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Abstract. This article gives a rigorous analysis of the fluctuations of
the Bose-Einstein condensate for a system of non-interacting bosons in
an arbitrary potential, assuming that the system is governed by the
canonical ensemble. As a result of the analysis, we are able to tell the
order of fluctuations of the condensate fraction as well as its limiting
distribution upon proper centering and scaling. This yields interesting
results. For example, for a system of n bosons in a 3D harmonic trap
near the transition temperature, the order of fluctuations of the conden-
sate fraction is n−1/2 and the limiting distribution is normal, whereas
for the 3D uniform Bose gas, the order of fluctuations is n−1/3 and
the limiting distribution is an explicit non-normal distribution. For a
2D harmonic trap, the order of fluctuations is n−1/2(log n)1/2, which is

larger than n−1/2 but the limiting distribution is still normal. All of
these results come as easy consequences of a general theorem.

1. Introduction

Consider a system of n non-interacting particles, each of which can be
in one of a discrete set of quantum states. If the particles are distinguish-
able, then the state of the system is described by the n-tuple consisting
of the states of the n particles. On the other hand if the particles are in-
distinguishable, then the state of the system is described by the sequence
(n0, n1, n2, . . .), where nj is the number of particles in state j. From now
on we will only consider indistinguishable particles (bosons). If state j has
energy Ej , then the total energy of the system is

∑∞
j=0 njEj . (Here ‘energy’

means the energy associated with a given state; that is, if the state is an
eigenfunction of a Schrödinger operator, then the energy is the correspond-
ing eigenvalue.)

If the system is in thermal equilibrium, then the Boltzmann hypothe-
sis implies that the chance of observing the system in state (n0, n1, . . .) is
proportional to

exp
(
− 1
kBT

∞∑
j=0

njEj

)
,
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where T is the temperature and kB is Boltzmann’s constant. This is the
so-called ‘canonical ensemble’ for a system of n non-interacting bosons with
energy levels E0, E1, . . .. Typically, the Ej ’s are arranged in increasing order,
so that E0 is the energy of the ground state.

Building on the work of Bose [4], Einstein [9, 10] realized that for a
system of indistinguishable particles modeled as above, there is a transi-
tion temperature below which a macroscopic fraction of the particles settle
down in the ground state. This phenomenon is known as Bose-Einstein
condensation. The first realization of a Bose-Einstein condensate was ob-
tained in 1995 [2, 8], resulting in an explosion of activity in this field. For
modern treatments of the subject and surveys of the physics literature, see
e.g. [7, 22, 19, 20, 27]. For rigorous mathematical results and further refer-
ences, see [1, 3, 11, 12, 24, 25, 30, 31].

Besides the canonical model described above, there are two other standard
approaches to modeling Bose-Einstein condensation. The grand canonical
ensemble assumes that the system is allowed to exchange particles with a
neighboring particle reservoir. In other words, the total number of particles
is allowed to vary. In the grand canonical ensemble, the possible states of
the system are all sequences (n0, n1, . . .) of non-negative integers (instead of
sequences summing to a fixed n), and the probability that the system is in
state (n0, n1, . . .) is proportional to

exp
(
− 1
kBT

∞∑
j=0

nj(Ej − µ)
)
,

where µ is a quantity called the ‘chemical potential’. Note that µ must be
strictly less than E0 for this to be a proper probability measure. Given a
temperature T and an expected particle number n, the chemical potential
µ is determined using the condition that the expected number of particles
equals n at temperature T .

The microcanonical ensemble, on the other hand, assumes that both the
total number of particles as well as the total energy are given (or given
approximately), and the state of the system is drawn uniformly at random
from all possible states satisfying these two constraints.

Among the three ensembles, the grand canonical ensemble is the stan-
dard textbook approach to modeling Bose-Einstein condensation. This is
mainly because the grand canonical ensemble is mathematically very easy
to analyze. However, in the case of Bose-Einstein condensation, it is well
known in the physics community that the grand canonical ensemble gives
a certain strikingly wrong prediction in the temperature regime where the
condensate appears. It predicts that the condensate fraction should have
a macroscopic order of fluctuations, but real experiments show that the
condensate fraction has very small (microscopic) fluctuations around its
expected value. This anomaly has been noted in numerous papers. For
discussions, see e.g. [22, 20, 15, 23, 32]. Physicists have realized that the
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anomaly occurs because the total number of particles is not conserved in
the grand canonical ensemble. To correct for this, it has been proposed that
one should use the canonical or microcanonical ensembles to understand
the true nature of fluctuations of the condensate fraction. There are many
papers devoted to this purpose with a variety of interesting developments
(see [3, 5, 14, 15, 16, 17, 20, 28, 29, 32] and references therein), but an un-
derstanding of the exact nature of the fluctuations (as in an explicit central
limit theorem) seems to be lacking.

In the next section, we present a theorem that gives a solution to the
problem of understanding the fluctuations of the condensate fraction in the
canonical ensemble for trapped gases.

Incidentally, much of the recent mathematical work on Bose-Einstein con-
densation has focussed on bosonic systems with interactions. However the
non-interacting system is still relevant because in real experiments the con-
densates are so dilute that interaction effects are often insignificant for cer-
tain aspects of the condensation, such as the size of the condensate fraction.
See [28] or [7] for further details. An accessible introduction to the ideal
Bose gas and its condensation is in Krauth [21, Chapter 4].

2. Results

Consider a system of n non-interacting bosons of mass m in a potential V .
Suppose that the potential V is such that the Schrödinger operator

(1) Ĥ = − ~2

2m
∆ + V

has a discrete spectrum E0 < E1 ≤ E2 ≤ · · · . These are the possible values
of the energy of a single particle. Note that we have assumed that the
ground state energy E0 is strictly less than E1, but the other inequalities
are not strict. The strict inequality E0 < E1 is another way of saying that
the ground state is unique.

