Mathematics > Logic

A subset of $\mathbf{Z}^{\wedge} \mathrm{n}$ whose non-computability leads to the existence of a Diophantine equation whose solvability is logically undecidable

Apoloniusz Tyszka

(Submitted on 28 Jul 2011 (v1), last revised 6 Apr 2012 (this version, v8))
For K \subseteq C, let $B _n(K)=\left\{\left(x _1, \ldots, x _n\right)\right.$ in $K^{\wedge} n$: for each $y _1, \ldots, y _n$ in K the conjunction (lforall i $\left.\operatorname{lin}\{1, \ldots, n\}\left(x _i=1=>y _i=1\right)\right)$ AND (\forall $\left.i, j, k \operatorname{in}\{1, \ldots, n\}\left(x _i+x _j=x _k=>y _i+y _j=y _k\right)\right)$ AND (\forall i, j, k lin $\left.\left.\{1, \ldots, n\}\left(x _i^{*} x _j=x _k=>y\right)^{*} y_{_} j=y _k\right)\right)$ implies that $\left.x_{-} 1=y _1\right\}$. We claim that there is an algorithm that for every computable function $f: N->N$ returns a positive integer $m(f)$, for which a second algorithm accepts on the input f and any integer $n>=m(f)$, and returns a tuple ($x _1, \ldots, x _n$) \in $B _n(Z)$ with $x _1=f$ (n). We compute an integer tuple (x_1,..., x_\{20\}) for which the statement (x_1,..., x_\{20\}) \in B_\{20\}(Z) is equivalent to an open Diophantine problem. We prove that if the set $B _n(Z)\left(B _n(N), B _n(N\right.$ Isetminus $\{0\})$) is not computable for some n, then there exists a Diophantine equation whose solvability in integers (non-negative integers, positive integers) is logically undecidable.

Comments: 10 pages, Theorem 3 added
Subjects: Logic (math.LO); Number Theory (math.NT)
MSC classes: 03D20, 11U05
Cite as: arXiv:1107.5608 [math.LO]
(or arXiv:1107.5608v8 [math.LO] for this version)

Submission history

From: Apoloniusz Tyszka [view email]
[v1] Thu, 28 Jul 2011 00:11:24 GMT (3kb)
[v2] Sun, 31 Jul 2011 23:49:05 GMT (4kb)
[v3] Tue, 9 Aug 2011 17:31:28 GMT (4kb)
[v4] Sun, 14 Aug 2011 01:23:33 GMT (2kb)
[v5] Tue, 16 Aug 2011 21:20:04 GMT (2kb)
[v6] Thu, 18 Aug 2011 19:09:10 GMT (3kb)
[v7] Sat, 8 Oct 2011 22:08:39 GMT (4kb)
[v8] Fri, 6 Apr 2012 01:24:08 GMT (4kb)
Which authors of this paper are endorsers?

