
A Finite-State Tool for Nonfinite-State
Phenomena: the Agreement Automaton

László Drienkó
ELTE University, Budapest, Hungary

View MS Word Version

1.The Agreement Automaton

We define an agreement automaton as a 7-tuple:

A (Q, E, b, q0, F, AgrC, T), with

Journal of Language and Linguistics
Volume 2 Number 2 2003
ISSN 1475 - 8989

Abstract

Recursions, embeddings, and various types of dependencies seem to be a most
vexatious problem for both linguistic theories and linguistic processing.
Traditionally, such problems cannot be sufficiently solved with finite-state
automata. (See Chomsky (1957)) A correlation between as few as only two
elements is enough to block applicability of finite-state methods. Thus, for
instance, the formal language aibi is context-free, not to mention aibici, a
context-sensitive language. Moving along the Chomsky-hierarchy we encounter
languages whose processing requires stronger and stronger computational
apparatus. As for natural languages, Chomsky (1957) shows that there are
certain types of correlation between linguistic elements which makes it
impossible to process English with finite-state machines. However, arguments
have been provided, that English is not a context-free language, either. (See
Higginbotham 1984). The implication could be that natural (at least English)
language processing in general should be done with a machinery stronger than a
push-down automaton.

In this paper we propose an apparatus which incorporates a simple way of
representing dependencies allowing linguistic processing to be done in time
linear in the number of input elements.

We outline a type of finite-state automaton which we call agreement automaton.
Input elements for it are simple attribute-value structures. Agreement
constraints are defined for final states. Accepting an input sequence is
determined by the fulfillment of these constraints.

After the basic definitions we show how non-regular languages can be processed,
and that left-, right-, and centre-embedded structures can be handled by
agreement transducers.

Q, b, q0, and F are the usual automaton-components1. E is a set of attribute-value structures (AVS)
each consisting of attribute-value pairs and a name for reference, e.g.:

Equivalently, E is the set of all names but then we have to specify a mapping from E to the set AVS
of all attribute-value structures.

AgrC(F) carries the central concept of our automaton. AgrC(F) specifies for each state qf in F a set
of constraints which have to be satisfied. To put it simply, an input sequence is accepted only if,
having read it, the automaton arrives at an accepting state qf and the agreement requirements
prescribed by qf are met.

Each agreement condition consists of three parts. It must specify which elements (states) have to
agree, with respect to which attribute, and which agreement strategy must be observed in case of
recursion (see below). For instance, constraints:

1 2 4 PERS FIRST-TO-FIRST
1 2 4 NUM FIRST-TO-FIRST
2 5 TENSE FIRST-TO-FIRST

prescribe that elements corresponding to states 1, 2, and 4, respectively, must have the same person
and number values, while elements corresponding to states 2 and 5 must have the same TENSE value,
and strategy FIRST-TO-FIRST is to be followed.

Formally, it is T(AgrC(F)) that determines the acceptability of an input sequence. If T(AgrC(qf)) =0
(or T(AgrC(qf))= failure) then the input sequence can not be accepted, whereas T(AgrC(qf))=1 or (T
(AgrC(qf))=success) indicates that a grammatical sentence has been recognised.

T(AgrC(F)) can be evaluated by the following algorithm.

T(AgrC(F)) algorithm

0. If accepting state (q Î F) then
1. For all constraints in AgrC(q)
2. Get states to agree, get attribute to check
3. Count the occurrence of sequences, arrange states-to-agree according to type of
recursive agreement
4. For all sequences of states to agree
5. For all states to agree

Q:
E:
b:
q0:
F:
AgrC(F):
T(AgrC
(F)):

the finite set of states
the alphabet for input elements
the transition function mapping from Q ´ S to Q
the initial state (q0 Î Q)
the set of accepting states (F Ì Q)
a mapping from states in F to finite sets of agreement
constraints/conditions
a mapping from sets of agreement constraints to {0,1} (or
{failure, success})

6. If agreement fails return FAILURE (T(AgrC(q)) = 0)
7. Next state
8. Next sequence
9. Next constraint
10. End if
11. Return SUCCESS (T(AgrC(q)) = 1)

The cycle corresponding to lines 4 and 8 is necessary because of possible recursions. If e.g.
processing reaches state qi and then continues with state qj then recursively steps back to qi k
times continuing with qj and finally accepting state qf is reached, and if there is some agreement
requirement between qi and qj then this requirement must be checked k times. In fact, it is this
property that conditions recursive dependencies leading us out of the realm of regular languages.2

The default strategy for recursive agreement is what we have just outlined. We term it as FIRST-TO-
FIRST inasmuch as the first occurrence of qi must agree with the first occurrence of qj. Since this
strategy reflects the temporal alignment of words uttered or perceived in normal speech we assume
that it is the 'easiest' (hence default).3

Another possibility is to agree the last occurrence of qi with the first occurrence of qj, or,
equivalently, the first occurrence of qi with the last occurrence of qj. We call this LAST-TO-FIRST.