A configuration describing the state of the system is a sequence of the
form n = (n0, n1, . . .) where n0, n1, . . . are non-negative integers summing
to n. Here nj stands for the number of particles in energy eigenstate j.
Then the energy of a configuration n is

H(n) =
∞∑
j=0

njEj .

The canonical Gibbs measure is the probability measure on the space of
configurations that puts mass proportional to e−βH(n) at n. Here

β =
1

kBT
,

where T is the temperature and kB is Boltzmann’s constant. Call β the
‘inverse temperature’.
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Suppose that there exist constants L > 0 and α ≥ 1 such that

(2) lim
λ→∞

#{j : Ej ≤ λ}
Lλα

= 1.

It will follow from the theorems stated below that the numbers L and α
are sufficient to determine size of the condensate fraction as well as its
fluctuations in the limit as n→∞. No other feature of the energy spectrum
is relevant. If α > 1 define

tc :=
1

kB(LαΓ(α)ζ(α))1/α

where Γ and ζ are the classical Gamma and Zeta functions. If α = 1 define

tc :=
1

kBL
.

Fix any t > 0. Let (N0, N1, . . .) be a random configuration drawn from the
canonical Gibbs measure for a system of n bosons at the temperature

T =

{
tn1/α if α > 1,
tn

logn if α = 1.

The number Tc is defined as the value of T when t = tc. This will be
called the ‘transition temperature’ for the system of n particles. Note that
T/Tc = t/tc. Our first theorem gives the limiting value of the condensate
fraction at temperature T when T is below the transition temperature.

Theorem 2.1. Suppose that t < tc. Then as n → ∞, N0/n converges in
probability to 1− (t/tc)α.

Theorem 2.1 shows that indeed, the ‘critical’ or ‘transition’ temperature
for the appearance of the condensate is Tc, since the condensate fraction
tends to zero as T approaches Tc. While this formula for the size of the
condensate fraction is well known for specific potentials (see e.g. [27]), the
general formula for arbitrary potentials in terms of the coefficients L and α
is possibly a new result.

Figure 1 illustrates the graphs of the limiting condensate fraction ver-
sus the temperature for three different values of α, corresponding to three
interesting potentials.

Our second theorem gives the limiting distribution of the condensate frac-
tion upon proper centering and scaling, in the temperature regime where the
condensate appears. This is the main result of this paper. In the following,
d−→ will stand for convergence in distribution and N (µ, σ2) will denote the

normal distribution with mean µ and variance σ2. Let X1, X2, . . . be i.i.d.
exponential random variables with mean 1, and define

(3) W :=
1

(LαΓ(α)ζ(α))1/α

∞∑
j=1

1−Xj

Ej − E0
if α > 1,
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Figure 1. Graphs of the condensate fraction versus the tem-
perature for α = 1.5, 2 and 3. The three cases correspond to
the uniform Bose gas in a box, the Bose gas in a 2D harmonic
trap, and the Bose gas in a 3D harmonic trap, respectively.
Units are adjusted such that tc = 1 in all three cases. (Cour-
tesy: Susan Holmes.)

and

(4) W :=
1
L

∞∑
j=1

1−Xj

Ej − E0
if α = 1,

provided that the infinite series converges almost surely. If the series does
not converge almost surely, then W is undefined.

Theorem 2.2. Suppose that t < tc. If α = 1, then the infinite series in (4)
converges almost surely and in L2, and as n→∞,

N0 − E(N0)
n/ log n

d−→ (t/tc)W.

If 1 < α < 2, then the infinite series in (3) converges almost surely and in
L2, and as n→∞,

N0 − E(N0)
n1/α

d−→ (t/tc)W.

If α = 2, then
N0 − E(N0)√

n log n
d−→ N (0, 3(t/tc)2/π2).

If α > 2, then

N0 − E(N0)√
n

d−→ N (0, (t/tc)αζ(α− 1)/ζ(α)).

In spite of the wealth of literature on the non-interacting Bose gas, the
above theorem appears to be a genuinely new result. As applications of
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Figure 2. Histogram of 10,000 simulated values of W for
the uniform Bose gas with energy levels i2 + j2 +k2, with i, j
and k ranging over non-negative integers. (Courtesy: James Zhao)

Theorem 2.2, consider several special cases which demonstrate the four sit-
uations of Theorem 2.2. All are real, interesting examples considered in the
physics literature.

(i) 3D harmonic trap. The potential function is

V (x, y, z) =
mω2

2
(x2 + y2 + z2)

where ω is some positive constant. It is well known (see e.g. [7]) that
the eigenvalues of the Schrödinger operator (1) for this potential are
exactly (

i+ j + k − 3
2

)
~ω,

where i, j, k range over all non-negative integers. From this it is easy to
see that L = 1/(6~3ω3) and α = 3 here. Consequently, the fluctuations
of the condensate fraction are of order n−1/2 and have a limiting normal
distribution upon suitable centering and scaling.

(ii) 3D cubical box. There is a K such that V (x, y, z) = 0 if (x, y, z) ∈
[0,K]3 and =∞ otherwise. It is not difficult to verify that the energy
levels of the Schrödinger operator for this potential are of the form
Ci2 +Cj2 +Ck2 as i, j, k range over non-negative integers, where C is
some constant depending on K and ~. This shows that L = 4π/3C3/2

and α = 3/2 for the uniform gas and therefore, by Theorem 2.2, the
fluctuations of the condensate fraction are of order n−1/3 and the limit-
ing distribution is non-normal. A histogram of 10,000 simulated values
of W for this potential is given in Figure 2.

