
The Solutions to Elmsley’s Problem

Persi Diaconis ∗† Ron Graham ‡§

Abstract

We give a formula for the optimal sequence of perfect shuffles to bring
a card at position p to the top (or indeed, to any position). This solves
a fifty-year-old problem of Elmsley. The argument illustrates elementary
group theory and shows how a simple card trick can lead to the edge of
what is known.1

1 Introduction

A handful of magicians and gamblers can shuffle cards perfectly. This means

cutting the deck exactly in half and riffling the cards together so that they

alternate perfectly. Figure 1 shows a perfect shuffle of a deck of ten cards

labeled from top to bottom by 0, 1, 2, . . . , 9.

1
0

3
2

4

5

7
6

9
8

Figure 1: out shuffle of a ten card deck.

Perfect shuffles are of many uses. For example, eight perfect out shuffles of

a 52 card pack bring the deck back to its original order. In Figure 1, the original

top card (labeled 0) stays at the top of the pack. (Hence, for an out shuffle,

the top card remains outside.) There is a second type of perfect shuffle, called

∗Stanford University, Stanford, CA 94305
†Research supported in part by NSF Grant DMS 0505673
‡University of California at San Diego, San Diego, CA 92093
§Research supported in part by NSF Grant CCR-0310991
1As this paper was being completed, we learned of the death of Alex Elmsley. We dedicate

it to his memory.

1

an in shuffle, where the original top card winds up second from the top (inside)

(see Figure 2)

Here is an application of in shuffles. Imagine the four Aces sitting on top of

the deck. After one in shuffle, they are every second card. After two in shuffles,

they are every fourth card. Hence, if the deck is dealt into four hands, one card

at a time, the dealer gets the Aces.

For these and other reasons, gamblers and magicians have studied the prop-

erties of perfect shuffles for close to 300 years. A history and extensive devel-

opment is given in [1]. Practical instructions for card tricks and applications to

computer science are given in [6]. We develop some properties we will need in

Section 2.

It is natural to ask what can be done by combining in and out shuffles.

For example, start with the four Aces on top. Is there some combination of in

and out shuffles that places the Aces to be every fifth card? Here is a dazzling

discovery of Alex Elmsley, a British computer scientist. Consider the problem

of bringing the original top card (at position 0) to position p by perfect shuffles.

Elmsley observed that expressing p in binary, interpreting ‘0‘ as an out shuffle

and ‘1’ as an in shuffle does the job, irrespective of the deck size. For example,

to bring 0 to 6, write 6 = 110 and perform in, in, out. If you try this with

actual cards, remember that we start with 0, so that 6 is the position of the

seventh card from the top. Since most of our readers are not accomplished card

handlers, in Section 2 we describe easy-to-do variants involving inverse shuffles

so that the reader can follow along with cards in hand.

It is natural to try to solve the inverse problem: Is there a sequence of shuffles

that brings a card at position p to the top? This turns out to be more difficult.

Indeed, Elmsley, writing in the June 1957 issue of the British magic journal

Pentagram writes: “I have so far been unable to discover a comparatively

simple way of bringing a card to the top of a deck that is not a power of 2,

e.g., 52. The only method I have found is much too complicated for practical

use.” Over the past 50 years, magicians and recreational mathematicians have

studied ‘Elmsley’s Problem’. There have been special charts published giving

2

the shortest sequence for various deck sizes. Recently, computer programs have

been written and sold for doing the job. A bibliography of magicians’ efforts

can be found in [5], p. 312.

We give a motivated development of our solution in Section 3. In Section 4,

we give a formula for the shortest sequence of in and out shuffles required to

bring a card at position p to position q. We conclude this introduction with a

brief description (and example) of our algorithm.

Algorithm to bring a card at position p to position 0.

