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Abstract

We identify two seemingly disparate structures: supercharacters, a useful way of doing
Fourier analysis on the group of unipotent uppertriangular matrices with coefficients in a fi-
nite field, and the ring of symmetric functions in noncommuting variables. Each is a Hopf
algebra and the two are isomorphic as such. This allows developments in each to be transferred.
The identification suggests a rich class of examples for the emerging field of combinatorial Hopf
algebras.

1 Introduction

Identifying structures in seemingly disparate fields is a basic task of mathematics. An example,
with parallels to the present work, is the identification of the character theory of the symmetric
group with symmetric function theory. This connection is wonderfully exposited in Macdonald’s
book [26]. Later, Geissinger and Zelevinsky independently realized that there was an underlying
structure of Hopf algebras that forced and illuminated the identification [19, 36]. We present a
similar program for a “supercharacter” theory associated to the uppertriangular group and the
symmetric functions in noncommuting variables.

1.1 Uppertriangular matrices

Let UTn(q) be the group of uppertriangular matrices with entries in the finite field Fq and ones
on the diagonal. This group is a Sylow p-subgroup of GLn(q). Describing the conjugacy classes
or characters of UTn(q) is a provably “wild” problem. In a series of papers, André developed
a cruder theory that lumps together various conjugacy classes into “superclasses” and considers
certain sums of irreducible characters as “supercharacters.” The two structures are compatible
(so supercharacters are constant on superclasses). The resulting theory is very nicely behaved —
there is a rich combinatorics describing induction and restriction along with an elegant formula
for the values of supercharacters on superclasses. The combinatorics is described in terms of set
partitions (the symmetric group theory involves integer partitions) and the combinatorics seems
akin to tableau combinatorics. At the same time, supercharacter theory is rich enough to serve as
a substitute for ordinary character theory in some problems [7] .

In more detail, the group UTn(q) acts on both sides of the algebra of strictly upper-triangular
matrices nn (which can be thought of as nn = UTn(q) − 1). The two sided orbits on nn can
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be mapped back to UTn(q) by adding the identity matrix. These orbits form the superclasses
in UTn(q). A similar construction on the dual space n

∗
n gives a collection of class functions on

UTn(q) that turn out to be constant on superclasses. These orbit sums (suitably normalized) are
the supercharacters. Let

SC =
⊕

n≥0

SCn,

where SCn is the set of functions from UTn(q) to C that are constant on superclasses, and SC0 =
C-span{1} is by convention the set of class functions of UT0(q) = {}.

It is useful to have a combinatorial description of the superclasses in SCn. These are indexed by
elements of nn with at most one nonzero entry in each row and column. Every superclass contains
a unique such matrix, obtained by a set of elementary row and column operations. Thus, when
n = 3, there are five such patterns; with ∗ ∈ F×

q ,





0 0 0
0 0 0
0 0 0



 ,





0 ∗ 0
0 0 0
0 0 0



 ,





0 0 0
0 0 ∗
0 0 0



 ,





0 0 ∗
0 0 0
0 0 0



 , and





0 ∗ 0
0 0 ∗
0 0 0



 .

Each representative matrix X can be encoded as a pair (D,φ), where D = {(i, j) | Xij 6= 0} and
φ : D → F×

q is given by φ(i, j) = Xij . There is a slight abuse of notation here since the pair
(D,φ) does not record the size of the matrix X. Let XD,φ denote the distinguished representative
corresponding to the pair (D,φ), and let κD,φ = κXD,φ

be the function that is 1 on the superclass
and zero elsewhere.

We give combinatorial expressions for the product and coproduct in this section and represen-
tation theoretic descriptions in Section 3. The product is given by

κXD,φ
· κXD′,φ′

=
∑

X′

κ(XD,φ X′

0 XD′,φ′

), (1.1)

where the sum runs over all ways of placing a matrix X ′ into the upper-right hand block such that
the resulting matrix still has at most one nonzero entry in each row and column. Note that this
differs from the pointwise product of class functions, which is internal to each SCn (and hence does
not turn SC into a graded algebra).

For example, if

(D,φ) = ({}, φ)↔

(

0 0
0 0

)

(D′, φ′) = ({(1, 2), (2, 3)}, {φ(1, 2) = a, φ(2, 3) = b})↔





0 a 0
0 0 b
0 0 0



 ,

where the sizes of the matrices are 2 and 3, respectively, then

κD,φ · κD′,φ′ = κ





0 0 0 0 0
0 0 0 0 0
0 0 0 a 0
0 0 0 0 b
0 0 0 0 0







+
∑

c∈F×
q

κ





0 0 c 0 0
0 0 0 0 0
0 0 0 a 0
0 0 0 0 b
0 0 0 0 0







+ κ





0 0 0 0 0
0 0 c 0 0
0 0 0 a 0
0 0 0 0 b
0 0 0 0 0







.

We can define the coproduct on SCn by

∆(κXD,φ
) =

∑

[n]=S∪Sc

(i,j)∈D only if
i, j ∈ S or i, j ∈ Sc

κ(XD,φ)S ⊗ κ(XD,φ)Sc . (1.2)
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where (X)S is the matrix restricted to the rows and columns in S. For example, ifD = {(1, 4), (2, 3)},
φ(2, 3) = a, and φ(1, 4) = b, then

∆(κD,φ) = κD,φ ⊗ 1 + κ( 0 a0 0 )
⊗ κ( 0 b

0 0

) + κ( 0 b
0 0

) ⊗ κ( 0 a0 0 )
+ 1⊗ κD,φ.

In Section 3, we show that the product and coproduct above have a representation theoretic
meaning and we prove that

Corollary 3.3 With the product (1.1) and the coproduct (1.2), the space SC forms a Hopf algebra.

Background on Hopf algebras is in Section 2.3. We note here that SC is graded, noncommuta-
tive, and cocommutative. It has a unit κ∅ ∈ SC0 and a counit ε : SC→ C obtained by taking the
coefficient of κ∅.

1.2 Symmetric functions in noncommuting variables

Let λ be a set partition of [n] = {1, 2, . . . , n}, denoted λ ⊢ [n]. A monomial of shape λ is a product
of noncommuting variables a1a2 · · · ak, where variables are equal if and only if the corresponding
indices/positions are in the same block/part of λ. For example, if 135|24 ⊢ [5], then xyxyx is a
monomial of shape λ (135|24 is the set partition of [5] with parts {1, 3, 5} and {2, 4}). Let mλ be
the sum of all monomials of shape λ. Thus, with three variables

m135|24 = xyxyx+ yxyxy + xzxzx+ zxzxz + yzyzy + zyzyz.

Usually, we work with an infinite set of variables and formal sums.
Define

Π =
⊕

n≥0

Πn, where Πn = C-span{mλ | λ ⊢ [n]}.

The elements of Π are called symmetric functions in noncommuting variables. As linear com-
binations of the mλ’s, they are invariant under permutations of variables. Such functions were
considered by Wolf [34] and Doubilet [16]. More recent work of Sagan brought them to the fore-
front. A lucid introduction is given by Rosas and Sagan [30] and combinatorial applications by
Gebhard and Sagan [18]. The algebra Π is actively studied as part of the theory of combinatorial
Hopf algebras [3, 9, 11, 12, 22, 29]. The mλ and thus Π are invariant under permutations of
variables.