(iii) 2D harmonic trap. Just as in the 3D case, the eigenvalues are of
the form Ci + Cj as i, j range over non-negative integers and C is
some constant. Clearly, L = 1/2C2 and α = 2 for this potential,
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and therefore the fluctuations of the condensate fraction are of order
n−1/2(log n)1/2 and normally distributed in the limit.

(iv) 1D harmonic trap. The eigenvalues are of the form Cj as j ranges
over non-negative integers and C is some constant. Clearly, here α = 1
and L = C. Therefore the fluctuations of the condensate fraction are
of order 1/ log n and the limiting distribution is non-normal.

(v) 2D square box. The eigenvalues are of the form Ci2 + Cj2 where
i and j range over non-negative integers are C is some constant. In
this case, an easy computation gives α = 1 and L = π/4C. The
fluctuations of the condensate fraction are of order 1/ log n and the
limiting distribution is non-normal.

For a general potential, the constants L and α may often be obtained with
the aid of Weyl’s law for eigenvalues of Schrödinger operators, without going
through the trouble of actually diagonalizing the operators. For details, see
e.g. [33, Chapter 6].

Our next theorem gives the limiting distributions of the other cell counts,
in the temperature regime where the condensate appears. For N1, N2, . . .,
the fluctuations are of the same size as their expected values; in other words,
these cell counts are not concentrated. This result is a byproduct of the proof
of Theorem 2.2.

Theorem 2.3. Suppose that t < tc and α > 1. Then for any fixed j ≥ 1, as
n tends to infinity, the limiting distribution of Nj/n

1/α is exponential with
mean kBt/(Ej −E0). When α = 1, the same result holds if n1/α is changed
to n/ log n.

It is natural to ask questions about the behavior of the random variable
W in Theorem 2.2. Figure 2 already gives an indication that the distribution
of W is non-symmetric around zero. The following theorem shows that the
left and right tails of W indeed behave differently. In particular, it shows
that if the Ej ’s satisfy (2) with α > 1, then the right tail of W falls off as
exp(−cx1+1/(α−1)) and the left tail falls off exponentially. For example, for
the 3D uniform Bose gas in a box (depicted in Figure 2), α = 3/2 and so
the upper tail of W behaves as exp(−cx3). When α = 1, the right tail falls
off double exponentially.

Theorem 2.4. Let W be defined as in (3) and assume, for simplicity, that
the constant in front of the sum is 1. Suppose that

∑∞
j=1 1/(Ej−E0)2 <∞.

Given x ∈ (0,∞), choose nx so that
∑

j≤nx 1/(Ej − E0) ≤ x/2. Then

(5) P(W ≥ x) ≤ exp
(
− x2

8
∑

j>nx
1/(Ej − E0)2

)
.

If n′x is such that
∑

j≤n′x 1/(Ej − E0) ≥ 2x, then

(6) P(W ≥ x) ≥ 2−22 exp
(
− 120x2∑

j>n′x
1/(Ej − E0)2

)
.
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In particular, if the Ej’s satisfy (2), then there are constants a1, a2, a3, a4,
a5 and a6 depending only on the Ej’s such that for all x > 0,

a1e
−a2x1+1/(α−1) ≤ P(W ≥ x) ≤ a3e

−a4x1+1/(α−1)
if 1 < α < 2, and(7)

a1e
−a2ea3x ≤ P(W ≥ x) ≤ a4e

−a5ea6x if α = 1.(8)

Lastly, there are constants c1, c2 > 0 such that for all x > 0,

(9) P(W ≤ −x) ≤ c1e−c2x,

and the right hand side cannot be improved to c1e−c2x
1+ε

for any ε > 0.

Interestingly, there is one special case where the distribution of W can
be computed explicitly. This is the case of the one-dimensional harmonic
trap, which has energy levels 0, 1, 2, 3, . . .. This is closely connected with the
behavior of random partitions of integers [13] and extreme value theory.

Proposition 2.5. If Ej = j for j = 0, 1, 2, . . ., and W is defined as in (4)
(with L = 1), then for all x ∈ R

P(W ≥ x) = e−e
x−γ

,

where γ is Euler’s constant.

Our final theorem is a law of large numbers that records the correspon-
dence between the total energy of the system and the temperature.

Theorem 2.6. Let Etot :=
∑∞

j=0NjEj be the total energy of the system at
temperature T , where T = tn1/α if α > 1 and T = tn/ log n if α = 1. Here
t is a fixed constant, strictly less than tc. If α > 1, then

Etot
T 1+α

→ k1+α
B LαΓ(α+ 1)ζ(α+ 1) in probability as n→∞.

If α = 1, then

Etot
T 2
→

k2
BLπ

2

6
in probability as n→∞.

The next section contains the proofs of the theorems presented in this
section.

3. Proofs

Note that the canonical Gibbs measure and the distribution of W remain
the same if we add or subtract a fixed constant from each Ej . The constants
L and α are also invariant under such a transformation, as are the limiting
total energies in Theorem 2.6. Therefore, from now on, we will assume
without loss of generality that E0 = 0.

Take any continuous function φ : [0,∞)→ R such that

(10)
∞∑
k=0

mk(k + 1)α <∞,
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where
mk := max

k≤x≤k+1
|φ(x)|.

Note that under the above condition,

(11)
∫ ∞

0
|φ(x)|xα−1dx <∞.

Lemma 3.1. For a function φ as above,

lim
β↓0

βα
∞∑
j=1

φ(βEj) = Lα

∫ ∞
0

φ(x)xα−1dx.

Proof. For each λ > 0 let

(12) S(λ) := #{j : Ej ≤ λ}.
By (2), there exists C > 0 such that for all λ > 0,

(13) S(λ) ≤ Cλα.
Take any ε > 0. Using (10) and (11), choose an integer K so large that

(14) C
∑
k≥K

mk(k + 1)α < ε, and Lα

∫ ∞
K
|φ(x)|xα−1dx < ε.