Nevertheless, constraints can be constructed in such a way that they contain the possibility of
switching on/off the recursion facility of the agreement process. Switching off recursive agreement
may be necessary e.g. for cases when some sequence q1, q2, … qn is processed recursively and then
follows p but only qi should agree with p with respect to some property, where n > 1, and n > i > 1.
A linguistically motivated case seems to be exemplified by recursive possessive phrases like e.g.:
Joe's brothers' friends' house is big.

Here the verb 'be' must agree in person and number with only the last noun, no matter how many other
nouns precede it. Since in this case i=n, this type of agreement is referred to as LAST-TO-ONE. A
similar type with i=1 would be termed as FIRST-TO-ONE.

Note that the decision time for T(AgrC(F)) remains linear in n, the length of the input sentence.
Indeed, the time needed by the algorithm is basically determined by the three embedded cycles: 1- 9,
4- 8, and 5-7, i.e. it is proportional to CONSTRAINTS x SEQUENCES x STATESTO.

The number of constraints seems to be independent of n. The maximum number of states to agree is n.
This corresponds to the extreme case when all the words in the sentence must share a single
property. However, the number of sequences is determined by n, and the states that have to agree.
More precisely, n > SEQUENCES x STATESTO. To see this, consider the sequence 'aaabbbc', and suppose
that a's and b's must be checked. Here, n is 7, STATESTO is 2, and SEQUENCES is 3. Then we have 7 >
3 x 2 = 6. Thus,

CONSTRAINTS x n > CONSTRAINTS x SEQUENCES x STATESTO ~TIME

implies the stated linearity in n.

We will use the usual transition diagrams to symbolize transitions between states. A transition from
state A to state B on reading 'b' is sketched as:

where 'b' is an attribute value (the CAT value in this paper) of the AVS just read. A shaded circle
means an accepting state. Agreement relations between some states A and B with respect to attributes
X, Y, …, are indicated as in the diagram below:

Agreement, in our terminology, means that input elements corresponding to states specified by
agreement constraints must have identical values of attributes as prescribed by those constraints.
Thus

requires that the noun should have the same person and number values as the verb that follows it.
However, for the representative examples that we present below there are no linguistically plausible
attributes to match. For such cases we may introduce a 'dummy' attribute which can be anything
except for attributes already in use. What is important is that the value of this dummy attribute
must be the same for all the elements which must agree. This is necessary in order to enable the
recursive agreement component of T(AgrC(F)) to detect the occurrence of states properly. For
notational convenience in such cases we omit the specification of the dummy attribute below the line
symbolizing agreement. As can be expected such cases will relate to recursive phenomena. As
particular examples we give automata corresponding to languages aibi, aibici.

Similar methods could be used, e.g., for the type of dependencies implied in languages like aibjdiej,
aibjdjei. aibicdjej or aibicaibi.

The argumentation of Chomsky (1957) against English as a finite state language involves sentence
types:

(1.1) If S1 then S2
(1.2) Either S3 or S4.

Chomsky claims that the interdependency of 'if' and 'then' in (1.1) and that of 'either' and 'or' in
(1.2) makes it impossible for a finite state machine to handle recursive combinations of these
constructions. Below we show how an agreement automaton can cope with the problem.

First, we introduce word category IE for 'if' and 'either' and category THO for 'then' and 'or'.
Then attribute IEAGR is introduced. Next we specify the values of this attribute for the words
involved:

Finally, we construct the automaton:

capable of processing sentences like:

(1.3) If Joe sings then either if Peter plays then Ann cooks or if Ann plays then Peter cooks.

To check the proper occurrence of 'if's and 'then's, or 'either's and 'or's we may employ strategy
OPEN-AND-CLOSE. As the term suggests, we consider the if-then/either-or problem to be analogous with
the problem of establishing the right order of any number of opening and closing brackets. Just like
each and every opening bracket must be closed somewhere in a sequence of correctly bracketed
elements, each if/either must have its proper then/or counterpart. Note that the appropriate
arrangement of the opening and the closing elements as required in line 3 of algorithm T(AgrC(F))
can be done within a single n-cycle, so that the linearity in the number of input elements still
holds.4

Naturally, relative clause embedding can be incorporated as well. Automaton:

copes with sentences like:

(1.4)1. If Jane who loves Joe who loves Eve works then either Joe who hates Jane works or Eve works

if:

IEAGR = if_then

either:

IEAGR =
either_or

then:

IEAGR = if_then

or:

IEAGR =either_or

2. Parsing with Agreement Automata: Agreement Transducers

Various attempts have been made to apply finite state methods to parsing natural language sentences.
A common approach is to use finite state transducers (See e.g. Kornai (1999) for some insight).
Below we show that finite state transducers, supplemented with agreement facilities, can constitute
an easy way of handling such most vexatious problems as recursions and embeddings.

