.

2555

6 Conclusion and Future Work

In this paper, we developed an efficient error-tolerant Chinese
Pinyin input method called “CHIME”. For a mistyped Pinyin,
CHIME can find similar Pinyins. It then uses language-
specific features to find most likely Pinyins. For a Pinyin
sequence, CHIME detects and corrects the mistyped Pinyins,
and finds the most likely sequence of Chinese words. Exper-
iments showed that we can achieve both a high accuracy and
a high efficiency compared to state-of-the-art input methods.

In the future we plan to study how to solve the problem
when a user types in an entire Pinyin sequence instead of typ-
ing each Pinyin and selecting a Chinese word. Another future
direction is how to accurately detect and correct a mistyped
Pinyin that happens to be in the Pinyin dictionary. Secondly,
a major limitation of our approach is that it is dependent on
a large Pinyin dictionary. How to type in out-of-vocabulary
words like named entities is also a future direction. Thirdly,
how to support acronym Pinyin input (using the first letters of
a syllable in Pinyin, e.g., “zg” for “ ”) is also an interest-
ing and challenging problem and needs more research.

Acknowledgments

Most of the work was done while Yabin Zheng was visiting
UCI. We thank Alexander Behm and Shengyue Ji for their
insightful discussions at UCI. This work is partially supported
by the National Natural Science Foundation of China (No.
60873174 and 60828004).

References

[Brill and Moore, 2000] E. Brill and R.C. Moore. An im-
proved error model for noisy channel spelling correction.
In Proceedings of the 38th Annual Meeting on Association
for Computational Linguistics, pages 286–293. Associa-
tion for Computational Linguistics, 2000.

[Chen and Lee, 2000] Z. Chen and K.F. Lee. A new statis-
tical approach to Chinese Pinyin input. In Proceedings of
the 38th Annual Meeting on Association for Computation-
al Linguistics, pages 241–247. Association for Computa-
tional Linguistics, 2000.

[Cooper, 1983] W.E. Cooper. Cognitive aspects of skilled
typewriting. Springer-Verlag, 1983.

[Cucerzan and Brill, 2004] Silviu Cucerzan and Eric Brill.
Spelling correction as an iterative process that exploits the
collective knowledge of web users. In Proceedings of the
2004 Conference on Empirical Methods in Natural Lan-
guage Processing, pages 293–300. Association for Com-
putational Linguistics, 2004.

[Damerau, 1964] F.J. Damerau. A technique for computer
detection and correction of spelling errors. Communica-
tions of the ACM, 7(3):171–176, 1964.

[Gao et al., 2002] J. Gao, J. Goodman, M. Li, and K.F. Lee.
Toward a unified approach to statistical language model-
ing for Chinese. ACM Transactions on Asian Language
Information Processing (TALIP), 1(1):3–33, 2002.

[Gao et al., 2010] Jianfeng Gao, Xiaolong Li, Daniel Micol,
Chris Quirk, and Xu Sun. A large scale ranker-based sys-
tem for search query spelling correction. In Proceedings of
the 23rd International Conference on Computational Lin-
guistics, pages 358–366, 2010.

[Ji et al., 2009] S. Ji, G. Li, C. Li, and J. Feng. Efficient in-
teractive fuzzy keyword search. In Proceedings of the 18th
international conference on World wide web, pages 371–
380. ACM, 2009.

[Jurafsky et al., 2000] D. Jurafsky, J.H. Martin, and
A. Kehler. Speech and language processing: An intro-
duction to natural language processing, computational
linguistics, and speech recognition. MIT Press, 2000.

[Kernighan et al., 1990] M.D. Kernighan, K.W. Church, and
W.A. Gale. A spelling correction program based on a noisy
channel model. In Proceedings of the 13th conference
on Computational linguistics, pages 205–210. Association
for Computational Linguistics, 1990.

[Kwok and Deng, 2002] Kui-Lam Kwok and Peter Deng.
Corpus-based pinyin name resolution. In Proceedings of
the First SIGHAN Workshop on Chinese Language Pro-
cessing (COLING), pages 41–47, 2002.

[McEnery and Xiao, 2004] AM McEnery and Z. Xiao. The
Lancaster Corpus of Mandarin Chinese: A corpus for
monolingual and contrastive language study. Religion,
17:3–4, 2004.

[Ristad et al., 1998] E.S. Ristad, P.N. Yianilos, M.T. Inc, and
NJ Princeton. Learning string-edit distance. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
20(5):522–532, 1998.

[Sun et al., 2010] Xu Sun, Jianfeng Gao, Daniel Micol, and
Chris Quirk. Learning phrase-based spelling error models
from clickthrough data. In Proceedings of the 48th Annual
Meeting of the Association for Computational Linguistics,
pages 266–274. Association for Computational Linguistic-
s, 2010.

[Toutanova and Moore, 2002] K. Toutanova and R.C.
Moore. Pronunciation modeling for improved spelling
correction. In Proceedings of the 40th Annual Meeting
on Association for Computational Linguistics, pages
144–151. Association for Computational Linguistics,
2002.

[Whitelaw et al., 2009] C. Whitelaw, B. Hutchinson, G.Y.
Chung, and G. Ellis. Using the web for language inde-
pendent spellchecking and autocorrection. In Proceedings
of the 2009 Conference on Empirical Methods in Natu-
ral Language Processing, pages 890–899. Association for
Computational Linguistics, 2009.

2556