For each β ∈ (0,K/E1), define the probability measure

µβ :=
1

S(K/β)

∑
j :Ej≤K/β

δβEj ,

where δx denotes the point mass at x. Then
∞∑
j=1

φ(βEj) =
∑

j :βEj≤K
φ(βEj) +

∑
j :βEj>K

φ(βEj)

= S(K/β)
∫ ∞

0
φ(x)dµβ(x) +

∑
j :βEj>K

φ(βEj).

Now note that by (2), for any x ∈ (0,K),

lim
β↓0

µβ([0, x]) = lim
β↓0

#{j : βEj ≤ x}
S(K/β)

= lim
β↓0

S(x/β)
S(K/β)

=
xα

Kα
.

This shows that as β → 0, µβ tends weakly to the probability measure on
[0,K] with probability density function αxα−1K−α. Since φ is continuous
on [0,∞) (and therefore bounded and continuous on [0,K]), this shows that

lim
β→0

∫ ∞
0

φ(x)dµβ(x) =
α

Kα

∫ K

0
φ(x)xα−1dx.
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Next, observe that by (13) and (14),∣∣∣∣βα ∑
j :βEj>K

φ(βEj)
∣∣∣∣ ≤ βα ∑

k≥K
mk#{j : k ≤ βEj < k + 1}

≤ βα
∑
k≥K

mkS((k + 1)/β)

≤ C
∑
k≥K

mk(k + 1)α ≤ ε.

Combining, we get

lim sup
β→0

∣∣∣∣βα ∞∑
j=1

φ(βEj)− Lα
∫ ∞

0
φ(x)xα−1dx

∣∣∣∣
≤ Lα

∫ ∞
K
|φ(x)|xα−1dx+ lim sup

β→0

∣∣∣∣βα ∑
j :βEj>K

φ(βEj)
∣∣∣∣

≤ 2ε.

Since this holds for any ε > 0, the proof is complete. �

Fix β > 0. Let Z1, Z2, . . . be independent random variables, with

P(Zj = k) = e−βEjk(1− e−βEj ), k = 0, 1, 2, . . . .

That is, Zj has a geometric distribution with parameter 1 − e−βEj . Note
that by (13), and the facts that S(Ej) ≥ j for all j and E1 > 0, it follows
that there exists K > 0 such that

(15) Ej ≥ Kj1/α

for all j. From this it is easy to conclude that the sequence Z1, Z2, . . . is
summable almost surely. Define

M :=
∞∑
j=1

Zj .

Lemma 3.2. Suppose that α > 1. As β → 0, βαM converges in probability
to LαΓ(α)ζ(α).

Proof. Note that

E(M) =
∞∑
j=1

1
eβEj − 1

(16)

and

Var(M) =
∞∑
j=1

e−βEj

(1− e−βEj )2
.(17)
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By Lemma 3.1 and the above formulas, we get

lim
β→0

βαE(M) = Lα

∫ ∞
0

xα−1

ex − 1
dx

= Lα

∞∑
k=1

∫ ∞
0

xα−1e−kxdx

= LαΓ(α)
∞∑
k=1

k−α = LαΓ(α)ζ(α),

and

lim sup
β→0

β1−αVar(βαM) ≤ lim sup
β→0

βα

E1

∞∑
j=1

βEje
−βEj

(1− e−βEj )2

=
Lα

E1

∫ ∞
0

xαe−x

(1− e−x)2
dx <∞.

Since α > 1, this show that Var(βαM) → 0 as β → 0. This completes the
proof of the lemma. �

Lemma 3.3. Suppose that α = 1. Then as β → 0, βM/ log(1/β) converges
in probability to L.

Proof. The identity (16) may be rewritten (with the help of (15)) as

E(M) =
∞∑
j=1

e−βEj

1− e−βEj

=
∞∑
j=1

∞∑
k=1

e−kβEj =
∞∑
k=1

ck(β),

where

ck(β) :=
∞∑
j=1

e−kβEj .

By (15), there is a constant K > 0 such that

ck(β) ≤
∞∑
j=1

e−Kkβj =
1

eKkβ − 1
.

Now, if kβ ≥ 1/ log log(1/β), then

1 = eKkβ−Kkβ ≤ eKkβe−K/ log log(1/β),

and consequently,

1
eKkβ − 1

≤ e−Kkβ

1− e−K/ log log(1/β)
.
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Thus, if

C(β) :=
1

β log log(1/β)
,

then ∑
k≥C(β)

ck(β) ≤ 1
(eK/ log log(1/β) − 1)(1− e−Kβ)

(18)

∼ log log(1/β)
K2β

as β → 0.

On the other hand, we claim that

lim
β→0

max
k≤C(β)

|kβck(β)− L| = 0.(19)

To prove this, suppose not. Then there exist sequences βi → 0 and ki ≤
C(βi) such that

kiβicki(βi) 6→ L.

But since kiβi → 0, it follows as a simple consequence of Lemma 3.1 that
the left hand side of the above display must tend to L as i→∞. This gives
a contradiction, proving (19). Applying (19) gives∣∣∣∣ ∑

k≤C(β)

ck(β)−
∑

k≤C(β)

L

kβ

∣∣∣∣ ≤ max
k≤C(β)

|kβck(β)− L|
∑

k≤C(β)

1
kβ

= o

(
log(1/β)

β

)
as β → 0.

Combining this with (18) gives

(20) E(M) ∼ L log(1/β)
β

as β → 0.

Next, the identity (17) may be rewritten as

Var(M) =
1
β2

∞∑
j=1

β2E2
j e
−βEj

(1− e−βEj )2
1
E2
j

.