Remark. There are a variety of notations given for Π, including NCSym and WSym. Instead
of choosing between these two conventions, we will use the more generic Π, following Rosas and
Sagan.

Here is a brief definition of product and coproduct; Section 2.4 has more details. If λ ⊢ [k] and
µ ⊢ [n− k], then

mλmµ =
∑

ν⊢[n]
ν∧([k]|[n−k])=λ|µ

mν . (1.3)

where ∧ denotes the join in the poset of set partitions under refinement (in this poset 1234 precedes
the two incomparable set partitions 1|234 and 123|4), and λ | µ ⊢ [n] is the set partition

λ | µ = λ1|λ2| · · · |λa|µ1 + k|µ2 + k| · · · |µb + k. (1.4)

Thus, if λ = 1|2 and µ = 123, then λ | µ = 1|2|345.

3



The coproduct is defined by

∆(mλ) =
∑

J⊆[ℓ(λ)]

mst(λJ ) ⊗mst(λJc), (1.5)

where λ has ℓ(λ) parts, λJ = {λj ∈ λ | j ∈ J}, st : J → [|J |] is the unique order preserving
bijection, and Jc = [ℓ(λ)] \ J .

Thus,

∆(m14|2|3) =m14|2|3 ⊗ 1 + 2m13|2 ⊗m1 +m12 ⊗m1|2 +m1|2 ⊗m12

+ 2m1 ⊗m13|2 + 1⊗m14|2|3.

It is known ([3, Section 6.2],[11, Theorem 4.1]) that Π, endowed with this product and co-
product is a Hopf algebra, where the antipode is inherited from the grading. A basic result of the
present paper is stated here for q = 2 (as described in Section 2.1 below, the pairs (D,φ) are in
correspondence with set-partitions). The version for general q is stated in Section 3.2.

Theorem 3.2. For q = 2, the function

ch : SC −→ Π

κµ 7→ mµ

is a Hopf algebra isomorphism.

This construction of a Hopf algebra from the representation theory of a sequence of groups is
the main contribution of this paper. It differs from previous work in that supercharacters are used.
Previous work was confined to ordinary characters (e.g. [25]) and the results of [10] indicate that
this is a restrictive setting. This work opens the possibility for a vast new source of Hopf algebras.

Section 2 gives further background on supercharacters (2.1), some representation theoretic oper-
ations (2.2), Hopf algebras (2.3), and symmetric functions in noncommuting variables (2.4). Section
3 proves the isomorphism theorem for general q, and Section 4 proves an analogous realization for
the dual Hopf algebra. The appendix describes the available Sage programs developed in parallel
with the present study, and a link for a list of open problems.

Acknowledgements

This paper developed during a focused research week at the American Institute of Mathematics in
May 2010. The main results presented here were proved as a group during that meeting.

2 Background

2.1 Supercharacter theory

Supercharacters were first studied by André (e.g. [5]) and Yan [35] in relation to UTn(q) in order
to find a more tractable way to understand the representation theory of UTn(q). Diaconis and
Isaacs [15] then generalized the concept to arbitrary finite groups, and we reproduce a version of
this more general definition below.

A supercharacter theory of a finite group G is a pair (K,X ) where K is a partition of G and X
is a partition of the irreducible characters of G such that

(a) Each K ∈ K is a union of conjugacy classes,
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(b) {1} ∈ K, where 1 is the identity element of G, and {11} ∈ X , where 11 is the trivial character
of G.

(c) For X ∈ X , the character
∑

ψ∈X

ψ(1)ψ

is constant on the parts of K,

(d) |K| = |X |.

We will refer to the parts of K as superclasses, and for some fixed choice of scalars cX ∈ Q (which
are not uniquely determined), we will refer to the characters

χX = cX
∑

ψ∈X

ψ(1)ψ, for X ∈ X

as supercharacters (the scalars cX should be picked such that the supercharacters are indeed char-
acters). For more information on the implications of these axioms, including some redundancies in
the definition, see [15].

There are a number of different known ways to construct supercharacter theories for groups,
including

• Gluing together group elements and irreducible characters using outer automorphisms [15],

• Finding normal subgroups N ⊳ G and grafting together superchararacter theories for the
normal subgroup N and for the factor group G/N to get a supercharacter theory for the
whole group [21].

This paper will however focus on a technique first introduced for algebra groups [15], and then
generalized to some other types of groups by André and Neto (e.g. [6]).

The group UTn(q) has a natural two-sided action on the Fq-spaces

n = UTn(q)− 1 and n
∗ = Hom(n,Fq)

given by left and right multiplication on n and for λ ∈ n
∗,

(uλv)(x − 1) = λ(u−1(x− 1)v−1), for u, v, x ∈ UTn(q).

It can be shown that the orbits of these actions parametrize the superclasses and supercharacters,
respectively, for a supercharacter theory. In particular, two elements u, v ∈ UTn(q) are in the same
superclass if and only if u − 1 and v − 1 are in the same two-sided orbit in UTn(q)\n/UTn(q).
Since the action of UTn(q) on n can be viewed as applying row and column operations, we obtain
a parameterization of superclasses given by

{

Superclasses
of UTn(q)

}

←→







u− 1 ∈ n with at most
one nonzero entry in
each row and column







.

This indexing set is central to the combinatorics of this paper, so we give several interpretations
for it. Let

Mn(q) =

{

(D,φ)

∣

∣

∣

∣

D ⊆ {(i, j) | 1 ≤ i < j ≤ n}, φ : D → F×
q ,

(i, j), (k, l) ∈ D implies i 6= k, j 6= l

}

Sn(q) =

{

Sets λ of triples i
a
⌢j = (i, j, a) ∈ [n]× [n]× F×

q ,

with i < j, and i
a
⌢j, k

b
⌢l ∈ λ implies i 6= k, j 6= l

}

,

5



where we will refer to the elements of Sn(q) as F
×
q -set partitions. In particular,

Mn(q) ←→ Sn(q) ←→







u− 1 ∈ n with at most
one nonzero entry in
each row and column







(D,φ) 7→ λ = {i
φ(i,j)
⌢ j | (i, j) ∈ D} 7→

∑

i
a
⌢j∈λ

aeij ,

(2.1)

where eij is the matrix with 1 in the (i, j) position and zeroes elsewhere. The following table lists
the correspondences for n = 3.

Superclass

(

0 0 0
0 0 0
0 0 0

) (

0 a 0
0 0 0
0 0 0

) (

0 0 0
0 0 a
0 0 0

) (

0 0 a
0 0 0
0 0 0

) (

0 a 0
0 0 b
0 0 0

)

M3(q) D = {}
D = {(1, 2)},
φ(1, 2) = a

D = {(2, 3)},
φ(2, 3) = a

D = {(1, 3)},
φ(1, 3) = a

D = {(1, 2), (2, 3)},
φ(1, 2) = a, φ(2, 3) = b

S3(q)
• • •
1 2 3

• • •
1 2 3

a

• • •
1 2 3

a

• • •
1 2 3

a

• • •
1 2 3

a b

Remark. Consider the maps

π : Mn(q) −→ Mn(2)
(D,φ) 7→ (D, 1)

and
π : Sn(q) → Sn(2)

λ 7→ {i
1
⌢j | i

a
⌢j ∈ λ}.

