Mathematics > Dynamical Systems

On self-similarities of ergodic flows

Alexandre I. Danilenko, Valery V. Ryzhikov

(Submitted on 1 Nov 2010 (v1), last revised 19 Nov 2010 (this version, v2))

Given an ergodic flow $T=(T_t)_{t\in S}$, let I(T) be the set of reals $s \in 0$ for which the flows $T_{st} = 1$ and T are isomorphic. It is proved that I(T) is a Borel subset of $Bbb R^*$. It carries a natural Polish group topology which is stronger than the topology induced from Bbb R. There exists a mixing flow T such that I(T) is an uncountable meager subset of $Bbb R^*$. For a generic flow T, the transformations T_{t_1} and T_{t_2} are spectrally disjoint whenever $I_{1} = I_{1} \in I_{1}$ and $T_{t_{2}}$ are spectrally disjoint whenever $I_{1} \in I_{1}$ and I denomenation (i) embeds into a flow T with $I(T) = I_{1} \in I_{1}$ and I denomenation a flow with $I(T) \in I_{1}$. For each countable multiplicative subgroup $S \in I \in I_{1} \in I_{1} \in I_{1} \in I_{1} \in I_{1}$ and I dive subgroup $I = I = I_{1} \in I_{1} \in I_{1} \in I_{1} \in I_{1}$ and I dive subgroup $I = I_{1} \in I_$

Comments:Extended versionSubjects:Dynamical Systems (math.DS)MSC classes:37A10Cite as:arXiv:1011.0343v2 [math.DS]

Submission history

From: Alexandre Danilenko [view email] [v1] Mon, 1 Nov 2010 15:21:57 GMT (25kb) [v2] Fri, 19 Nov 2010 08:21:58 GMT (27kb)

Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.

Go!

All papers

Download:

- PDF
- PostScript
- Other formats

Current browse context: math.DS < prev | next > new | recent | 1011

Change to browse by:

math

References & Citations

• NASA ADS

Bookmark(what is this?)