Mathematics > Number Theory

Counting the number of solutions to the Erdos-Straus equation on unit fractions

Christian Elsholtz, Terence Tao

(Submitted on 6 Jul 2011 (v1), last revised 26 May 2012 (this version, v4))
For any positive integer $\$ n \$$, let $\$(n) \$$ denote the number of solutions to the Diophantine equation $\$ \mid$ frac $\{4\}\{n\}=\backslash f r a c\{1\}\{x\}+\backslash f r a c\{1\}\{y\}+\backslash f r a c\{1\}\{z\} \$$ with $\$ x, y, z \$$ positive integers. The \emph\{Erd\H\{o\}s-Straus conjecture\} asserts that $\$ f(n)>0 \$$ for every $\$ n$ Igeq $2 \$$. To solve this conjecture, it suffices without loss of generality to consider the case when $\$ n \$$ is a prime $\$ \mathrm{p} \$$. In this paper we consider the question of bounding the sum \$lsum_\{p<N\} f (p)\$ asymptotically as $\$ \mathrm{~N}$ lto linfty $\$$, where $\$ \mathrm{p} \$$ ranges over primes. Our main result establishes the asymptotic upper and lower bounds $\$ \$ \mathrm{~N} \log ^{\wedge} 2 \mathrm{~N}$ \II \sum_\{p \leq N\}f(p) \II N \log^2 N Vog $\backslash \log N . \$ \$$ In particular, from this bound and the prime number theorem we have $\$ f(p)=O(\log \wedge 3 p \backslash \log \backslash \log p)$ $\$$ for a subset of primes of density arbitrarily close to 1 ; thus a typical prime has a relatively small number of solutions to the Erd\H\{o\}s-Straus Diophantine equation.
We also establish some related results on $\$ \$ \$$ and related quantities, for instance establishing the bound $\left.\$ f(p) \backslash I I p^{\wedge}\{3 / 5\}+O(\backslash f r a c\{1\}\{\backslash \log \backslash \log p\})\right\} \$$ for all primes $\$ \mathrm{p} \$$.

Comments: 53 pages, two figures. This is the final version
Subjects: Number Theory (math.NT)
MSC classes: 11D68, 11N37 secondary: 11D71, 11N56
Cite as: arXiv:1107.1010v4 [math.NT]

Submission history

From: Terence C. Tao [view email]
[v1] Wed, 6 Jul 2011 01:02:36 GMT (12kb)
[v2] Fri, 8 Jul 2011 15:21:35 GMT (12kb)
[v3] Fri, 29 Jul 2011 20:43:23 GMT (181kb,D)
[v4] Sat, 26 May 2012 15:35:18 GMT (248kb,D)
Which authors of this paper are endorsers?