(2.2)

They ignore the part of the data that involves field scalars. Note that Mn(2) and Sn(2) are in
bijection with the set of partitions of the set {1, 2, . . . , n}. Indeed, the connected components of an
element λ ∈ Sn(2) may be viewed as the blocks of a partition of {1, 2, . . . , n}. Composing the map
π with this bijection associates a set partition to an element ofMn(q) or Sn(q), which we call the
underlying set partition.

Fix a nontrivial homomorphism ϑ : F+
q → C×. For each λ ∈ n

∗, construct a UTn(q)-module

V λ = C-span{vµ | µ ∈ −UTn(q) · λ}

with left action given by

uvµ = ϑ
(

µ(u−1 − 1)
)

vuµ, for u ∈ UTn(q), µ ∈ −UTn(q)λ.

It turns out that, up to isomorphism, these modules depend only on the two-sided orbit in
UTn(q)\n

∗/UTn(q) of λ. Furthermore, there is an injective function ι : Sn(q)→ n
∗ given by

ι(λ) : n −→ Fq

X 7→
∑

i
a
⌢j∈λ

aXij

that maps Sn(q) onto a natural set of orbit representatives in n
∗. We will identify λ ∈ Sn(q) with

ι(λ) ∈ n
∗.

The traces of the modules V λ for λ ∈ Sn(q) are the supercharacters of UTn(q), and they have
a nice supercharacter formula given by

χλ(uµ) =



















q#{(i,j,k)|i<j<k,i
a
⌢k∈λ}

q#{(i
a
⌢l,j

b
⌢k)∈λ×µ|i<j<k<l}

∏

i
a
⌢l∈λ

i
b
⌢l∈µ

ϑ(ab),
if i

a
⌢k ∈ λ and i < j < k

implies i
b
⌢j, j

b
⌢k /∈ µ,

0, otherwise.

(2.3)
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where uµ has superclass type µ [7]. Note that the degree of the supercharacter is

χλ(1) =
∏

i
a
⌢k∈λ

qk−i−1. (2.4)

Define
SC =

⊕

n≥0

SCn, where SCn = C-span{χλ | λ ∈ Sn(q)},

and let SC0 = C-span{χ∅}. By convention, we write 1 = χ∅, since this element will be the identity
of our Hopf algebra. Note that since SCn is in fact the space of superclass functions of UTn(q), it
also has another distinguished basis, the superclass characteristic functions,

SCn = C-span{κµ | µ ∈ Sn(q)}, where κµ(u) =

{

1, if u has superclass type µ,
0, otherwise,

and κ∅ = χ∅. Section 3 will explore a Hopf structure for this space.
We conclude this section by remarking that with respect to the usual inner product on class

functions

〈χ,ψ〉 =
1

|UTn(q)|

∑

u∈UTn(q)

χ(u)ψ(u)

the supercharacters are orthogonal. In fact, for λ, µ ∈ Sn(q),

〈χλ, χµ〉 = δλµq
C(λ), where C(λ) = #{(i, j, k, l) | i

a
⌢k, j

b
⌢l ∈ λ}. (2.5)

In particular, this inner product remains nondegenerate on SCn.

2.2 Representation theoretic functors on SC

We will focus on a number of representation theoretic operations on the space SC. For J =
(J1|J2| · · · |Jℓ) any set composition of {1, 2, . . . , n}, let

UTJ(q) = {u ∈ UTn(q) | uij 6= 0 with i < j implies i, j are in the same part of J}.

In the remainder of the paper we will need variants of a straightening map on set compositions.
For each set composition J = (J1|J2| · · · |Jℓ), let

stJ([n]) = stJ1(J1)× stJ2(J2)× · · · × stJℓ(Jℓ), (2.6)

where for K ⊆ [n], stK : K −→ [|K|] is the unique order preserving map. For example,
st(14|3|256)([6]) = {1, 2} × {1} × {1, 2, 3}.

We can extend this straightening map to a canonical isomorphism

stJ : UTJ(q) −→ UT|J1|(q)×UT|J2|(q)× · · · ×UT|Jℓ|(q) (2.7)

by reordering the rows and columns according to (2.6). For example, if J = (14|3|256), then

UTJ(q) ∋













1 0 0 a 0 0
0 1 0 0 b c
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 d
0 0 0 0 0 1













stJ7−→

(

(

1 a
0 1

)

, (1),

(

1 b c
0 1 d
0 0 1

))

∈ UT2(q)×UT1(q)×UT3(q).
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Combinatorially, if J = (J1|J2| · · · |Jℓ) we let

SJ(q) = {λ ∈ Sn(q) | i
a
⌢j ∈ λ implies i, j are in the same part in J}.

Then we obtain the bijection

stJ : SJ(q) −→ S|J1|(q)× S|J2|(q)× · · · × S|Jℓ|(q) (2.8)

that relabels the indices using the straightening map (2.6). For example, if J = 14|3|256, then

stJ

(

• • • • • •
1 2 3 4 5 6

a
b

)

=
• •
1 2

a ×
•
1

×
• • •
1 2 3

b

Note that UTm(q)×UTn(q) is an algebra group, so it has a supercharacter theory with the standard
construction [15] such that

SC(UTm(q)×UTn(q)) ∼= SCm ⊗ SCn.

The combinatorial map (2.8) preserves supercharacters across this isomorphism.
The first two operations of interest are restriction

JRes
UTn(q)
stJ (UTJ (q))

: SCn −→ SC|J1| ⊗ SC|J2| ⊗ · · · ⊗ SC|Jℓ|

χ 7→ Res
UTn(q)
UTJ (q)

(χ) ◦ st−1
J ,

or
JRes

UTn(q)
stJ(UTJ(q))

(χ)(u) = χ(st−1
J (u)), for u ∈ UT|J1|(q)× · · · ×UT|Jℓ|(q),

and its Frobenius adjoint map superinduction

JSInd
UTn(q)
stJ (UTJ(q))

: SC|J1| ⊗ SC|J2| ⊗ · · · ⊗ SC|Jℓ| −→ SCn

χ 7→ SInd
UTn(q)
UTJ (q)

(st−1
J (χ)),

where for a superclass function χ of UTJ(q),

SInd
UTn(q)
UTJ (q)

(χ)(u) =
1

|UTJ(q)|2

∑

x,y∈UTn(q)
x(u−1)y+1∈UTJ (q)

χ(x(u− 1)y + 1), for u ∈ UTn(q).

Note that under the usual inner product on characters,
〈

SInd
UTn(q)
UTJ (q)

(ψ), χ
〉

=
〈

ψ,Res
UTn(q)
UTJ (q)

(χ)
〉

.

Remarks.