By (15) the series
∑

1/E2
j converges. On the other hand, the term

β2E2
j e
−βEj

(1− e−βEj )2

is uniformly bounded over β and j and converges to 1 as β → 0. Thus,
Var(M) behaves asymptotically like β−2

∑
1/E2

j as β → 0. Combined
with (20), this completes the proof of the lemma. �

Define

Z0 := n−
∞∑
j=1

Zj = n−M.
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Note that Z0 may be negative. The following simple lemma gives the crucial
connection between the Zi’s and the Ni’s. Shortly after our manuscript was
posted, Paolo Dai Pra and Francesco Caravenna communicated to us that
a version of this lemma is stated and used in their recent probability text-
book [6]. Incidentally, the connection between geometric random variables
and Bose-Einstein condensation is well known in the probabilistic folklore;
it is therefore quite likely that this lemma has been discovered and used by
probabilists and mathematical physicists in the past.

Lemma 3.4. Take any n ≥ 1 and β > 0. The canonical ensemble for n
particles at inverse temperature β is the same as the law of (Z0, Z1, Z2, . . .)
conditioned on the event M ≤ n.

Proof. Let (N0, N1, . . .) be a configuration chosen from the canonical en-
semble for n particles at inverse temperature β. For any sequence of non-
negative integers n0, n1, . . . summing to n,

P(N0 = n0, N1 = n1, . . .) =
e−β

P∞
j=1 njEj

Zn(β)
,

where Zn(β) is the normalizing constant. Observe that

Zn(β)
∞∏
j=1

(1− e−βEj ) =
( ∑
n0,n1,n2,... such that
n0+n1+n2···=n

e−β
P∞
j=1 njEj

) ∞∏
j=1

(1− e−βEj )

=
( ∑
n1,n2,... such that
n1+n2+···≤n

e−β
P∞
j=1 njEj

) ∞∏
j=1

(1− e−βEj )

= P(M ≤ n).

On the other hand

P(Z1 = n1, Z2 = n2, . . .) = e−β
P∞
j=1 njEj

∞∏
j=1

(1− e−βEj ).

The proof follows as a consequence of the last three displays. �

Proof of Theorem 2.1. First suppose that α > 1. Take any n and let β =
1/(kBT ), where T = tn1/α. Let Z0, Z1, . . . and M be as above. Then by
Lemma 3.2,

Z0

n
= 1− M

n
= 1− (kBtβ)αM

→ 1− (kBt)αLαΓ(α)ζ(α) = 1− (t/tc)α in probability as n→∞.

By Lemma 3.4, the distribution of N0 is the same as that of Z0 conditional
on the event M ≤ n. To finish the proof, note that since t < tc and by
Lemma 3.2 M/n→ (t/tc)α, therefore P(M ≤ n)→ 1 as n→∞.
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When α = 1 the proof follows similarly from Lemma 3.3, taking β =
1/(kBT ), where T = tn/ log n. �

Next we prove Theorem 2.6, since the proof is similar to that of Theo-
rem 2.1. Define

R :=
∞∑
j=1

EjZj .

Lemma 3.5. As β → 0, β1+αR converges to LαΓ(α+ 1)ζ(α+ 1) in proba-
bility.

Proof. The proof is similar to the proof of Lemma 3.2. First, note that

E(R) =
∞∑
j=1

Ej

eβEj − 1
(21)

and

Var(R) =
∞∑
j=1

e−βEjE2
j

(1− e−βEj )2
.(22)

By Lemma 3.1 and the above formulas, we get

lim
β→0

β1+αE(R) = Lα

∫ ∞
0

xα

ex − 1
dx

= Lα
∞∑
k=1

∫ ∞
0

xαe−kxdx

= LαΓ(α+ 1)
∞∑
k=1

k−α−1 = LαΓ(α+ 1)ζ(α+ 1),

and

lim
β→0

β2+αVar(R) = lim
β→0

βα
∞∑
j=1

β2E2
j e
−βEj

(1− e−βEj )2

= Lα

∫ ∞
0

xα+1e−x

(1− e−x)2
dx <∞.

This show that Var(β1+αR) = O(βα) as β → 0. This completes the proof
of the lemma. �

Proof of Theorem 2.6. Take any n and let β = 1/(kBT ), where T = tn1/α if
α > 1 and T = tn/ log n if α = 1. By Lemma 3.4, the distribution of Etot is
the same as that of R conditional on the event M ≤ n. To finish the proof,
note that since t < tc, Theorem 2.1 implies that P(M ≤ n)→ 1 as n→∞;
then invoke Lemma 3.5. �
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Proof of Theorem 2.2. First, suppose that 1 ≤ α < 2. Fix β > 0 and let
Z0, Z1, . . . and M be as before. For each k, let

Mk :=
k∑
j=1

Zj .

For ξ ∈ R, define
φk(β, ξ) := E(eiξβ(Mk−E(Mk)))

where i =
√
−1, and let

φ(β, ξ) := E(eiξβ(M−E(M))).

Since Mk →M and E(Mk)→ E(M) as k →∞, therefore

lim
k→∞

φk(β, ξ) = φ(β, ξ).

An explicit computation gives

φk(β, ξ) =
k∏
j=1

E(eiξβ(Zj−E(Zj))) =
k∏
j=1

1− e−βEj
1− eβ(iξ−Ej)

exp
(
− iξβe−βEj

1− e−βEj

)
.

Let log denote the principal branch of the logarithm function. Then the
above formula shows that

φk(β, ξ) = exp
( k∑
j=1

[
log(1− e−βEj )− log(1− eβ(iξ−Ej))− iξβe−βEj

1− e−βEj

])
.

By the inequality (15), it is easy to see that the series on the right hand side
converges absolutely as k →∞. Thus,

φ(β, ξ)(23)

= exp
( ∞∑
j=1

[
log(1− e−βEj )− log(1− eβ(iξ−Ej))− iξβe−βEj

1− e−βEj

])
.