Working with a deck of 2n cards, define r by 2r−1 < 2n ≤ 2r (so if 2n = 52

then r = 6). For 0 < p < 2n − 1, let t = b (p+1)2r

2n c where bxc denotes the

largest integer less than or equal to x. For p = 0, set t = 0; for p = 2n− 1, set

t = 2r − 1. Express t in binary as t = tr−1tr−2 . . . t1t0 (with ti = 1 or 0). Define

“ correction terms” s′ = 2nt − 2rp = sr−1sr−2 . . . s1s0 (with si = 0 or 1). The

shuffling sequence is tr−1 + sr−1, tr−2 + sr−2, . . . , t0 + s0, where each sum is in

binary with 1 as in and 0 as out. Any trailing 0’s can be deleted.

Example. 2n = 52, p = 35. Then r = 6, t = b (p+1)2r

2n c = b 36·64
52 c = 44 =

101100 and s = 2nt− 2rp = 2288− 2240 = 48 = 110000. Now, the coordinate-

wise sum of 101100 and 110000 is 011100 which translates to out, in, in, in

(the final two out shuffles do nothing to the top card). Further examples are in

Sections 3, 4, and 5.

Note that when the deck size 2n equals 2r, then the correction term s′ = 0,

i.e., all the si = 0. In this case, no corrections are needed, which explains why

decks of these sizes are especially nice.

2 Basic Properties of Perfect Shuffles

In this section we introduce basic properties of two permutations: the in and

out shuffles. Throughout, we work with a deck of 2n cards, with positions

labeled from 0 (top) to 2n− 1 (bottom).

An out shuffle O is the permutation that sends the card in position i to

position 2i− 1 (mod 2n− 1), for 0 ≤ i < 2n− 1, and keeps the bottom card on

3

the bottom. This can be represented as

O(i) =
{

2i (mod 2n− 1) if 0 ≤ i < 2n− 1,
2n− 1 if i = 2n− 1.

(1)

For example, after an out shuffle, 10 cards initially labeled 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

are now in positions 0, 5, 1, 6, 2, 7, 3, 8, 4, 9 (see Figure 1).

Similarly, for an in shuffle I,

I(i) = 2i + 1 (mod 2n + 1) for 0 ≤ i ≤ 2n− 1. (2)

For example, after an in shuffle, 10 cards labeled 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 now are

in positions 5, 0, 6, 1, 7, 2, 8, 3, 9, 4.

1
0

3
2

4

5

7
6

9
8

Figure 2: in shuffle of a ten card deck.

An out shuffle fixes the top and bottom cards and it is easy to see that the

rest of the cards mix as an in shuffle on a deck of size two fewer. It follows that

properties of repeated in shuffles can be understood via properties of repeated

out shuffles. For example, consider the following problem: After how many out

shuffles will a deck of size 2n recycle. If O stands for an out shuffle, let O2

stand for two out shuffles. From (1) above, there is a simple formula:

O2(i) =
{

4i (mod 2n− 1) if 0 ≤ i < 2n− 1,
2n− 1 if i = 2n− 1.

(3)

Similarly, if Ok stands for k repeated out shuffles,

Ok(i) =
{

2ki (mod 2n− 1) if 0 ≤ i < 2n− 1,
2n− 1 if i = 2n− 1.

(4)

The deck returns after k shuffles if and only if Ok(i) = i (mod 2n − 1), for

0 ≤ i < 2n − 1. From (4), this happens if and only if 2k ≡ 1 (mod 2n − 1).

The least such k ≥ 1 is called the order of 2 (mod 2n − 1). For example,

when 2n = 52, 2n − 1 = 51, and the successive powers of 2 (mod 51) are

4

2, 4, 8, 16, 32, 13, 26, 1. that is, 28 = 256 ≡ 1 (mod 51), so eight out shuffles

recycle the deck. The reader may show that 252 ≡ 1 (mod 53). Further, 2 is a

primitive root modulo 53 (so 52 is the least such power). This says that a deck

of size 52 recycles after 52 in shuffles. We are embarrassed to report that we

first learned this by actually shuffling the cards.

