

The MIT Press

Journals

Books

Journals

Digital

Resources

About

Sign In / Register

Home | Computational Linguistics | List Article navigation of Issues | Volume 38, No. 4 | LFG Generation by Grammar Specialization

Quarterly (March, June, September, December)

160pp. per issue

63/4 x 10

Founded: 1974

2018 Impact

Factor: 1.319

2018 Google

Scholar h5-index:

32

ISSN: 0891-2017

E-ISSN: 1530-9312

LFG Generation by Grammar **Specialization**

Jürgen Wedekind and Ronald M. Kaplan

Posted Online November 15, 2012 https://doi.org/10.1162/COLI a 00113

© 2012 Association for Computational Linguistics

Computational Linguistics Volume 38 | Issue 4 | December 2012 p.867-915

Download Options

Journal Resources

Editorial Info Abstracting and Indexing Release Schedule Advertising Info

Author Resources

Submission Guidelines **Publication** Agreement **Author Reprints**

Abstract Full Text Authors

This article describes an approach to Lexical-Functional Grammar (LFG) generation that is based on the fact that the set of strings that an LFG grammar relates to a particular acyclic fstructure is a context-free language. We present an algorithm that produces for an arbitrary LFG grammar and an arbitrary acyclic input fstructure a context-free grammar describing exactly the set of strings that the given LFG grammar associates with that f-structure. The individual sentences are then available through a standard context-free generator operating on that grammar. The context-free grammar is

Reader Resources

Rights and **Permissions** Most Read Most Cited

More About Computational Linguistics

Metrics

constructed by specializing the context-free backbone of the LFG grammar for the given fstructure and serves as a compact representation of all generation results that the LFG grammar assigns to the input. This approach extends to other grammatical formalisms with explicit context-free backbones, such as PATR, and also to formalisms that permit a context-free skeleton to be extracted from richer specifications. It provides a general mathematical framework for understanding and improving the operation of a family of chartbased generation algorithms.

Forthcoming

Most Read

See More

- Total citation
- Recent

citations

0.48 Field Citation

Ratio

n/a Relative Citation Ratio

Open Access

Lexicon-Based Methods for Sentiment Analysis (14019 times) Maite Taboada et Computational Linguistics Volume: 37, Issue: 2, pp. 267-307

6 Computational Linguistics and **Deep Learning** (10513 times) Christopher D. Manning Computational Linguistics Volume: 41, Issue: 4, pp. 701-707

Near-Synonymy and Lexical Choice (3658 times) Philip Edmonds et al. Computational Linauistics Volume: 28, Issue: 2, pp. 105-144

(Note that the Most Read numbers are based on the number of full text downloads over the last 12 months.)

Most Cited

See More

Lexicon-Based Methods for Sentiment Analysis Various Statistical (436 times) Maite Taboada et Computational Linguistics Volume: 37, Issue: 2, pp. 267-307

A Systematic Comparison of Alignment Models (174 times) Franz Josef Och et al. Computational Linguistics Volume: 29, Issue: 1, pp. 19-51

opinion Word **Expansion and Target Extraction** through Double Propagation (147) times) Guang Qiu et al.

Computational Linguistics Volume: 37, Issue: 1, pp. 9-27

(Note that the Most Cited numbers are based on Crossref's Cited-by service and reflect citation information for the past 24 months.)

under a CC **BY-NC-ND** 4.0 license. For more information on allowed uses, please view the CC license.

Support OA at MITP

RSS TOC Download Citation

RSS Citation Submit your article

Support OA at MITP

Journals

Terms & Conditions Privacy Statement Contact

Books

Cambridge MA 02142-1209

UK

One Rogers Street Suite 2, 1 Duchess Street London, W1W 6AN, UK

Connect

Atypon Systems,

© 2018 The MIT **Press**

Technology Partner:

Inc. **CrossRef Member COUNTER Member** The MIT Press colophon is

registered in the U.S. Patent and Trademark Office. Site Help