Mathematics > Functional Analysis

A characterization of compact operators via the non-connectedness of the attractors of a family of IFSs

Alexandru Mihail, Radu Miculescu

(Submitted on 1 Nov 2010)

In this paper we present a result which establishes a connection between the theory of compact operators and the theory of iterated function systems. For a Banach space X, S and T bounded linear operators from X to X such that \parallel S \parallel, \parallel T |parallel <1 and w lin X, let us consider the IFS S_\{w\}=(X,f_1,f_2), where f_1,f_2:X \rightarrow X are given by f_1(x)=S(x) and f_2(x)=T(x)+w, for all $x \operatorname{lin} X$. On one hand we prove that if the operator S is compact, then there exists a family (K_\{n\})_\{n \in N\} of compact subsets of X such that A_\{S_\{w\}\} is not connected, for all w lin H- \cup K_\{n\}. One the other hand we prove that if H is an infinite dimensional Hilbert space, then a bounded linear operator $\mathrm{S}: \mathrm{H}$ \rightarrow H having the property that lparallel S \parallel <1 is compact provided that for every bounded linear operator $\mathrm{T}: \mathrm{H} \backslash$ rightarrow H such that \parallel T \parallel <1 there exists a sequence (K_\{T,n\})_\{n\} of compact subsets of H such that A $\left\{\mathrm{S} _\{w\}\right\}$ is not connected for all w \in $\mathrm{H}-\backslash$ cup $\mathrm{K} _\{T, n\}$. Consequently, given an infinite dimensional Hilbert space H, there exists a complete characterization of the compactness of an operator $\mathrm{S}: \mathrm{H}$ \rightarrow H by means of the non-connectedness of the attractors of a family of IFSs related to the given operator.

Comments: 12 pages
Subjects: Functional Analysis (math.FA)
MSC classes: 28A80, 47B07, 54D05
Cite as: arXiv:1011.0262v1 [math.FA]

Submission history

From: Radu Miculescu [view email]
[v1] Mon, 1 Nov 2010 07:23:46 GMT (9kb)

Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.