Fix ξ and let aj(β) denote the jth term in the sum. Then for any j,

lim
β→0

aj(β) = logEj − log(Ej − iξ)− iξ
Ej
.(24)

Expanding aj(β) in power series of the logarithm, we get

aj(β) =
∞∑
k=1

(
ek(iβξ−βEj)

k
− e−kβEj

k
− iξβe−kβEj

)

=
∞∑
k=1

(
eikβξ − 1− ikβξ

k

)
e−kβEj

Again, the inequality (15) guarantees that the power series expansions con-
verge absolutely. Using the inequality

(25) |eix − 1− ix| ≤ x2

2
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that holds for all x ∈ R,

|aj(β)| ≤ β2ξ2

2

∞∑
k=1

ke−kβEj =
β2ξ2e−βEj

2(1− e−βEj )2
=

β2ξ2

2(eβEj/2 − e−βEj/2)2
.

For any x ≥ 0, ex − e−x ≥ 2x. Thus for any j and β > 0,

|aj(β)| ≤ ξ2

2E2
j

.

Note that by (15) and the assumption that α < 2,
∞∑
j=1

1
E2
j

≤ 1
K2

∞∑
j=1

1
j2/α

<∞.(26)

Together with (23) and (24), this shows

lim
β→0

φ(β, ξ) = exp
( ∞∑
j=1

[
logEj − log(Ej − iξ)− iξ

Ej

])
,(27)

and also that the series on the right converges absolutely.
Let X1, X2, . . . be i.i.d. exponential random variables with mean 1. For

each k, define

Uk :=
k∑
j=1

Xj − 1
Ej

.

Observe that {Uk}k≥1 is a martingale with respect to the filtration generated
by the sequence {Xk}k≥1. Moreover, by (26),

E(U2
k ) =

k∑
j=1

1
E2
j

≤
∞∑
j=1

1
E2
j

<∞.

Thus, Uk is a uniformly L2 bounded martingale. Therefore the limit

U :=
∞∑
j=1

Xj − 1
Ej

exists almost surely and Uk → U in L2. A simple application of the domi-
nated convergence theorem shows that the the characteristic function of U
is given by the formula

E(eiξU ) = exp
( ∞∑
j=1

[
logEj − log(Ej − iξ)− iξ

Ej

])
,

which is exactly the right hand side of (27). This shows that as β → 0,
β(M − E(M)) converges in distribution to U .
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Now suppose that 1 < α < 2 and let β = 1/(kBT ), where T = tn1/α.
Since M − E(M) = E(Z0)− Z0, the above conclusion may be restated as:

Z0 − E(Z0)
n1/α

d−→ −kBtU

= kBt(LαΓ(α)ζ(α))1/αW = (t/tc)W as n→∞.
To finish, recall that by Lemma 3.4, the law of N0 is the same as that of Z0

conditional on the event M ≤ n, and by Theorem 2.1, P(M ≤ n) → 1 as
n→∞ when t < tc.

Similarly if α = 1 let β = 1/(kBT ) where T = tn/ log n. Then as above,

N0 − E(N0)
n/ log n

d−→ (t/tc)W.

Next, consider the case α > 2. Fix β > 0 and let Z0, Z1, . . . and M be as
before. Let

φ(β, ξ) := E(eiξβ
α/2(M−E(M))).

A similar computation as before gives

φ(β, ξ) = exp
( ∞∑
j=1

[
log(1− e−βEj )− log(1− eiβα/2ξ−βEj )− iξβα/2e−βEj

1− e−βEj

])
.

Expanding in power series gives

φ(β, ξ) = exp
( ∞∑
j=1

∞∑
k=1

(
ek(iβ

α/2ξ−βEj)

k
− e−kβEj

k
− iξβα/2e−kβEj

))

= exp
( ∞∑
j=1

∞∑
k=1

(
eikβ

α/2ξ − 1− ikβα/2ξ
k

)
e−kβEj

)
.

Note that the double series is absolutely convergent by the inequality (15),
because the term within the parenthesis may be bounded by 3βα/2ξ in ab-
solute value, and

∞∑
j=1

∞∑
k=1

e−kβEj =
∞∑
j=1

1
eβEj − 1

≤
∞∑
j=1

1
eβKj

1/α − 1
<∞.

Therefore the order of summation may be interchanged. For each k, let

ak(β) := β−α
(
eikβ

α/2ξ − 1− ikβα/2ξ
k

)
and

bk(β) := βα
∞∑
j=1

e−kβEj ,

so that

φ(β, ξ) = exp
( ∞∑
k=1

ak(β)bk(β)
)
.



18 SOURAV CHATTERJEE AND PERSI DIACONIS

Lemma 3.1 implies that

(28) lim
β→0

bk(β) = Lα

∫ ∞
0

xα−1e−kxdx = LαΓ(α)k−α.

On the other hand,

(29) lim
β→0

ak(β) = −kξ
2

2
.

By (15),

bk(β) ≤ βα
∞∑
j=1

e−kβKj
1/α ≤ βα

∫ ∞
0

e−kβKx
1/α
dx

= k−α
∫ ∞

0
e−Ky

1/α
dy(30)

and by (25),

|ak(β)| ≤ kξ2

2
.

Consequently,
|ak(β)bk(β)| ≤ Ck1−α,

where C is a constant that does not depend on k or β. Since α > 2, therefore
by (28) and (29) and the dominated convergence theorem,

lim
β→0

φ(β, ξ) = exp
(
−1

2
LαΓ(α)ξ2

∞∑
k=1

k1−α
)

= exp
(
−1

2
LαΓ(α)ζ(α− 1)ξ2

)
.