Is there a pattern for the number of shuffles needed to recycle? Here are the

numbers for decks of sizes 2 to 52.

deck size 2n 2 4 6 8 10 12 14 16 18 20 22 24 26
ord2(2n− 1) 1 2 4 3 6 10 12 4 8 18 6 11 20
deck size 2n 28 30 32 34 36 38 40 42 44 46 48 50 52
ord2(2n− 1) 18 28 5 10 12 36 12 20 14 12 23 21 8

Table 1. Values of ord2(2n− 1) for deck sizes 2n.

Is there a pattern in these numbers? The first surprise is that the numbers

are not increasing. Larger decks can recycle after fewer shuffles. Thus, a 16

card deck recycles after 4 out shuffles while a 14 card deck requires 12 out

shuffles. Decks of size 2k recycle after k out shuffles (since 2k ≡ 1 (mod 2k−1)).

Aside from these, very little is known; the order of 2 is one of the mysteries

of mathematics. Consider the question of whether there are arbitrarily large

integers 2n such that 2 is a primitive root modulo 2n − 1. This is a famous

conjecture of E. Artin. A well-studied, and completely intractable, problem!

It is known to be true (see [3]) if the Generalized Riemann Hypothesis is true.

An expository account of the Artin conjecture is in [2]. We find it tantalizing

that simple questions about shuffling cards can lead to questions well beyond

modern mathematics.

Returning to Elmsley’s problem, we initially thought it too would be in-

tractable, roughly equivalent to the problem of “finding logarithms in finite

fields”. This last problem lies at the root of several widely used cryptographic

protocols. After all, if there were a simple rule, someone should have found it

5

in over 50 years of fooling around.

In [1], the authors, working with Bill Kantor, determined the structure of

the group 〈I, O〉 generated by arbitrary in and out shuffles. From this work it

follows (and, as shown below, is easy to see directly), that for any p and q, there

is a sequence of in and out shuffles sending the card in position p to position q.

These proofs give no insight into the shortest way. In fact, our arguments below

will settle this problem by finding all perfect shuffle sequences which move card

p to position q.

Before proceeding, it will be useful to introduce the two inverse shuffles O−1

and I−1. These “undo” or “unshuffle” the results of O and I. They can easily be

carried out with a deck of cards in hand. Hold the cards face down as if dealing

in a card game. Deal the cards face up, alternately, into two piles, dealing left,

right, left, right, . . . , until all the cards have been dealt.

1
3

7
9

0
2
4 5
6
8

Figure 3: Ten cards dealt alternately into two face-up piles.

To complete O−1, place the right pile on the left pile (so that the original top and

bottom cards remain on the bottom and top, respectively). To complete I−1,

pick up the piles the other way (so that the original top and bottom cards wind

up in the middle). In both cases, finish by turning the deck face down. We can

write a formula for O−1 and I−1 as permutations of the set {0, 1, 2, . . . , n− 1}

by:

O−1(i) =
{

b i
2c if i is even,
b i

2c+ n if i is odd,
(5)

I−1(i) =
{

b i
2c+ n if i is even,
b i

2c if i is odd. (6)

As mentioned earlier, bxc denotes the largest integer less than or equal to x.

If out shuffles recycle after k and in shuffles recycle after j, then O−1 = Ok−1

6

and I−1 = Ij−1, so any arrangements achievable by ins and outs are achievable

by O−1 and I−1, and vice versa.

Let us argue that there is some sequence of O’s and I’s that brings p to q.

First, bring p to the top by a sequence of O−1’s and I−1’s as follows: Deal into

two piles, then placing the pile not containing the card labeled p onto the other

pile. Thus, each time with the cards turned back face down, the card labeled

p is in the top half. If this is repeated, then after at most r times, the card

labeled p comes to the top (here, 2r−1 < 2n ≤ 2r). From here, the current top

card (labeled p) can be brought to position q using Elmsley’s binary procedure

explained in the Introduction. This may give a long sequence of shuffles, but at

least it shows it can be done. The next section shows how to bring any card to

the top efficiently.