(a) While superinduction takes superclass functions to superclass functions, a superinduced char-
acter may not be the trace of a representation. Therefore, SInd is not really a functor on the
module level. An exploration of the relationship between superinduction and induction can
be found in [27].

(b) There is an algorithmic method for computing restrictions of supercharacters (and also tensor
products of characters) [32, 33]. This has been implemented in Sage (see the Appendix,
below).
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For an integer composition (m1,m2, . . . ,mℓ) of n, let

UT(m1,m2,...,mℓ)(q) = UT(1,...,m1|m1+1,...,m1+m2|···|n−mℓ+1,...,n)(q) ⊆ UTm1+···+mℓ
(q).

There is a surjective homomorphism τ : UTn(q) → UT(m1,m2,...,mℓ)(q) such that τ2 = τ (τ fixes
the subgroup UT(m1,m2,...,mℓ)(q) and sends the normal complement to 1). The next two operations
arise naturally from this situation. We have inflation

Inf
UTn(q)
UT(m1,m2,...,mℓ)

(q) : SCm1 ⊗ SCm2 ⊗ · · · ⊗ SCmℓ
−→ SCn,

where
Inf

UTn(q)
UT(m1,m2,...,mℓ)

(q)
(χ)(u) = χ(τ(u)), for u ∈ UTn(q),

and its Frobenius adjoint map deflation

Def
UTn(q)
UT(m1,m2,...,mℓ)

(q) : SCn −→ SCm1 ⊗ SCm2 ⊗ · · · ⊗ SCmℓ
,

where

Def
UTn(q)
UT(m1,m2,...,mℓ)

(q)(χ)(u) =
1

| ker(τ)|

∑

v∈τ−1(u)

χ(v), for u ∈ UT(m1,m2,...,mℓ)(q).

On supercharacters, the inflation map is particularly nice, and is given combinatorially by

Inf
UTn(q)
UT(m1,m2,...,mℓ)

(q)(χ
λ1 × χλ2 × · · · × χλℓ) = χλ1|λ2|···|λℓ ,

where λ1 | λ2 | · · · | λℓ is as in (1.4) (see for example [32]).

2.3 Hopf algebra basics

Hopf algebras arise naturally in combinatorics and algebra, where there are “things” that break
into parts that can also be put together with some compatibility between operations [23]. They
have emerged as a central object of study in algebra through quantum groups [13, 17, 31] and in
combinatorics [1, 4, 22]. Hopf algebras find applications in diverse fields such as algebraic topology,
representation theory, and mathematical physics.

We suggest the first few chapters of [31] for a motivated introduction and [28] as a basic text.
Each has extensive references. The present section gives definitions to make our exposition self-
contained.

Let A be an associative algebra with unit 1 over a field K. The unit can be associated with a
map

u : K −→ A
t 7→ t · 1

A coalgebra is a vector space C over K with two K-linear maps: the coproduct ∆ : C → C ⊗ C
and a counit ε : C → K. The coproduct must be coassociative (as a map from C to C ⊗ C ⊗ C),
so that (∆⊗ Id) ◦∆ = (Id⊗∆) ◦∆, or for a ∈ C,

∑

j

∆(bj)⊗ cj =
∑

j

bj ⊗∆(cj), if ∆(a) =
∑

j

bj ⊗ cj .
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The counit must be compatible with the coproduct, so that (ε⊗ Id) ◦∆ = (Id⊗ ε) ◦∆ = Id, where
we identify C with K⊗ C and C ⊗K. More explicitly,

a =
∑

j

ε(bj)cj =
∑

j

bjε(cj), if ∆(a) =
∑

j

bj ⊗ cj .

A map ϕ : C → D between coalgebras is a coalgebra map if ∆D◦ϕ = (ϕ⊗ϕ)◦∆C , where ∆C and ∆D

are the coproducts of C and D, respectively. A subspace I ⊆ C is a coideal if ∆C(I) ⊆ I⊗C+C⊗I
and ε(I) = 0. In this case, the quotient space C/I is a coalgebra.

An algebra that is also a coalgebra is a bialgebra if the operations are compatible: for the
coproduct and product,

∆(xy) = ∆(x)∆(y) where (a⊗ b)(c⊗ d) = ac⊗ bd,

for the counit and product,
ε(xy) = ε(x)ε(y),

for the unit and coproduct

∆ ◦ u = (u⊗ u) ◦ δ, where
δ : K −→ K⊗K

t 7→ t⊗ t,

and for the counit and unit,
ε ◦ u = Id.

For example, the group algebra K[G] becomes a bialgebra under the maps ∆(g) = g ⊗ g and
ε(g) = 1 for all g ∈ G, and the polynomial algebra K[x1, . . . , xn] becomes a bialgebra under the
operations ∆(xi) = xi ⊗ 1 + 1⊗ xi and ε(xi) = 0 for 1 ≤ i ≤ n.

A bialgebra is graded if there is a direct sum decomposition

A =
⊕

n≥0

An,

such that AiAj ⊆ Ai+j, u(K) ⊆ A0, ∆(An) ⊆
⊕n

j=0Aj ⊗An−j and ε(An) = 0 for all n ≥ 1. It is
connected if A0

∼= K. For example, the polynomial algebra is graded by polynomial degree. In a
bialgebra, an ideal that is also a coideal is called a biideal, and the quotient is a bialgebra.

A Hopf algebra is a bialgebra with an antipode. This is a linear map S : A → A such that if
∆(a) =

∑

k ak ⊗ a
′
k, then

∑

k

akS(a
′
k) = ε(a) · 1 =

∑

k

S(ak)a
′
k. (2.9)

For example, the bialgebra K[G] has antipode S(g) = g−1 and the bialgebra K[x1, . . . , xn] has
antipode S(xi) = −xi. More generally, if A is a connected, graded bialgebra, then (2.9) can be
solved inductively to give S(t · 1) = t · 1 for t · 1 ∈ A0, and for a ∈ An,

S(a) = −a−

n−1
∑

j=1

S(aj)a
′
n−j , where ∆(a) = a⊗ 1 + 1⊗ a+

n−1
∑

j=1

aj ⊗ a
′
n−j . (2.10)

Thus, any graded, connected bialgebra has an antipode and is automatically a Hopf algebra.
If A is a graded bialgebra (Hopf algebra) and each An is finite-dimensional, then the graded

dual
A =

⊕

n≥0

A∗
n

is also a bialgebra (Hopf algebra). If A is commutative (cocommutative), then A∗ is cocommutative
(commutative).
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2.4 The Hopf algebra Π

Symmetric polynomials in a set of commuting variables X are the invariants of the action of the
symmetric group SX of X by automorphisms of the polynomial algebra K[X] over a field K.

