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For any positive integer $n$, let $f(n)$ denote the number of solutions to the 
Diophantine equation $\frac{4}{n} = \frac{1}{x} + \frac{1}{y} + \frac{1}{z}$ with 
$x,y,z$ positive integers. The \emph{Erd\H{o}s-Straus conjecture} asserts 
that $f(n) > 0$ for every $n \geq 2$. To solve this conjecture, it suffices 
without loss of generality to consider the case when $n$ is a prime $p$. 
In this paper we consider the question of bounding the sum $\sum_{p<N} f
(p)$ asymptotically as $N \to \infty$, where $p$ ranges over primes. Our 
main result establishes the asymptotic upper and lower bounds $$ N \log^2 N 
\ll \sum_{p \leq N} f(p) \ll N \log^2 N \log \log N.$$ In particular, from this 
bound and the prime number theorem we have $f(p) = O(\log^3 p \log \log p)
$ for a subset of primes of density arbitrarily close to 1; thus a typical prime 
has a relatively small number of solutions to the Erd\H{o}s-Straus 
Diophantine equation. 
We also establish some related results on $f$ and related quantities, for 
instance establishing the bound $f(p) \ll p^{3/5} + O(\frac{1}{\log\log p})}$ for 
all primes $p$. 
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