Nonlinear Sciences > Chaotic Dynamics

Clustering of exponentially separating trajectories

M. Wilkinson, B. Mehlig, K. Gustavsson, E. Werner

(Submitted on 16 Jan 2010)

It might be expected that trajectories for a dynamical system which has no negative Lyapunov exponent (implying exponential growth of small separations will not cluster together. However, clustering can occur such that the density \$\rho(\Delta x)\$ of trajectories within distance \$\Delta x\$ of a reference trajectory has a power-law divergence, so that \$\rho(\Delta x)\sim \Delta x^{-\beta}\$ when \$\Delta x\$ is sufficiently small, for some \$0<\beta<1\$. We demonstrate this effect using a random map in one dimension. We find no evidence for this effect in the chaotic logistic map, and argue that the effect is harder to observe in deterministic maps.

Comments:4 pages, 2 figuresSubjects:Chaotic Dynamics (nlin.CD)Cite as:arXiv:1001.2788v1 [nlin.CD]

Submission history

From: Michael Wilkinson [view email] [v1] Sat, 16 Jan 2010 09:56:15 GMT (83kb)

Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.

Download:

- PDF
- PostScript
- Other formats

Current browse context: nlin.CD < prev | next > new | recent | 1001

Change to browse by:

nlin

References & Citations

• CiteBase

Bookmark(what is this?)

X CiteULike logo
Connotea logo
BibSonomy logo
X Mendeley logo
Facebook logo
🗙 del.icio.us logo
Digg logo Reddit logo