When X = {x1, x2, . . .} is infinite, we let SX be the set of bijections on X with finitely many
nonfixed points. Then the subspace of K[[X]]SX of formal power series with bounded degree is the
algebra of symmetric functions Sym(X) over K. It has a natural bialgebra structure defined by

∆(f) =
∑

k

f ′k ⊗ f
′′
k , (2.11)

where the f ′k, f
′′
k are defined by the identity

f(X ′ +X ′′) =
∑

k

f ′k(X
′)f ′′k (X

′′), (2.12)

and X ′+X ′′ denotes the disjoint union of two copies of X. The advantage of defining the coproduct
in this way is that ∆ is clearly coassociative and that it is obviously a morphism for the product.
For each integer partition λ = (λ1, λ2, . . . , λℓ), the monomial symmetric function corresponding to
λ is the sum

mλ(X) =
∑

xα∈O(xλ)

xα (2.13)

over elements of the orbit O(xλ) of xλ = xλ11 x
λ2
2 · · · x

λℓ
ℓ under SX , and the monomial symmetric

functions form a basis of Sym(X). The coproduct of a monomial function is

∆(mλ) =
∑

µ∪ν=λ

mµ ⊗mν . (2.14)

The dual basis m∗
λ of mλ is a multiplicative basis of the graded dual Sym∗, which turns out to be

isomorphic to Sym via the identification m∗
n = hn (the complete homogeneous function, the sum

of all monomials of degree n).
The case of noncommuting variables is very similar. Let A be an alphabet, and consider the

invariants of SA acting by automorphisms on the free algebra K〈A〉. Two words a = a1a2 · · · an
and b = b1b2 · · · bn are in the same orbit whenever ai = aj if and only if bi = bj. Thus, orbits
are parametrized by set partitions in at most |A| blocks. Assuming as above that A is infinite, we
obtain an algebra based on all set partitions, defining the monomial basis by

mλ(A) =
∑

w∈Oλ

w, (2.15)

where Oλ is the set of words such that wi = wj if and only if i and j are in the same block of λ.
One can introduce a bialgebra structure by means of the coproduct

∆(f) =
∑

k

f ′k ⊗ f
′′
k where f(A′ +A′′) =

∑

k

f ′k(A
′)f ′′k (A

′′), (2.16)

and A′ +A′′ denotes the disjoint union of two mutually commuting copies of A. The coproduct of
a monomial function is

∆(mλ) =
∑

J⊆[ℓ(λ)]

mst(λJ ) ⊗mst(λJc). (2.17)

This coproduct is cocommutative. With the unit that sends 1 to m∅ and the counit ε(f(A)) =
f(0, 0, . . .), we have that Π is a connected graded bialgebra and therefore a graded Hopf algebra.

Remark. We again note that Π is often denoted in the literature as NCSym or WSym.
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3 A Hopf algebra realization of SC

This section explicitly defines the Hopf structure on SC from a representation theoretic point of
view. We then work out the combinatorial consequences of these rules, and it directly follows
that SC ∼= Π for q = 2. We then proceed to yield a “colored” version of Π that will give the
corresponding Hopf structure for the other values of q.

3.1 The correspondence between SC and Π

In this section we describe a Hopf structure for the space

SC =
⊕

n≥0

SCn

= C-span{κµ | µ ∈ Sn(q), n ∈ Z≥0}

= C-span{χλ | λ ∈ Sn(q), n ∈ Z≥0}.

The product and coproduct are defined representation theoretically by the inflation and restriction
operations of Section 2.2,

χ · ψ = Inf
UTa+b(q)
UT(a,b)(q)

(χ× ψ), where χ ∈ SCa, ψ ∈ SCb, (3.1)

and
∆(χ) =

∑

J=(A|Ac)
A⊂[n]

JRes
UTn(q)
UT|A|(q)×UT|Ac|(q)

(χ), for χ ∈ SCn. (3.2)

For a combinatorial description of the Hopf structure of SC it is most convenient to work with the
superclass characteristic functions. A matrix description appears in (1.1) and (1.2).

Proposition 3.1.

(a) For µ ∈ Sk(q), ν ∈ Sn−k(q),

κµ · κν =
∑

λ=µ⊔γ⊔(k+ν)∈Sn(q)

i
a
⌢l∈γ implies i≤k<l

κλ,

where (k + ν) = {(k + i)
a
⌢(k + j) | i

a
⌢j ∈ ν} and ⊔ denotes disjoint union.

(b) For λ ∈ Sn(q),

∆(κλ) =
∑

λ=µ⊔ν
µ∈SA(q),ν∈SAc (q)

A⊆{1,2,...,n}

κstA(µ) ⊗ κstAc(ν).

Proof. (a) Let (uλ − 1) ∈ nn be the natural orbit representative for the superclass corresponding
to λ. Then

Inf
UTn(q)
UTk(q)×UTn−k(q)

(κµ × κν)(uλ) = (κµ × κν)(τ(uλ)),

where
τ : UTn(q) −→ UTk(q)×UTn−k(q)
(

A C

0 B

)

7→

(

A 0

0 B

)

.
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Thus,

Inf
UTn(q)
UTk(q)×UTn−k(q)

(κµ × κν)(uλ) =







1,
if µ = {i

a
⌢j ∈ λ | i, j ∈ [k]},

and ν + k = {i
a
⌢j ∈ λ | i, j ∈ [k]c},

0, otherwise,

as desired.
(b) Let µ ∈ SA(q), and ν ∈ SAc(q), and let uµ×ν be the corresponding superclass representative

for UTA|Ac(q). Note that

Res
UTn(q)
UTA|Ac(q)(κλ)(uµ×ν) =

{

1, if κλ(uµ×ν) = 1,
0, otherwise,

=







1,
if µ = {i

a
⌢j ∈ λ | i, j ∈ A} and

ν = {i
a
⌢j ∈ λ | i, j ∈ Ac},

0, otherwise.

Thus, if µ = {i
a
⌢j ∈ λ | i, j ∈ A} and ν = {i

a
⌢j ∈ λ | i, j ∈ Ac}, then

Res
UTn(q)
UTA|Ac(q)(κλ) = κµ ⊗ κν ,

and the result follows by applying the stJ map.

Example. We have

κ
• • •
1 2 3

a · κ
• • • •
1 2 3 4

b c =κ
• • • • • • •
1 2 3 4 5 6 7

a b c +
∑

d∈F×
q

(

κ
• • • • • • •
1 2 3 4 5 6 7

a d b c + κ
• • • • • • •
1 2 3 4 5 6 7

a d b c + κ
• • • • • • •
1 2 3 4 5 6 7

a
d
b c + κ

• • • • • • •
1 2 3 4 5 6 7

a
d

b c

)

+
∑

d,e∈F×
q

(

κ
• • • • • • •
1 2 3 4 5 6 7

a
d

e b c + κ
• • • • • • •
1 2 3 4 5 6 7

a d
e
b c

)

.

and

∆

(

κ
• • • •
1 2 3 4

a

)

=κ
• • • •
1 2 3 4

a ⊗ κ∅ + 2κ
• • •
1 2 3

a ⊗ κ
•
1

+ κ
• •
1 2

a ⊗ κ
• •
1 2

+ κ
• •
1 2

⊗ κ
• •
1 2

a + 2κ
•
1

⊗ κ
• • •
1 2 3

a + κ∅ ⊗ κ
• • • •
1 2 3 4

a .

By comparing Proposition 3.1 to (1.3) and (2.17), we obtain the following theorem.

