Cornell University

Mathematics > Number Theory

Ehrhart's polynomial for equilateral triangles in $\$$ mathbb Z^{\wedge} 3\$

Eugen J. Ionascu
(Submitted on 4 Jul 2011 (v1), last revised 11 Jul 2011 (this version, v2))
In this paper we calculate the Ehrhart's polynomial associated with a 2dimensional regular polytope (i.e. equilateral triangles) in \$\mathbb Z^3\$. The polynomial takes a relatively simple form in terms of the coordinates of the vertices of the polytope and it depends heavily on the value $\$ \mathrm{~d} \$$ and its divisors, where $\$ d=\backslash$ sqrt $\left\{\backslash f r a c\left\{a^{\wedge} 2+b^{\wedge} 2+c^{\wedge} 2\right\}\{3\}\right\} \$$ and $\$(a, b, c) \$(\$ \operatorname{lgcd}(a, b, c)$ $=1 \$$) is a vector with integer coordinates normal to the plane containing the triangle.

Download:

- PDF
- PostScript
- Other formats

Current browse context: math.NT
< prev|next > new | recent | 1107

Change to browse by: math
math.CO
References \& Citations

- NASA ADS

Bookmark(what is this?)

Comments: 13 pages and three figures
Subjects: Number Theory (math.NT); Combinatorics (math.CO)
MSC classes: 52C07, 05A15, 68R05
Cite as: arXiv:1107.0695v2 [math.NT]

Submission history

From: Eugen lonascu Dr [view email]
[v1] Mon, 4 Jul 2011 18:22:38 GMT (28kb)
[v2] Mon, 11 Jul 2011 00:45:31 GMT (25kb)
Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.