This shows that

βα/2(M − E(M)) d−→ N (0, LαΓ(α)ζ(α− 1)) as β → 0.

Now let β = 1/(kBT ), where T = tn1/α. Since M − E(M) = E(Z0)− Z0,

Z0 − E(Z0)√
n

d−→ N (0, (kBt)αLαΓ(α)ζ(α− 1))

= N (0, (t/tc)αζ(α− 1)/ζ(α)).

As in the case 1 < α < 2, Theorem 2.1 and Lemma 3.4 allow replacing Z0

by N0 in the above display.
Finally, suppose that α = 2. Fix β ∈ (0, 1) and let

γ = γ(β) :=
β√

log(1/β)
.

Let Z0, Z1, . . . and M be as before, and let

φ(β, ξ) := log E(eiξγ(M−E(M))).
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As in the case α > 2, this gives the formula

φ(β, ξ) = exp
( ∞∑
j=1

∞∑
k=1

(
eikγξ − 1− ikγξ

k

)
e−kβEj

)
.

Using (15), the double series is absolutely convergent. Fix ξ, and define

ak(β) := β−2

(
eikγξ − 1− ikγξ

k

)
and

bk(β) := β2
∞∑
j=1

e−kβEj ,

so that

φ(β, ξ) = exp
( ∞∑
k=1

ak(β)bk(β)
)
.

By the inequality
|eix − 1− ix| ≤ 2|x|

we have

|ak(β)| ≤ 2|ξ|
β
√

log(1/β)
,

and by the same argument that led to (30),

(31) bk(β) ≤ Ck−2,

where

C =
∫ ∞

0
e−Ky

1/2
dy.

Thus, taking

η = η(β) :=
1

β(log(1/β))1/4
,

the last two inequalities give∑
k>η

|ak(β)bk(β)| ≤ 2C|ξ|
β
√

log(1/β)

∑
k>η

k−2.

Since the right hand side tends to zero as β → 0, we see that

(32) lim
β→0

φ(β, ξ)
φ1(β, ξ)

= 1,

where

φ1(β, ξ) := exp
(∑
k≤η

ak(β)bk(β)
)
.

Next, note that the inequality∣∣∣∣eix − 1− ix+
x2

2

∣∣∣∣ ≤ |x|36
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gives ∣∣∣∣ak(β) +
kξ2

2 log(1/β)

∣∣∣∣ ≤ k2β|ξ|3

12(log(1/β))3/2
.(33)

By (31) and (33),∣∣∣∣∑
k≤η

ak(β)bk(β)− ξ2

2 log(1/β)

∑
k≤η

kbk(β)
∣∣∣∣ ≤ β|ξ|3

12(log(1/β))3/2
∑
k≤η

k2bk(β)

≤ C|ξ|3

12(log(1/β))7/4
.

Thus, defining

φ2(β, ξ) := exp
(
− ξ2

2 log(1/β)

∑
k≤η

kbk(β)
)

gives

(34) lim
β→0

φ1(β, ξ)
φ2(β, ξ)

= 1.

Define
δ(β) := max

k≤η
|k2bk(β)− 2L|.

We claim that

(35) lim
β→0

δ(β) = 0.

To see this, suppose not. Then there exists a sequence βi → 0 and a sequence
of integers ki such that ki ≤ ηi := η(βi) for all i, and

lim
i→∞

k2
i bki(βi) 6= 2L.

However, since βiki → 0, Lemma 3.1 implies the above limit must be equal
to 2L. This gives a contradiction which proves (35). Now note that∣∣∣∣ 1

2 log(1/β)

∑
k≤η

kbk(β)− L

log(1/β)

∑
k≤η

1
k

∣∣∣∣
≤ 1

2 log(1/β)

∑
k≤η

δ(β)
k
≤ δ(β) log η

2 log(1/β)
.

From (35), the above bound tends to zero as β → 0. Thus,

lim
β→0

φ2(β, ξ) = e−Lξ
2
.

Therefore by (32) and (34), φ(β, ξ) also tend to the same limit as β → 0. In
other words,

β(M − E(M))√
log(1/β)

d−→ N (0, 2L) as β → 0.
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Now let β = 1/(kBT ), where T = t
√
n. Then, as n→∞, the above display

may be written as
M − E(M)√

n log n
d−→ N (0, k2

Bt
2L) = N (0, (t/tc)2/(2ζ(2))).

Proceeding as in the other two cases, we get the central limit theorem for N0.
This completes the proof of Theorem 2.2. �

Proof of Theorem 2.3. First suppose that α > 1. Recall that for j ≥ 1,
Zj is a geometric random variable with mean 1/(eβEj − 1). Consequently,
the limiting distribution of βZj as β → 0 is exponential with mean 1/Ej .
Taking β = 1/(kBT ) where T = tn1/α, we get that Zj/n1/α converges in
law to exponential with mean kBt/Ej . By Lemma 3.4, the distribution of
Nj is the same as that of Zj conditional on the event M ≤ n. Since t < tc,
Lemma 3.2 implies that P(M ≤ n) → 1 as n → ∞. Thus Zj/n1/α and
Nj/n

1/α have the same limiting distribution.
Note that the above argument was carried out under the assumption that

E0 = 0. If E0 6= 0, simply replace Ej by Ej − E0.
When α = 1, the same argument can be carried out with β = 1/kBT ,

where T = tn/ log n. �

Proof of Theorem 2.4. We are aided in this classical computation by the
work of Montgomery and Odlyzko [26]. They proved similar theorems for
Bernoulli random variables. Their paper contains further refinements which
could also be developed for the present example.

Without loss of generality, assume that E0 = 0. The random variable
(1−Xj)/Ej has mean zero and moment generating function

E(eλ(1−Xj)/Ej ) =
eλ/Ej

1 + λ/Ej
.