3 Bringing any card to the top

In this section we solve Elmsley’s problem by finding a succinct way of deter-

mining a sequence of in and out shuffles that bring a card at position p to

position 0. Since the equations for the two shuffles involved different moduli

(Eqs. (1), (2) in Section 2), this seems like a messy problem. The key is to work

with inverse shuffles (Eqs. (5), (6) in Section 2). These involve dividing by 2,

taking the floor, and perhaps adding n. The decision to add n or not depends

on the parity of i. We first disregard this issue of parity and put it back at the

end, as a correction term. Throughout, we make constant use of the identity

b 1
2bxcc = bx

2 c.

Step One: Building a Tree. Form a labeled binary tree T (2n) with r + 1

levels, where 2r−1 < 2n ≤ 2r, as follows: The root v0 is at level 0 and labeled

with λ(v0) = 0. In general, if v is a vertex of T (2n) at level i which has been

labeled λ(v) = m, the two ‘children’ of v will have labels bm
2 c and bm

2 c + n.

Write this as bm
2 + tinc, where ti = 0 or 1, for 0 ≤ i ≤ r. We illustrate this in

Figure 4.

If t =
∑r−1

i=0 ti2i, the value of the leaf vt corresponding to the choices

7

2r-1

root
0

2n
2

4n
4

2n
4

6n
4

2n
8

4n
8

6n
8

8n
8

10n
8

12n
8

14n
8

0

0

0
……………………

2nx
2k

k+12
2nx

2
2n(x+)

k+1
2k

t =00 t =10

t =11t =01

t =02 t =12

t =11t =01

t =12 t =02

t =0k t =1k
…

…
level k+1

……………

r

2ny

level 0

level 1

level 2

level 3

level k

r2
2ny

2
2n(y+)2

r-1
t =0r-1 t =1r-1

level r-1

…
…

t =12t =02 t =12t =02

…
…

level r

Figure 4: The tree T (2n)

(t0, t1, . . . , tr−1) going down from the root is λ(vt) = b 2nt
2r c. More generally, the

value assigned to vertex v at level k corresponding to the choice (t0, t1, . . . , tk−1)

is λ(v) = b 2nt(k)
2k c where t(k) =

∑k−1
i=0 ti2i.

Step Two: Relating the tree to shuffling. For t =
∑r−1

i=0 ti2i, if we write

2nt =
∑

i≥0 si2i in binary, then on one hand,

⌊2nt

2k

⌋
=

⌊ ∑
i≥k

si2i−k
⌋

= . . . sk+2sk+1sk

8

in binary. On the other hand,

⌊2nt

2k

⌋
=

⌊2n

2k
(
k−1∑
i=0

ti2i +
∑
i≥k

ti2i)
⌋

= b2n

2k
(t(k) + 2kX)c

= 2nX +
⌊2nt(k)

2k

⌋
.

for some integer X ≥ 0. Hence, the parity of
⌊ 2nt(k)

2k

⌋
is just sk. This can be

used to determine if the choice taken at any vertex is I−1 or O−1.

k
2nt(k)

2
t = 0 k t = 1 k

(v) level kλ =

Figure 5: A general branch

Specifically, if the value
⌊ 2nt(k)

2k

⌋
is even then tk = 0 corresponds to O−1 and

tk = 1 corresponds to I−1. On the other hand, if
⌊ 2nt(k)

2k

⌋
is odd, then tk = 0

corresponds to I−1 and tk = 1 corresponds to O−1 (see Eqs. (5), (6) and Figure

5).

The shuffle at a vertex is determined by uk = sk + tk (mod 2) where

uk = 0 ↔ O−1 and uk = 1 ↔ I−1.

Step Three: Putting the pieces together. We want to find a shuffle

sequence of O−1’s and I−1’s which will bring the top card to position p. Thus,

set ⌊2nt

2r

⌋
= p.

This implies

2rp

2n
≤ t <

2r(p + 1)
2n

. (7)

Since 2r−1 < 2n ≤ 2r, then for any p, there is always at least one and at most

two integers t satisfying (7). In particular, if we expand p+1
2n (base 2) as

p + 1
2n

= .α1α2α3 . . .

