

Cornell University Library We gratefully acknowledge support from the Simons Foundation and member institutions

Search or Article

arXiv.org > math > arXiv:1107.0573

Mathematics > Number Theory

Mock period functions, sesquiharmonic Maass forms, and non-critical values of L-functions

Kathrin Bringmann, Nikolaos Diamantis, Martin Raum

(Submitted on 4 Jul 2011 (v1), last revised 10 Oct 2011 (this version, v2))

We introduce a new technique of completion for 1-cohomology which parallels the corresponding technique in the theory of mock modular forms. This technique is applied in the context of non-critical values of L-functions of GL (2,Q) cusp forms. We prove that a generating series of non-critical values can be interpreted as a mock period function we define in analogy with period polynomials. Further, we prove that non-critical values can be encoded into a sesquiharmonic Maass form. Finally, we formulate and prove an Eichler-Shimura-type isomorphism for the space of mock period functions.

Comments:19 pagesSubjects:Number Theory (math.NT)MSC classes:11F67, 11F03Cite as:arXiv:1107.0573 [math.NT](or arXiv:1107.0573v2 [math.NT] for this version)

Submission history

From: Martin Raum [view email] [v1] Mon, 4 Jul 2011 09:27:41 GMT (18kb) [v2] Mon, 10 Oct 2011 11:24:18 GMT (20kb)

Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.

-id	(<u>Help</u> <u>Advanced search</u>)
	All papers 🚽 Go!
_	Download: • PDF • PostScript • Other formats
	Current browse context: math.NT < prev next > new recent 1107

Change to browse by:

References & CitationsNASA ADS	
Bookmark(what is this?) E 😳 🍂 🐼 🖬 📊 📲 🔛 🗐	