Theorem 3.2. For q = 2, the map

ch : SC −→ Π

κµ 7→ mµ

is a Hopf algebra isomorphism.

Note that although we did not assume for the theorem that SC is a Hopf algebra, the fact that
ch preserves the Hopf operations implies that SC for q = 2 is indeed a Hopf algebra. The general
result will follow from Section 3.2.
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Corollary 3.3. The algebra SC with product given by (3.1) and coproduct given by (3.2) is a Hopf
algebra.

Remarks.

(a) Note that the isomorphism of Theorem 3.2 is not in any way canonical. In fact, the automor-
phism group of Π is rather large, so there are many possible isomorphisms. For our chosen
isomorphism, there is no nice interpretation for the image of the supercharacters under the
isomorphism of Theorem 3.2. Even less pleasant, when one composes it with the map

Π −→ Sym

that allows variables to commute (see [16, 30]), one in fact obtains that the supercharacters
are not Schur positive. But, exploration with Sage suggests that it may be possible to choose
an isomorphism such that the image of the supercharacters are Schur positive.

(b) Although the antipode is determined by the bialgebra structure of Π, explicit expressions
are not well understood. However, there are a number of forthcoming papers (e.g. [2, 24])
addressing this situation.

(c) In [1], the authors considered the category of combinatorial Hopf algebras consisting of pairs
(H, ζ), where H is a graded connected Hopf algebra and ζ : H → C is a character (an algebra
homomorphism). As remarked in [10], every graded Hopf algebra arising from representation
theory yields a canonical character. This is still true for SC. For all n ≥ 0 consider the dual
to the trivial supercharacter (χ∅n)∗ ∈ SC∗

n. It follows from Section 4.1 below that

∆
(

(χ∅n)∗
)

=

n
∑

k=0

(χ∅k)∗ ⊗ (χ∅n−k)∗,

which implies that the map ζ : SC→ C given by

ζ(χ) = 〈(χ∅n)∗, χ〉, where χ ∈ SCn,

is a character. We thus have that (SC, ζ) is a combinatorial Hopf algebra in the sense of [1].
This connection awaits further exploration.

The Hopf algebra SC has a number of natural Hopf subalgebras. One of particular interest is the
subspace spanned by linear characters (characters with degree 1). In fact, for this supercharacter
theory every linear character of Un is a supercharacter and by (2.4) these are exactly indexed by
the set

Ln = {λ ∈ Sn(q) | i
a
⌢j ∈ λ implies j = i+ 1}.

Corollary 3.4. For q = 2, the Hopf subalgebra

LSC = C-span{χλ | i
1
⌢j ∈ λ implies j = i+ 1},

is isomorphic to the Hopf algebra of noncommutative symmetric functions Sym studied in [20].

Proof. Let the length of an arc i
a
⌢j be j−i. By inspection of the product and coproduct of SC, we

observe that an arc i
a
⌢j never increases in length. Since LSC is the linear span of supercharacters

indexed by set partitions with arcs of length at most 1, it is clearly a Hopf subalgebra.
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By (2.3), for [n] = {i
1
⌢ (i + 1) | 1 ≤ i < n}, we have 〈χλ, κ[n]〉 = 0 unless λ ∈ Ln. Thus, the

superclass functions κ[n] ∈ LSC. Furthermore, if we order by refinement in SCn, then the set of
products

{κ[k1]κ[k2] · · · κ[kℓ] | k1 + k2 + · · ·+ kℓ = n, ℓ ≥ 1}

have an upper-triangular decomoposition in terms of the κµ. Therefore, the elements κ[n] are
algebraically independent in LSC, and LSC contains the free algebra

C〈κ[1], κ[2], . . .〉.

Note that every element λ ∈ Ln is of the form

λ = [1
⌢
⌢k1] ∪

[

(k1 + 1)
⌢
⌢(k1 + k2)

]

∪ . . . ∪
[

(n− kℓ)
⌢
⌢n

]

,

where [i
⌢
⌢j] = {i

1
⌢(i+ 1), (i + 1)

1
⌢(i+ 2), . . . , (j − 1)

1
⌢j}. Thus,

|Ln| = dim
(

C-span{κ[k1]κ[k2] · · · κ[kℓ] | k1 + k2 + · · ·+ kℓ = n, ℓ ≥ 1}
)

,

implies
LSC = C〈κ[1], κ[2], . . .〉.

On the other hand, [20] describes Sym as follows:

Sym = C〈Ψ1,Ψ2, . . .〉

is the free (non-commutative) algebra with deg(Ψk) = k and coproduct given by

∆(Ψk) = 1⊗Ψk +Ψk ⊗ 1.

Hence, the map κ[k] 7→ Ψk gives the desired isomorphism.

Remark. In fact, for each k ∈ Z≥0 the space

SC(k) = C-span{χλ | i⌢j ∈ λ implies j − i ≤ k}

is a Hopf subalgebra. This gives an unexplored filtration of Hopf algebras which interpolate between
LSC and SC.

3.2 A colored version of Π

There are several natural ways to color a combinatorial Hopf algebra; for example see [8]. The
Hopf algebra SC for general q is a Hopf subalgebra of the “naive” coloring of Π.

Let Cr = 〈ζ〉 be a cyclic group of order r (which in our case will eventually be r = q − 1). We
expand our set of variables A = {a1, a2, . . .} by letting

A(r) = A×Cr.

We view the elements of Cr as colors that decorate the variables of A. The group SA acts on the
first coordinate of the set A(r). That is, σ(ai, ζ

j) = (σ(ai), ζ
j). With this action, we define Π̃(r)

as the set of bounded formal power series in Ar invariant under the action of SA. As before, we
assume that A is infinite and the space Π̃(r) is a graded algebra based on r-colored set partitions

15



(µ, (ζ1, . . . , ζn)) where µ is a set partition of the set {1, 2, . . . , n} and (ζ1, . . . , ζn) ∈ C
n
r . It has a

basis of monomial elements given by

mµ,(ζ1,...,ζn)

(

A(r)
)

=
∑

w∈Oµ,(ζ1,...,ζn)

w, (3.3)

where Oµ,(ζ1,...,ζn) is the orbit of SA indexed by (µ, (ζ1, . . . , ζn)). More precisely, it is the set of

words w = (ai1 , ζ1)(ai2 , ζ2) . . . (ain , ζn) on the alphabet A(r) such that ai = aj if and only if i
and j are in the same block of µ. The concatenation product on K〈A(r)〉 gives us the following
combinatorial description of the product in Π̃(r) in the monomial basis. If λ ⊢ [k] and µ ⊢ [n− k],
then

mλ,(ζ1,...,ζk)mµ,(ζ′1,...,ζ
′
n−k)

=
∑

ν⊢[n]
ν∧([k]|[n−k])=λ|µ

mν,(ζ1,...,ζk,ζ
′
1,...,ζ

′
n−k)

. (3.4)

This is just a colored version of (1.3).
As before, we define a coproduct by

∆(f) =
∑

k

f ′k ⊗ f
′′
k where f

(

A′(r) +A′′(r)
)

=
∑

k

f ′k

(

A′(r)
)

f ′′k

(

A′′(r)
)

(3.5)

and A′(r)+A′′(r) denotes the disjoint union of two mutually commuting copies of A(r). This is clearly
coassociative and a morphism of algebras; hence, Πr is a graded Hopf algebra. The coproduct of
a monomial function is

∆mλ,(ζ1,...,ζn) =
∑

µ∨ν=λ

m
st(µ),ζ

∣

∣

µ

⊗m
st(ν),ζ

∣

∣

ν

, (3.6)

where ζ
∣

∣

µ
denotes the subsequence (ζi1 , ζi2 , ...) with i1 < i2 < · · · and ij appearing in a block of µ.