The following bounds are needed: For any x ≥ 0,
ex

1 + x
≤ ex,(36)

ex

1 + x
≤ ex2/2.(37)

Further,
ex

1 + x
≥ ex/2 for x ≥ 3,(38)

ex

1 + x
≥ ex2/6 for 0 ≤ x ≤ 3.(39)

The bound (36) is obvious. For (37), consider two cases: (a) 0 < x < 1;
then ex < (1 + x)ex

2/2 is equivalent to

x <
x2

2
+ x− x2

2
+
x3

3
− · · · ,
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or equivalently

0 <
(
x3

3
− x4

4

)
+
(
x5

5
− x6

6

)
+ · · · .

This last inequality is true termwise.
(b) 1 ≤ x <∞; here

ex

1 + x
≤ ex

2
< ex

2/2

if and only if

x <
x2

2
+ log 2,

but x2/2 − x + log 2 has a unique minimum at 1 where it is positive. This
completes the proof of (37).

For (38), note that ex/(1 + x) > ex/2 is equivalent to ex/2 > 1 + x, which
may be written as

x2

8
+
x3

48
+ · · · > x

2
.

This inequality is true for x ≥ 3.
For (39), again work in cases. For 0 ≤ x < 1, taking logs allows checking

x >
x2

6
+ x− x2

2
+
x3

3
− · · ·

or equivalently (
−x

2

3
+
x3

3

)
+
(
−x

4

4
+
x5

5

)
+ · · · < 0.

The left side has each term negative. A similar check, expanding the loga-
rithm and pairing terms, works for 1 ≤ x ≤ 2 and 2 ≤ x ≤ 3.

The stated upper bounds in Theorem 2.4 now follow from the argument
of Montgomery and Odlyzko word for word with (36)–(39) substituting for
their inequalities (7)–(10). We omit further details.

Recall the definition (12) of S(λ). Define

S(λ−) := lim
x↑λ

S(x).

When Ej ’s satisfy (2), S(λ) and S(λ−) are both asymptotic to Lλα. Since
S(Ej) ≥ j and S(Ej−) ≤ j and E1 > 0, there are positive constants a and
b such that

aj1/α ≤ Ej ≤ bj1/α

for each j ≥ 1. Consequently, if α > 1, nx and n′x are bounded above and
below by constant multiples of xα/(α−1). This, combined with (5) and (6),
implies (7). Similarly for (8), note that if α = 1 then log nx and log n′x are
both bounded above and below by constant multiples of x.
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Finally, to prove (9), notice that the random variable −W has moment
generating function

φ(λ) = E(e−λW ) =
∞∏
j=1

e−λ/Ej

1− λ/Ej
, −∞ < λ < E1.

By Markov’s inequality,

P(W ≤ −x) ≤ e−λxφ(λ)

for any 0 < λ < E1. This proves (9). To see that no power x1+ε will do,
observe that φ(E1) = ∞. A tail bound with x1+ε would give φ(λ) < ∞ for
all λ. �

Proof of Proposition 2.5. Take any k and let Y1, Y2, . . . , Yk are i.i.d. expo-
nential random variables with mean 1. Let Y(j) be the jth largest Yi, and
Y(k+1) = 0. Let Zj := Y(j)−Y(j+1). It is a simple fact that the random vari-
ables Z1, . . . , Zk are independent, and Zj is exponentially distributed with
mean 1/j. Thus, if X1, X2, . . . are i.i.d. exponential random variables with
mean 1, then the distribution of

∑k
j=1Xj/j is the same as that of

∑k
j=1 Zj .

But note that
∑k

j=1 Zj = Y(1). Thus, if

Wk :=
k∑
j=1

1−Xj

j
,

then for all −∞ < x ≤
∑k

j=1 1/j,

P(Wk ≥ x) = P
(
Y(1) ≤

k∑
j=1

1
j
− x
)

= (1− ex−
Pk
j=1 1/j)k.

Thus,

P(W ≥ x) = lim
k→∞

(1− ex−
Pk
j=1 1/j)k

= exp
(
− lim
k→∞

ex−
Pk
j=1 1/j+log k

)
= e−e

x−γ
.

This completes the proof of the proposition. Incidentally, a version of this
proof may also be found in [18, Example B.11]. �
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[17] Jaeck, T., Pulé, J. V. and Zagrebnov, V. A. (2010). On the nature of Bose-
Einstein condensation enhanced by localization. J. Math. Phys. 51 no. 10, 103302.

[18] Janson, S. (2012). Further examples with moments of Gamma type. Preprint. Avail-
able at http://arxiv.org/abs/1204.5637

[19] Kocharovsky, V. V. and Kocharovsky, V. V. (2010). Self-similar analytical
solution of the critical fluctuations problem for the Bose-Einstein condensation in an
ideal gas. J. Phys. A, 43 no. 22, 225001.

[20] Kocharovsky, V. V., Kocharovsky, V. V., Holthaus, M., Raymond Ooi,
C. H., Svidzinsky, A., Ketterle, W. and Scully, M. O. (2006). Fluctuations in
ideal and interacting bose-einstein condensates: from the laser phase transition anal-
ogy to squeezed states and Bogoliubov quasiparticles. Advances in Atomic, Molecular,
and Optical Physics, 53, 291–411.



FLUCTUATIONS OF THE BOSE-EINSTEIN CONDENSATE 25

[21] Krauth, W. (2006). Statistical mechanics: algorithms and computations. Oxford
University Press.

[22] Leggett, A. J. (2001). Bose-Einstein condensation in the alkali gases: Some fun-
damental concepts. Rev. Mod. Phys., 73 no. 2, 307–356.

[23] Lewis, J. T., Zagrebnov, V. A. and Pulé, J. V. (1988). The large deviation
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