9

then we can choose t =
∑r

i=1 αi2r−i = α1α2 . . . αr (base 2). Equivalently, we

can choose t =
⌊ (p+1)2r

2n

⌋
for 0 < p < 2n − 1. For p = 0, take t = 0, and for

p = 2n− 1, take t = 2r − 1. For convenience, we let

s′ = 2nt− 2rp = sr−1sr−2 . . . s1s0 base 2.

Now, with 2nt =
∑

i≥0 si2i, the si, 0 ≤ i ≤ r − 1 provide corrections to the ti

to determine which of O−1 or I−1 is carried out at each stage. The final result

is summarized in the algorithm given in the Introduction.

4 Remarks.

(i) The description above determines inverse shuffles to bring 0 to p. It must

be read ‘left to right’ to determine the sequence of in and out shuffles to bring

the card at position p to the top.

(ii) Example. If 2n = 52, p = 36, then r = 6, t = b 37·64
52 c = 45 = 101101 (base 2),

s′ = 2340 − 2304 = 36 = 100100 (base 2). Thus, u = 001001 and OOIOOI

(read left to right) is the desired sequence.

(iii) As we remarked earlier, there may be two values of t satisfying (7). In

this case one shuffle sequence will have length r and one will have length less

than r (and will be the shortest shuffle sequence bringing p to the top). For

example, take 2n = 52, p = 30. Then, r = 6, and since b 52·37
64 c = 30 = b 52·38

64 c,

we may use t = 37 or t = 38. For t = 37 = 100101, s′ = 1924 − 1920 =

4 = 000100, u = 100001, which results in the shuffle sequence IOOOOI. For

t = 38 = 100110, s′ = 1976− 1920 = 56 = 111000, u = 011110, which results in

the shuffle sequence OIIIIO, which can be truncated to OIIII. Thus, in fact,

only 5 shuffles are needed to bring the card at position 30 to the top, and this

is the minimum possible.

More generally, the algorithm shows that any card can be effectively brought

to the top in at most r shuffles, with 2r−1 < 2n ≤ 2r. As we have seen, there

can be two different shuffle sequences which accomplish this, although one of

them will require r shuffles and one will need fewer than r shuffles. For example,

10

this is always the case when 2n exactly divides 2rp (provided 2n < 2r), since in

this case we can choose t to be 2rp
2n or 2rp

2n + 1.

(iv) From the analysis above, we see that the 2r−1 possible perfect shuffle

sequences of length r − 1 leave different cards on top. This fails for shuffle

sequences of length r unless 2n = 2r. Alex Elmsley has exploited this in a special

case. Working with a packet of 8 cards (arranged in a known order), he has the

spectator deal into two piles (say, face up), and choose to remember either top

card, and drop the other packet on the noted card. The cards are turned down

and this is repeated with two other spectators. Because of the uniqueness, the

current top card determines all three selections. Marvelous presentations and

variations are explained on pages 80−88 of Vol. II of Elmsley’s Collected Works

([5]).

5 Moving card p to position q

The reasoning of Section 2 allows explicit determination of the shortest sequence

of shuffles to bring the card initially at position p to position q. Form a tree

Tq(2n) with labeled vertices, similar to the tree T (2n) in Figure 4, but with the

root labeled by q instead of 0 (see Figure 6).

Now, we need to find t = tr−1 . . . t1t0 (with ti = 0 or 1), to satisfy

⌊q + 2nt

2r

⌋
= p

Thus,
2rp− q

2n
≤ t <

2r(p + 1)− q

2n

As before, such a t always exists and there are at most two such t’s of length at

most r. A correction term is computed as:

s′ = 2nt + q − 2rp = sr−1sr−2 . . . s1s0

with si = 0 or 1. Taking the mod 2 componentwise sums,

tr−1 + sr−1, tr−2 + sr−2, . . . , t1 + s1, t0 + s0

11

root
qt =00 t =10

t =11 t =11t =01

level 0

q+2n
2

q
2

level 1
t =01

…
…

…
…

k
q+2nt(k)

2
t =0k t =1k

level k

level k+1
k+1

q+2nt(k)
2 k+1

q+2n(t(k)+2)
2

k

…
…

Figure 6: The tree Tq(2n)

and translating these values to O’s and I’s gives the desired sequence.