The complement sequence is ζ
∣

∣

ν
. This coproduct is cocommutative. With the unit u : 1 7→ 1 and

the counit ǫ : f(A(r)) 7→ f(0, 0, . . .) we have that Π̃(r) is a connected graded bialgebra and therefore
a graded Hopf algebra.

Now we describe a Hopf subalgebra of this space indexed by Sn(q) for n ≥ 0. For (D,φ) ∈ Sn(q),
let

k(D,φ) =
∑

(ζ1,...,ζn)∈Cn
r

ζj/ζi=φ(i,j)

mπ(D,φ),(ζ1,...,ζn) ,

where π(D,φ) is the underlying set partition of D (as in (2.2)).

Proposition 3.5. The space

Π(q−1) = C-span{k(D,φ) | (D,φ) ∈ Mn(q), n ∈ Z≥0}

is a Hopf subalgebra of Π̃(q−1). For µ ∈ Sk(q), ν ∈ Sn−k(q) the product is given by

kµ · kν =
∑

λ=µ⊔γ⊔(k+ν)∈Sn(q)

i
a
⌢l∈γ implies i≤k<l

kλ, (3.7)

and for λ ∈ Sn(q), the coproduct is given by

∆(kλ) =
∑

λ=µ⊔ν
µ∈SA(q),ν∈SAc (q)

A⊆{1,2,...,n}

kstA(µ) ⊗ kstAc(ν). (3.8)
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Proof. It is sufficient to show that Π(q−1) is closed under product and coproduct. Thus, it is enough
to show that (3.7) and (3.8) are valid. For µ = (D,φ) ∈ Sk(q), ν = (D′, φ′) ∈ Sn−k(q) let π(µ) and
π(ν) be the underlying set partitions of µ and ν, respectively. We have

kµ · kν =

(

∑

(ζ1,...,ζk)∈Ck
r

ζj/ζi=φ(i,j)

mπ(µ),(ζ1,...,ζk)

)(

∑

(ζk+1,...,ζn)∈Cn−k
r

ζk+j/ζk+i=φ′(i,j)

mπ(ν),(ζk+1,...,ζn)

)

=
∑

(ζ1,...,ζn)∈Cn
r

ζj/ζi=φ(i,j), i<j≤k

ζj/ζi=φ′(i−k,j−k),k<i<j

∑

ρ⊢[n]
ρ∧([k]|[n−k])=π(µ)|π(ν)

mρ,(ζ1,...,ζn)

=
∑

λ=µ⊔γ⊔(k+ν)∈Sn(q)

i
a
⌢l∈γ implies i≤k<l

kλ.

In the second equality, the second sum ranges over set partitions ρ obtained by grouping some
block of π(µ) with some block of π(ν). These set partitions can be thought of as collections of arcs
i⌢ j with 1 ≤ i ≤ k < j ≤ n. In the last equality, we group together the terms mρ,(ζ1,...,ζn) such
that ζj/ζi = φ′′(i, j) for i ≤ k < j.

Now for λ = (D,φ) ∈ Sn(q),

∆(kλ) = ∆

(

∑

(ζ1,...,ζn)∈Cn
r

ζj/ζi=φ(i,j)

mπ(λ),(ζ1,...,ζn)

)

=
∑

(ζ1,...,ζn)∈Cn
r

ζj/ζi=φ(i,j)

∑

µ∨ν=λ

m
st(µ),ζ

∣

∣

µ

⊗m
st(ν),ζ

∣

∣

ν

=
∑

λ=µ⊔ν
µ∈SA(q),ν∈SAc (q)

A⊆{1,2,...,n}

kstA(µ) ⊗ kstAc(ν).

Comparing Proposition 3.5 and Proposition 3.1, we obtain

Theorem 3.6. The map
ch : SC −→ Π(q−1)

κµ 7→ k(Dµ,φµ)

is an isomorphism of Hopf algebras. In particular, SC is a Hopf algebra for any q.

Remark. As in the q = 2 case, for each k ∈ Z≥0 the space

SC(k) = C-span{χλ | i
a
⌢j ∈ λ implies j − i ≤ k}

is a Hopf subalgebra of SC. For k = 1, this gives a q-version of the Hopf algebra of noncommutative
symmetric functions..

4 The dual Hopf algebras SC∗ and Π∗

This section explores the dual Hopf algebras SC∗ and Π∗. We begin by providing representation
theoretic interpretations of the product and coproduct of SC∗, followed by a concrete realization
of SC∗ and Π∗.
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4.1 The Hopf algebra SC∗

As a graded vector space, SC∗ is the vector space dual to SC:

SC∗ =
⊕

n≥0

SC∗
n

= C-span{κ∗µ | µ ∈ Sn(q), n ∈ Z≥0}

= C-span{(χλ)∗ | λ ∈ Sn(q), n ∈ Z≥0}.

We may use the inner product (2.5) to identify SC∗ with SC as graded vector spaces. Under this
identification, the basis element dual to κµ with respect to the inner product (2.5) is

κ∗µ = zµκµ, where zµ =
|UT|µ|(q)|

|UT|µ|(q)(uµ − 1)UT|µ|(q)|
,

and the basis element dual to χλ is

(χλ)∗ = q−C(λ)χλ, where C(λ) = #{(i, j, k, l) | i
a
⌢k, j

b
⌢l ∈ λ}.

The product on SC∗ is given by

χ · ψ =
∑

J=A|Ac

A⊆[a+b]
|A|=a

JSInd
UTa+b(q)
UTa(q)×UTb(q)

(χ× ψ), for χ ∈ SC∗
a, ψ ∈ SC∗

b ,

and the coproduct by

∆(χ) =

n
∑

k=0

Def
UTn(q)
UT(k,n−k)(q)

(χ), for χ ∈ SC∗
n.

Proposition 4.1. The product and coproduct of SC∗ in the κ∗ basis is given by

(a) for µ ∈ Sk(q) and ν ∈ Sn−k(q),

κ∗µ · κ
∗
ν =

∑

J⊆[n]
|J|=k

κ∗
st−1

J (µ)∪st−1
Jc (ν)

,

(b) for λ ∈ Sn(q),

∆(κ∗λ) =
n
∑

k=0

κ∗λ[k] ⊗ κ
∗
λ[k]c

, where λJ = {i
a
⌢j ∈ λ | i, j ∈ J}.