Informally, a transducer is an automaton which can write a symbol onto its output tape. We denote
this as

where, 'x' is the symbol to be written on the output tape. Now consider the embedded sentence:

Joe who likes Eve who likes Adam is big.

As a first approximation to parsing such sentences we need a transducer like:

This transducer correctly assigns the opening brackets, however it does not close them properly,
yielding the incorrect:

*[n [who [v [n [who [v [n] [be adj]

Note that the decision as to the necessary number of closing brackets can be made no sooner than at
state BE. Thus we can argue that there must be some bracketing agreement between state BE and the
preceding states where the '['s are to be introduced.

What seems logical is to employ a BRACK attribute whose value is the same for the states in
question, and prescribe that the transducer insert the necessary opening and closing brackets any
time this agreement constraint is fulfilled. Also, this is an example of 'semi-recursive' ALL-TO-ONE
agreement since state BE is processed only once.

Transducer

provides

[n [who [v [n [who [v [n]]]]]]] [be adj],

the needed analysis.

To incorporate person and number agreement properties, however, some modifications are necessary.
Transducer

can handle sentences of the type:

Boys who like Eve who likes girls who like boys are big.

Note that, practically, most bracketing can be done through agreement constraints, so outputting
'[be' and 'adj]' on the last two transitions for [be adj] might be replaced with a bracketing
agreement between states BE and Adj.

Now we have seen how right-branching structures can be handled. It is easy to see that left-
branching constructions can be treated similarly using ALL-TO-ONE agreement. Consider the possessive
phrase in sentence

Joe 's friends' friend is big

Transducer

may provide [[[n]'s n]' n] [be adj], the needed structuring.

With center-embedded sentences the above ALL-TO-ONE strategy does not seem to help. Rather, we
should construct something like transducer

to manage sentences of type

The rat the cat the dog chased bit ate the cheese

with structure

[[det n] [[det n] [[det n] v] v] [v [det n]]

3. Conclusion

We showed how an agreement automaton can handle dependencies, recursions and embeddings. Our work is
in its early stages, so it may need refinement in many ways. Although the basic guidelines are
given, we do not exactly know e.g. what attributes are necessary and sufficient to model linguistic
phenomena. It is not yet known, either, how full our inventory of recursive agreement strategies is.
In a future work we would like to establish the relationship between the statements in this paper
and other major issues in syntax. Also, we would like to demonstrate the applicability of our method
to other fields.

Notes

1 As we are going to work with word categories rather than with the words themselves, b is actually
a mapping Q x CATvalues à Q, that is a mapping from states x word categories to states.

2 In order to check agreement properties we must store the n input elements in an array of size n.
This imposes a boundary on possible recursions in practice. In theory, however, this boundary can be
arbitrarily long, as it is only dependent on technological factors. On the other hand, we expect

words of languages (of any practical use) to be of finite length. Arguably, it is as pointless to
speak about words longer than, say, constant C, as it is no use trying to explore distances shorter
than 10-35 meters in the (quantum) physical world.

3 Also, this strategy may be reminiscent of languages with cross-serial dependencies where the
correlation pattern of linguistic elements is: n1 n2 (…nn) v1 v2 (…vn). (Identical indices mean
correlated elements)

4 We demonstrate this with the following algorithm:
r=0, l=0, op=0, times=0 : right(n),left(n)
for i=1 to n
if opening bracket then op=op+1 , r=r+1, right(op)=i
if closing bracket then
l=l+1: if op=0 then failure
left(op)=i
times=times+1: pair(times,1)=right(op), pair(times,2)=left(op)
op=op-1
next n
if r >l or l > r then failure

About the Author

Dr Drienko teaches theoretical linguistics at ELTE University, Budapest, Hungary.

Email: dri@axelero.hu

References

Chomsky, N. (1957) Syntactic Structures. Hungarian translation: Mondattani szerkezetek Osiris Kiadó,
Budapest. 1999.

Higginbotham, J. (1984) English Is Not a Context-Free Language. Linguistic Inquiry Vol.15, No.2, pp.
225-234.

Kornai, A (ed.) (1999) Extended finite state models of language. CUP, Cambridge.