Example. Suppose n = 52, p = 51, q = 1. Thus, the bottom card is to be

moved to second from the top. Here, r = 6 and 64·51−1
52 ≤ t < 64·52−1

52 . Thus,

t = 63 = 111111. Next, s′ = 3277 − 3264 = 13 = 001101. Taking the mod 2

sum of t and s′ gives the final shuffle sequence IIOOIO. Now, of course, we are

not at liberty to delete the trailing O since an out shuffle does not preserve the

position of card q, unless q is 0 or 2n− 1.

The analysis above may be used to determine some of the “geometry” of the

shuffle group 〈O, I〉 using O and I as generators. For example, suppose we want

to determine all possible cycles of length m. For this, set p = q in the preceding

analysis. Thus,

⌊2nt + q

2m

⌋
= q,

⌊2nt− (2m − 1)q
2m

⌋
= 0,

2nt

2m − 1
− 1 ≤ q ≤ 2nt

2m − 1
,

where 0 ≤ t ≤ 2m − 1, 0 ≤ q ≤ 2n− 1. It is exactly these values of q for which

m-cycles exist using the card in position q.

Example. Take 2n = 52,m = 5. The 32 possible values of q are:

12

0, 1, 3, 5, 6, 8, 10, 11, 13, 15, 16, 18, 20, 21, 23, 25, 26,

28, 30, 31, 33, 35, 36, 38, 40, 41, 43, 45, 46, 48, 50, 51.

Thus, there are two trivial 1-cycles (O preserves the top and bottom cards).

The remaining 30 values break up into six genuine 5-cycles. For instance, for

q = 13, t = 8 = 01000 and s′ = 52 · 8 − 31 · 13 = 13 = 01101. Thus, adding t

and s′ coordinatewise mod 2, we get OOIOI, which gives

13 O−→ 26 O−→ 1 I−→ 3 O−→ 6 I−→ 13.

6 Research projects and final remarks

Much of the analysis above can be carried over to more complex mixing schemes

involving dealing more piles. Consider dealing a deck of 3n cards face up, one at

a time, into three piles. Now the piles can be picked up left to right or right to

left. Determining just what can be done and how to do it is a research project

(see Medvedoff and Morrison [4] for background). Morris [6] discusses how to

perform an actual ‘triple perfect shuffle’.

It may be possible to determine the diameter of the shuffle group using

the considerations above. We believe the group is doubly transitive on the

pairs {1, 2n− 1}, {1, 2n− 2}, . . . , {n− 1, n}. Determining the shortest shuffling

sequence bringing two cards to two given positions may determine the shortest

shuffling sequence to bring any possible arrangement to any other.

A related topic is to use the results in Section 2 with k > r to study the case

when there are many ways to bring the card at position p to the top. What is

the structure of these? What can be done?

References

[1] P. Diaconis, R. L. Graham and W. Kantor, The mathematics of perfect

shuffles, Adv. in Appl. Math 4 (1983), 175–196.

[2] L. Goldstein, Density quesitons in algebraic number theory, Amer. Math.

Monthly 78 (1971), 342–351.

13

[3] C. Hooley, On Artin’s conjecture, J. Reine Angew. Math. 226 (1967), 209–

220.

[4] S. Medvedoff and K. Morrison, Groups of perfect shuffles, Math. Mag. 60

(1987), 3–14.

[5] Stephen Minch, The collected works of Alex Elmsley, L & L Pub.,

Tahoma, CA, 1994.

[6] S. Brent Morris, Magic tricks, card shuffling and dynamic computer

memories, MAA Spectrum, Math. Assoc. of America, Washington, D.C.,

1998, xviii+148 pp.

14