Proof. This result follows from Proposition 3.1, and the duality results

•
〈

JSInd
UTn(q)
stJ (UTJ (q))

(ψ), χ
〉

=
〈

ψ, JRes
UTn(q)
stJ (UTJ (q))

(χ)
〉

,

•
〈

Inf
UTn(q)
UT(m1,...,mℓ)

(q)(ψ), χ
〉

=
〈

ψ,Def
UTn(q)
UT(m1,...,mℓ)

(q)(χ)
〉

,

• 〈κµ, κ
∗
ν〉 = δµν .

Note that the Hopf algebra SC∗ is commutative, but not cocommutative.
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Example. We have

κ∗
• •
1 2

a · κ∗
• • •
1 2 3

b =κ∗
• • • • •
1 2 3 4 5

a b + κ∗
• • • • •
1 2 3 4 5

a b + κ∗
• • • • •
1 2 3 4 5

a b + κ∗
• • • • •
1 2 3 4 5

a
b + κ∗

• • • • •
1 2 3 4 5

b

a + κ∗
• • • • •
1 2 3 4 5

b
a

+ κ∗
• • • • •
1 2 3 4 5

b a + κ∗
• • • • •
1 2 3 4 5

b

a + κ∗
• • • • •
1 2 3 4 5

b a + κ∗
• • • • •
1 2 3 4 5

b a

and

∆

(

κ∗
• • • •
1 2 3 4

a b

)

= κ∗
• • • •
1 2 3 4

a b ⊗ κ∗∅ + κ∗
• • •
1 2 3

a ⊗ κ∗
•
1

+ κ∗
• •
1 2

a ⊗ κ∗
• •
1 2

+ κ∗
•
1

⊗ κ∗
• • •
1 2 3

b + κ∗∅ ⊗ κ
∗

• • • •
1 2 3 4

a b .

4.2 A realization of SC∗

A priori, it is not clear thatΠ∗ or SC∗ should have a realization as a space of functions in commuting
variables. Here, we summarize some results of [22] giving such a realization, and remark that the
variables must satisfy relations closely related to the definition of Sn(q).

Let xij , for i, j ≥ 1, be commuting variables satisfying the relations

xijxik = 0 and xikxjk = 0 for all i, j, k. (4.1)

For a permutation σ ∈ Sn, define

Mσ =
∑

i1<···<in

xi1 iσ(1)
· · · xin iσ(n)

. (4.2)

It is shown in [22] that these polynomials span a (commutative, cofree) Hopf algebra, denoted by
SQSym.

For α ∈ Sm and β ∈ Sn we define coefficients Cγα,β

MαMβ =
∑

γ

Cγα,βMγ . (4.3)

which can be computed by the following process:

Step 1. Write α and β as products of disjoint cycles.

Step 2. For each subset A ⊆ [m + n] with m elements, renumber α using the unique order-
preserving bijection st−1

A : [m] → A, and renumber β with the unique order preserving
bijection st−1

Ac : [n]→ Ac.

Step 3. The resulting permutation γ gives a term Mγ in the product MαMβ.

Thus, Cγα,β is the number of ways to obtain γ from α and β using this process.

Example. If α = (1)(2) = 12, β = (31)(2) = 321, then Step 2 yields

A={1,2}

(1)(2)(53)(4),
A={1,3}

(1)(3)(52)(4),
A={1,4}

(1)(4)(52)(3),
A={1,5}

(1)(5)(42)(3),
A={2,3}

(2)(3)(51)(4),

A={2,4}

(2)(4)(51)(3),
A={2,5}

(2)(5)(41)(3),
A={3,4}

(3)(4)(51)(2),
A={3,5}

(3)(5)(41)(2),
A={4,5}

(4)(5)(31)(2),

(4.4)

and thus C
(51)(2)(3)(4)
(1)(2),(31)(2) = 3.
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Another interpretation of this product is given by the dual point of view: Cγα,β is the number
of ways of getting (α, β) as the standardized words of pairs (a, b) of two complementary subsets of
cycles of γ. For example, with α = 12, β = 321, and γ = 52341, one has three solutions for the
pair (a, b), namely

((2)(3), (4)(51)), ((2)(4), (3)(51)), ((3)(4), (2)(51)). (4.5)

Remark. Each function in SQSym can be interpreted as a function on matrices by evaluating xij
at the (i, j)-th entry of the matrix (or zero if the matrix does not have an (i, j) entry). From this
point of view, SQSym intersects the ring of class functions of the wreath product Cr ≀ Sn in such
a way that it contains the ring of symmetric functions as a natural subalgebra.

For a permutation σ ∈ Sn, let csupp(σ) be the partition µ of the set [n] whose blocks are the
supports of the cycles of σ. The sums

Uµ :=
∑

csupp(σ)=µ

Mσ (4.6)

span a Hopf subalgebra ΠQSym of SQSym, which is isomorphic to the graded dual of Π. Indeed,
from the product rule of the Mσ given in (4.3), it follows that

UµUν :=
∑

Cλµ,νUλ, (4.7)

where Cλµ,ν is the number of ways of splitting the parts of λ into two subpartitions whose standard-
ized words are µ and ν. For example,

U124|3U1 = U124|3|5 + 2U125|3|4 + U135|4|2 + U235|4|1. (4.8)

Hence, the basis Uµ has the same product rule as m∗
µ. However, it does not have the same

coproduct. To find the correct identification we need the pλ basis introduced in [30]. Let

pλ =
∑

µ≥λ

mµ,

where µ ≥ λ means that λ refines µ. As shown in [9, 30]

pλpµ = pλ|µ

and following the notation of (1.5)

∆(pλ) =
∑

J⊆[ℓ(λ)]

pst(λJ ) ⊗ pst(λJc ).

These are precisely the operations we need to give the isomorphism

θ : ΠQSym −→ Π∗

Uµ 7→ p∗
µ.

The isomorphism in Theorem 3.2 maps κµ 7→ mµ, and the dual map is m∗
µ 7→ κ∗µ. Hence, if we

define
Vµ = θ−1(m∗

µ) =
∑

ν≤µ

Uν ,

then we obtain the following theorem.
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Theorem 4.2. For q = 2, the function

ch : SC∗ −→ ΠQSym
κ∗µ 7→ Vµ

is a Hopf algebra isomorphism.

Remark. For general q one needs a colored version of ΠQSym. This can be done in the same
spirit of Section 3.2 and we leave it to the reader.

5 Appendix

In addition to the above results, the American Institute of Mathematics workshop generated several
items that might be of interest to those who would like to pursue these thoughts further.

5.1 Sage

A Sage package has been written, and is described at

http://garsia.math.yorku.ca/˜saliola/supercharacters/

It has a variety of functions, including the following.

• It can use various bases, including the supercharacter basis and the superclass functions basis,

• It can change bases,

• It computes products, coproducts and antipodes in this Hopf algebra,

• It computes the inner tensor products (pointwise product) and restriction in the ring of
supercharacters,

• It gives the supercharacter tables for UTn(q).

5.2 Open problems

There is a list of open problems related to this subject available at

http://www.aimath.org/pastworkshops/supercharacters.html
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